
A Optimizer hyperparameters

Optimization hyperparameters were chosen to reflect good performance for each optimizer in each
domain. We therefore performed sweeps for major hyperparameters of each optimizer for each
domain, with those used for experiments in the paper shown in the table below.

CEM maintains a population of samples and uses these to estimate the mean µ and standard deviation
σ of a Gaussian distribution over design parameters. To optimize µ and σ, it takes the top performing
fraction, deemed the “elite portion,” from the current step. The initial standard deviation of this
distribution is given by “Initial σ”, and the initial mean is set to 0. We found that for CEM, the
population sample size had a significant effect on overall optimization quality (Figure A.1). Due to
computational considerations, we picked the smallest value for this hyperparameter that performed
within 1 standard deviation of the optimal sample size. Both the elite portion and initial σ parameters
were chosen as the best performing values on a set of held-out random tasks for each domain.

For GD, we only performed a hyperparameter sweep over the learning rate, which was the only
parameter to significantly affect performance. For the 2D FLUID TOOLS tasks, we introduced
gradient clipping to eliminate the effect of rare gradient spikes over the course of optimization.
However, not using gradient clipping still produced qualitatively and quantitatively similar results.
For additional Adam parameters, we used the default values for the exponential decay rates that track
the first and second moment of past gradients of b1 = 0.9 and b2 = 0.999 [41].

2D FLUID TOOLS 3D WATERCOURSE AIRFOIL
GD Contain Ramp Maze Direction Pools

Learning rate 0.005 0.005 0.01 0.01 0.01 0.01
Momentum term b1 0.9 0.9 0.9 0.9 0.9 0.9
Momentum term b2 0.999 0.999 0.999 0.999 0.999 0.999

Gradient clip 10 10 10 — — —

CEM

Sampling size 20 20 20 40 40 —
Elite portion 0.1 0.1 0.1 0.1 0.1 —

Initial µ 0 0 0 0 0 —
Initial σ 0.5 0.5 1.5 0.1 0.1 —

Evolution smoothing 0.1 0.1 0.1 0.1 0.1 —

Optimization steps 1000 1000 1000 200 200 200

Figure A.1: For CEM, increasing population size, while more computationally expensive, can
lead to improvements in performance. (a) In the 3D WATERCOURSE domain, CEM benefits from
large sample sizes, although returns are diminishing for sizes beyond 40 (Direction task, 36 design
parameters). (b) In the 2D FLUID TOOLS domain, CEM benefits from larger sample sizes, although
returns are diminishing for sizes beyond 20 (Contain task, 40 design parameters).

17

B Model architecture and training

For each task domain, we train a GNN for next-step prediction of the system state. For the domains
considered in this paper, we unify the approaches of GNS [63] and MESHGRAPHNETS [57]: In
the AIRFOIL domain, we encode/decode mesh nodes and mesh edges as a graph as described in the
aerodynamics examples of MESHGRAPHNETS, while for particle-based fluids, edges are generated
based on proximity as in GNS. In the case of 3D WATERCOURSE, both particles (fluid) and a mesh
(the designed obstacle) are present; hence, edges are generated based on proximity (for fluid-fluid and
fluid-obstacle interaction) or from the landscape mesh. As the landscape does not have any internal
dynamics, we did not find it necessary to distinguish between world- and mesh edges, and use a
single edge type.

Once encoded as a graph, the core model and training procedure is largely identical between GNS
and MESHGRAPHNETS, and we refer to the above papers for full details on architecture and model
training. Briefly, we use an Encode-Process-Decode GNN with 10 processor blocks. All edge and
node functions are 2-layer MLPs of width 128, with ReLu activation and LayerNorm after each MLP
block. The model is trained with Adam and a mini-batch size of 2, with training noise, for up to 10M
steps. We implemented this model in JAX [11]. In addition to the different encoding procedures for
mesh vs. particle systems, the parameters for training noise and connectivity radius have to be set
per-domain, to account for differences in particle size/mesh spacing. These details are described in
Appendix C. The models were trained on 4 TPUv3 for 4-10 days.

Gradient computation In our experiments, we pass gradients through long model rollouts of up to
300 steps. As it is prohibitive to store all forward activations for the backwards pass, we use gradient
checkpointing [18] to store activations only at the beginning of each step of the trajectory during the
forward pass, and recompute the intermediate activations for each step as needed when the backwards
pass walks the trajectory in reverse. Gradient calculation using this method has roughly 3 times the
time cost of a pure forward simulation: forward dynamics have to be computed twice for each step,
in addition to the computation of the backwards pass itself.

C Task domains

C.1 2D FLUID TOOLS

Tasks in 2D FLUID TOOLS are procedurally generated from templates specified in Table A.1. The
simulation domain is a 2D box, with the lower left corner specified as [0, 0], and upper right corner
specified as [1, 1]. Fluid particles are initialized as a box of size Initial fluid box with bounding boxes
given in format [xmin, ymin, xmax, ymax]. Certain task parameters were varied for ablation experiments
in Figure 4 (rollout length, # joints (Contain), # tools (Maze)); Table A.1 contains default values used
unless otherwise specified.

Design space A “tool” in this task domain is a 2D curve composed of several line segments
connected by joints. For a large number of joints, a tool can thus approximate a smooth curve
(Figure A.2). Each task’s design space consists of the relative joint angles controlling the tool’s
shape. We consider tasks with a single, multi-segment tool (Contain, Ramp) and a task with multiple,
single-segment tools (Maze). For each tool, relative angles are calculated by moving from the anchor
point on the left, along the tool segments to right, such that anglei = anglei−1 + ϕjointsi for the ith

joint from the anchor. We also experimented with two additional design space parameterizations: (1)
jointly optimizing the joint angles and a global position offset [x, y] for each tool, and (2) changing
the parameterization of angles to be absolute (such that anglei = ϕjointsi directly). We discuss the
effects of these alternate parameterizations in Section D.3.

Simulation and objective Both fluids and tools are represented as particles with different types,
and simulated with the learned model for 150 steps (with the exception of the ablation experiment
on rollout length). Scenes consist of N = 100 . . . 1000 fluid particles. For ground-truth evaluation
of the designs, we simulate particle dynamics with an MPM solver [43]. Task reward is calculated
using the Gaussian likelihood of the final particle positions after rollout (uv from G̃tK). That is, for a
task with reward parameterized with mean µ and spherical covariance σ (θR = [µ, σ]), the reward is

18

Contain Ramp Maze (nxn)

Environment size 1x1 1x1 1x1
Rollout length 150 150 150

Initial fluid box [0.2, 0.5, 0.3, 0.6] [0.2, 0.5, 0.3, 0.6] [0.2, 0.75, 0.8, 0.8]

Reward sampling box [0.4, 0.1, 0.6, 0.3] [0.8, 0, 1, 0.2] [0.1, 0.1, 0.9, 0.2]
Reward σ 0.1 0.1 0.1

Design parameter joint angles joint angles rotation
tools 1 1 n2

joint angles 16 16 1

Tool position (left) [0.15, 0.35] [0.15, 0.35] —
Tool domain box (3x3) — — [0.14, 0.3, 0.65, 0.6]
Tool domain box (4x4) — — [0.14, 0.3, 0.71, 0.6]
Tool domain box (5x5) — — [0.14, 0.3, 0.75, 0.6]
Tool domain box (6x6) — — [0.14, 0.25, 0.77, 0.65]

Tool Length 0.8 0.8 —
Tool length (3x3) — — 0.72
Tool length (4x4) — — 0.64
Tool length (5x5) — — 0.65
Tool length (6x6) — — 0.63

Table A.1: Task Parameters for 2D FLUID TOOLS tasks. Boxes are described as
[xmin, ymin, xmax, ymax].

Figure A.2: Visualization of the design space parameterization for the 2D FLUID TOOLS task. Each
red dot corresponds to the anchor points (Contain and Ramp) and center of rotation (Maze) being
optimized.

calculated as

fR := meanv log(N (uv;µ, σ)) .

Contain For this task, the center of the goal region µ is sampled uniformly from a rectangular
reward region in the lower-middle section of the 1× 1 simulation domain ([0.4, 0.6]× [0.2, 0.4]). A
tool protruding to the right is initially placed below the fluid rectangle. By optimizing a single tool’s
relative joint angles, successful solutions must “contain” the fluid in the region by creating a cup or
spoon.

Ramp The fluid and tool are initialized as in Contain, and µ is sampled from a region lower and
further to the right than in Contain ([0.8, 1]× [0, 0.2]). By again optimizing a single tool’s relative
joint angles, successful solutions will create a “ramp” from the initial fluid position to the goal
location in the bottom right.

19

Maze The goal is sampled from a long region near the bottom of the domain ([0.1, 0.9]× [0.1, 0.2]).
By optimizing the rotation angles of a grid of rigid, linear tools, successful solutions will create a
directed path from the top of the screen to the goal location at the bottom.

Model training We trained the learned simulator on the WATERRAMPS datasets released by
Sanchez-Gonzalez et al. [63]. This dataset consists of 1000 trajectories featuring a single large block
of water falling on one to four randomized straight line segments (see image below for examples).
Model architecture and hyperparameters are described in Appendix B, with a training noise scale of
6.7 10−4 and connectivity radius of 0.015.

Figure A.3: Four examples of trajectories from the WATERRAMPS dataset released by [63] used as
training data for the supervised prediction model.

C.2 3D WATERCOURSE

Design space This domain has a design space ϕmap of 625 parameters, which determine the y
coordinate offset to nodes of a 25× 25 square mesh centered at c = (0.3, 0.5, 0.5) in the simulation
domain. While we could directly mapping the parameters to coordinates, we use the design function
yi = γHtanh(ϕmapi

) (γH = 0.3 for all tasks) to prevent trivial task solutions (i.e. obstacles which
touch the floor).

Simulation The simulation consists of an inflow pipe located at (-0.5, 1.0, 0.5) above the landscape
which continually emits a stream of liquid, represented as particles. These particles are then redirected
by the designed landscape, and finally removed once they hit the floor at y = 0. In our experiments
we observed up to 2084 particles present in the scene at one time. We unroll the learned simulation
model for trajectories of 50 time steps, and store the final particle positions uv, as well as the positions
of removed particles that touched the floor at any point uD

v to be passed to the reward function.
Ground truth simulations for evaluation are performed by running the same setup with an SPH solver.
We note that SPH requires very small simulation time steps, and performs ≈ 104 internal steps for a
trajectory of the same length.

Direction In this task, we want to align the water stream with a given direction vector d. We can
formalize this using the reward function

fRdir
:= meanv ((uv − c) · d)− stdv ((uv − c) · d⊥)− γR mean(∇ϕmap)

where d⊥ is orthogonal to d. The first term aligns the direction of the particle relative to the domain
center, and the second term concentrates the stream. The last term is a smoothness regularizer
on the design landscape, which prefers smooth solutions (γR = 300 for both tasks). Absolute
reward numbers for this task can be positive or negative, hence we report the normalized reward
fRdir

− f initial
Rdir

, i.e. an unchanged initial design corresponds to a zero reward, to make the scores
easier to interpret.

Rewards can be in 8 different directions, spaced between 0 and 180 deg. We collapse across directions
for reporting reward means and confidence intervals for each optimizer.

2 Pools and 3 Pools In these tasks, we define two and three pools, respectively, with center µp on
the floor. For each particle which has hit the floor, we assign it to its closest pool µ̂p, and define the
reward as the Gaussian probability under µ̂p, i.e.

fRpools
:= meanv(N (uD

v ; µ̂p, σ))− γR mean(∇ϕmap)

with σ = 0.4 and a regularization term as above.

20

To showcase different ways of splitting the water stream, we consider one positioning of the pools
for the two pool case, and two for the three pool case. In the two pool case, pools are placed
at [1.49,−0.35] and [1.49, 1.35]. In the three pool case, pools are placed either at [1.6,−0.45],
[1.85, 0.5], and [1.6, 1.45], or at [0.5,−0.5], [1.7, 0.5], and [0.55, 1.5]. These were selected to ensure
the task was solveable – pools directly beneath the landscape, or too far away from the landscape,
would not be reachable even with dramatically warped surfaces.

Model training We trained a model on next-step prediction of particle positions, on a dataset of
1000 trajectories of water particles interacting with a randomized obstacle plane (random rotations
and sine-wave deformations of the planar obstacle surface). The data was generated using the SPH
simulator SPlisHSPlasH [8]. The noise scale is set to 0.003 and a connectivity radius of 0.01 to
account for the different particle radius of the 3D SPH simulation compared to 2D MPM. All other
architectural and hyperparameters are as described in Appendix B.

C.3 AIRFOIL

The airfoil optimization task is modeled similarly to the NACA0012 aerodynamic shape optimization
configuration for incompressible flow for the DAFoam solver (see details here), to make it easier to
compare design solutions to this solver.

Design space The design space consists of the y-coordinate of 10 control points (see Figure 5a).
Moving these control points deforms both the airfoil, and the simulation mesh surrounding it. The
airfoil shape is deformed using B-spline interpolation as described by Reid [58], and the mesh is
deformed using IDWarp [65]. We thus define a design function Gt0 = fD(ϕctrl, Gα) which takes an
initial, undeformed airfoil mesh (we use the standard NACA0012 airfoil), encoded as a graph Gα, as
well as the control point position ϕctrl as input. It returns the graph of the deformed airfoil mesh Gt0

to be passed to the simulator. We note that the coefficients for spline interpolation and mesh warping
can be precomputed for a given initial mesh, making it easy to define a differentiable function to use
for design optimization.

Simulation Given the initial mesh, as well as simulation parameters, the simulator or learned model
predict the steady-state incompressible airflow around the wing, sampled on each of the 4158 nodes
on the simulation mesh. The entire simulation domain and an example prediction of the pressure field
are shown in Figure A.4a,b. For drag minimization we require predictions of the pressure field p, as
well as the effective Reynolds stress ρeff at each mesh node, i.e. qv = (p, ρeff). Unlike the other
domains in this paper, this is a single-step prediction task, and model rollouts are of length one. For
this task, we consider an inflow speed of 0.1 mach, under an 5.1◦ angle of attack.

Task objective The task reward is defined as fR := −CD − γL||CL − CL0||2 − γA a(ϕctrl), i.e.
we minimize the drag coefficient CD under soft constraints of unchanged lift CL and a wing area
a of 1-3 times the initial area. We use γL = 10, γA = 1, and a tanh nonlinearity to enforce the
volume inequality. Lift and drag can be computed from the simulation output p, ρeff by integration
around the airfoil, see e.g. [49]. We report the normalized reward fR − f initial

R such that the initial,
undeformed wing design corresponds to a zero reward.

Model training We trained a model to predict p, ρeff on a dataset of 10000 randomized airfoil
meshes, simulated with OpenFoam [55]. For training ensemble models, this dataset is split into 5
non-overlapping blocks, and a separate model is trained on each section. Since this is a steady-state
prediction task, information needs to propagate further at each model evaluation. We therefore use
twice-repeated processor blocks with shared parameters, i.e. the model performs 20 message passing
steps, with 10 blocks of learnable parameters. We found that this increases accuracy in the one-step
setup by being able to pass messages further across the mesh. Training noise is often cited for stability
over long rollouts, but even in this one-step setting, training noise and data variation can be useful. To
increase robustness to unseen wing configurations, we varied the grid resolution between 1000-10000
nodes for each sample in the training set, and added training noise to the input mesh coordinates. We
use a normal noise distribution with the scale of 1% of the average edge lengths surrounding the node
noise is applied to. All other aspects of model architecture and training procedure are as described in
Appendix B.

21

https://dafoam.readthedocs.io/en/latest/Tutorial_Aerodynamics_NACA0012_Incompressible.html

Figure A.4: (a) Aerodynamics are computed on a large 4158 node mesh centered around the airfoil,
with the closeup regions around the airfoil in (b, c) marked as a white square in the center. (b,
c) Pressure predictions and control points (orange) for the initial and final optimized wing design
(Ensemble-5 model).

D Further results

D.1 Model accuracy

In order for a learned simulator to be useful for design, it must be sufficiently accurate in the forward
direction. We study this question directly for each of the domains (3D WATERCOURSE, 2D FLUID
TOOLS and AIRFOIL) by examining the magnitude of the error between the model predictions of
reward for the discovered designs, and the ground truth reward for those designs. The results for each
domain are shown in Figure A.5.

Broadly, the learned model very successfully mimics the ground truth simulator in reward prediction
across all three domains. The accuracy for AIRFOIL is within a single standard deviation across all
ensemble sizes, while the predictions in 3D WATERCOURSE match very closely for both the high
performing designs (GD-M) and low performing designs (CEM-M).

However, we do notice some discrepancies in the predicted and ground truth reward for the 2D
FLUID TOOLS domain, particularly the Maze task. As mentioned in the main text, the ground truth
solver sometimes produces unrealistic rollouts for this domain (see Figure A.10), with fluid particles
becoming stuck between the different tools. Despite this issue, we find that the model is sufficiently
similar to the ground truth to produce designs that still achieve high reward overall.

Figure A.5: (a) For the 3D WATERCOURSE domain, reward predicted by the learned model (GD-
M eval w/ M, CEM-M eval w/ M) is very close to the ground-truth simulator evaluation (GD-M,
CEM-M) for all tasks. (b) This is also true for the 2D FLUID TOOLS domain, though the reward is
slightly overestimated when using the model. This effect is amplified in Maze, where the ground-truth
dynamics sometimes struggles to correctly simulate “sticky” bottlenecks (see Figure A.10). (c) Model
predictions of drag (GD-M eval w/ M) are relatively close to the ground-truth simulator evaluation
(GD-M), particularly for larger ensemble sizes.

D.2 Other optimizers

In our experiments in Section 5, we chose the cross-entropy method (CEM) as a popular optimizer
representative of model predictive control methods [26, 20], but there are several other possible
choices of optimizer. In particular, here we provide results from optimizers that represent two

22

Figure A.6: Performance of alternative optimizers as a function of optimization time. Left: overall
performance for each optimizer on the 3D Directions task. Center/Right: performance with a design
space consisting of a 3x3 and 25x25 grid, respectively. For large design spaces, GD-M converges
significantly faster than alternative optimization schemes, and leads to higher rewards. Error bars and
shaded regions represent 95% confidence intervals over 9 directions and 10 seeds per direction.

alternative classes: bayesian optimization [68] (BO, which uses active sampling to explore the design
space more effectively), and CMA-ES [38] (which is an evolutionary search method and represents a
more sophisticated sampling technique than CEM).

We used the Bayesian Optimization implementation from [33] with their automatic hyperparameter
tuning that uses automatic relevance determination (ADR) [74] with a Matérn kernel and the expected
improvement (EI) acquisition function. For CMA-ES we swept across the topk to keep, the smoothing
parameter across iterations, the number of samples to use in each step, and the initial standard
deviation of the sampling distribution. These were fit on the direction template with a single direction
across 2 seeds per hyperparameter. The best performing hyperparameters for CMA-ES were to keep
the top 10% of samples, no smoothing across optimization iterations, 40 samples per optimization
step, and an initial standard deviation of 0.025. We show results for the 3D WATERCOURSE Direction
template to showcase the scalability of both methods at the 3x3 design space and 25x25 design space
resolutions.

For a low-dimensional design space (3x3), all optimizers perform comparably. While CMA-ES
and GD slightly outperform CEM and BO, the differences are minor. For larger design space sizes
(25x25), GD-M significantly outperforms all alternative optimizers. Given enough optimization
time, CMA-ES is able to achieve about three quarters of the reward obtained by GD, although it
takes roughly 50× as long to do so, as, like CEM, it needs to sample a significantly larger number
of environment calls for each optimization step. It outperforms CEM because it represents a full
covariance matrix across the top samples in the population, rather than a single scalar.

D.3 Effects of design parameterization

In this section, we study how different parameterization choices for the design space affect both
gradient-based and sampling-based optimizers.

First, in the 3D WATERCOURSE domain, we investigate a parameterization of the design space
that uses interpolation to minimize the number of control points on the 2D heightfield (Figure A.7).
Control points are placed evenly across the grid, and bi-linearly interpolated onto the 25× 25 mesh.
We vary the number of control points from 2× 2 up to 14× 14, and find that while CEM-M performs
similarly to GD-M when very few control points are allowed, its performance quickly drops as more
control points are added.

23

Figure A.7: Performance on the 3D WATERCOURSE Direction task with variable design space
resolution: GD performs well for large design spaces, while CEM performance quickly drops with
increased number of design parameters. (b) Examples of CEM designs at two different design space
resolutions. (C) Examples of GD designs at two different design space resolutions.

Second, in the 2D FLUID TOOLS domain, we investigate what happens when we change the design
space to use absolute joint angles rather than relative ones. When using relative joint angles, changes
to joints near the tool’s pivot (left side) affect the global properties of the tool. We hypothesized that
this could be selectively benefiting the sampling-based approaches, as this makes the effective design
space much lower dimensional. We therefore change the design space to be absolute, with a tool’s
joint angles calculated directly: anglei = ϕi.

As hypothesized, this change does dramatically decrease the performance of the sampling-based
technique (see Figure A.8). Perhaps more surprisingly, the gradient-based optimizer is almost
completely unaffected by this reparameterization. While the qualitative solutions it finds differ (with
tools now containing “kinks” to prevent the motion of the fluid rather than curves, Figure A.8 top),
the overall reward achieved is similar.

Figure A.8: (a) Example solutions for each optimizer across the Contain and Ramp tasks when
optimizing over Relative vs Absolute angles. (b) Mean reward with 95% confidence intervals obtained
by each optimizer across the Contain and Ramp tasks when optimizing over Relative vs Absolute
angles.

24

D.3.1 Failure modes of gradient descent

Other parameterizations of the design space can badly affect the performance of gradient-based
optimizers. In particular, gradient-based optimizers suffer when there are regions of zero gradients. In
the AIRFOIL and 3D WATERCOURSE domains, this is not normally a problem, as the design always
interacts with the physical system on which reward is being measured. But in the 2D FLUID TOOLS
domain, we can manipulate this.

In particular, for this experiment we changed the design space for 2D FLUID TOOLS to include
a global position offset [x, y] for the tool. Making this simple change often has no effect on the
discovered designs, but occasionally the gradient-based optimization procedure can move the tool
such that it no longer interacts with the fluid (Figure A.9). Once the tool has been moved out of the
range of the fluid, there is no longer any way to affect the reward, and therefore there is no gradient
signal to recover. To overcome this problem, future work would need to consider more sophisticated
hybrid optimization techniques [70].

Figure A.9: Failure mode of the GD optimizer: in some instances where the translation of the tool
is included in the design, the tool may end up outside of the scope of the fluid. In this cases, the
optimization can no longer recover as it will get zero gradients from there on.

D.4 Failure modes of the MPM solver

One of the advantages of using a learned simulator over a classic simulator is learned simulators
can be trained in regions of the state and action space that are known to exhibit regularized, smooth
behaviors. For example, as mentioned in Section D.1, the MPM solver [43] we use for evaluation in
2D FLUID TOOLS shows surprising irregularities with “sticking” behavior when there are a large
number of different tools. In the Maze task, this is particularly prevalent, as fluids often become stuck
stochastically in some funnels but not others of similar sizes (Figure A.10).

Since the learned simulator was trained on much simpler scenarios where this effect is not observed,
it only learns the smooth behavior of the fluid’s movement, which makes the resulting trajectories
look more realistic. This may enable better generalization to real world scenarios.

Figure A.10: Left: MPM simulation [43] of a problem with many separate solid objects. As
highlighted in the red circle, the MPM solver struggles with water movement between obstacles,
often creating artificially sticky bottlenecks. Right: Learned model rollout for the same setup. The
model rollout looks significantly more plausible, without any “stickiness” artifacts. Please see
https://sites.google.com/view/optimizing-designs for videos demonstrating this effect
clearly.

25

https://sites.google.com/view/optimizing-designs

D.4.1 Further designs found in 2D FLUID TOOLS

In the figures below, we demonstrate the range of found solutions for different solvers in tasks in the
2D FLUID TOOLS domain.

Figure A.11: Example solutions for each optimizer across the range of rollout lengths sampled for
Contain in Figure 4.

Figure A.12: Example solutions for each optimizer across the range of joint angle numbers sampled
for Contain in Figure 4.

26

Figure A.13: Example solutions for each optimizer across the range of grid sizes sampled for Maze
in Figure 4.

Figure A.14: Example solutions on Contain task for each optimizer across 6 random seeds.

27

Figure A.15: Example solutions on Ramp task for each optimizer across 6 random seeds.

Figure A.16: Example solutions on Maze for each optimizer across 6 random seeds.

D.5 End2End Surrogate Reward Models

D.5.1 3D WATERCOURSE

In this section we trained an end-to-end surrogate to map design parameters (ϕmap) directly to
rewards on the same designs as those contained in the training set for the GNN model (Section C.2),
but extended with the rewards predicted by the ground truth simulator in each of the d = 8 target
angles of the Direction task, so that Dsur = {(ϕmap, fRdir

(ϕmap,d))
(i)}1000i=0 . We used a ResNet-18

as the reward predictive model with a 25× 25 dimensional input corresponding to the heightfield
mesh, and we trained a separate model for each target direction.

The model could fit the training set, as well as an in-distribution test set very well (MSE=0.0070±
0.0025). However, the model performs predictably poorly out of distribution (Figure 6): It (1)
severely underestimates the reward of high-scoring designs found using GD-M (predicted=0.33±0.06,

28

actual=1.21± 0.18, MSE=0.813± 0.344), and (2) obtains poor designs when using this model in an
GD optimizer (predicted=1.12± 0.31, actual=0.40± 0.05, MSE=0.615± 0.403).

a

c

E
n

d
-t

o
-E

n
d

 (
G

D
)

G
N

N
 S

im
u

la
to

r
(G

D
-M

)

b

Figure A.17: Comparison of the end-to-end surrogate model (GD-E2E), which consists of a ResNet-
18 [39] trained to predict reward directly from 25 × 25 grid of design parameters, on the 3D
WATERCOURSE Direction task. (a - top row) an example of a design solution optimized with the
Learned GNN Simulator (GD-M) for each direction. (a - bottom row) top view of the fluid flow for
each solution using the design pictured above. (b - top row) an example of a design solution optimized
using the trained End-to-End surrogate model (GD-E2E) for each direction. (b - bottom row) top
view of the fluid flow for each solution using the design pictured above. (c) Ground Truth (evaluated
using fs) vs Predicted reward for different sets of designs: (black dots) held-out test data sampled
from the same distribution used to sample training data, (blue stars) optimized designs shown in (a)
found using the Learned GNN Simulator (GD-M), (orange stars) optimized designs shown in (b)
found using the End-to-End model (GD-E2E).

D.5.2 2D FLUID TOOLS

Unlike the dataset used in the previous section, the WATERRAMPS dataset does not share a design
space with the 2D FLUID TOOLS tasks (i.e. there are no joints, only a small number of line segments),
so we were unable to train a reward model end-to-end as above on this data. Therefore, we instead
computed the reward for 1000 random designs (the same size as the training set for the GNN model)
for the 2D FLUID TOOLS-Contain task using 4 up to 48 design parameters (Table A.2) to assess the
difficulty of creating a dataset which includes high rewards using random sampling.

The maximum reward found decreased quickly for > 12 design parameters: i.e., for 48 joints, the
highest reward encountered is 3× less than the average reward design obtained using the GD-M

29

Number of joints 4 8 12 16 20 24 28 32 36 40 44 48

Random design reward 12.5 11.4 9.8 8.6 8.0 6.9 5.8 5.5 5.2 4.7 4.8 4.4

Table A.2: Maximum reward found via random exploration of 1k designs across different joint
dimensions on the 2D FLUID TOOLS-Contain task.

(Figure 4-b) for the same dimensionality. Hence, a reward model trained on such data would not
perform very well, as effective designs are highly out-of-distribution.

D.6 Further tasks for 3D WATERCOURSE

To demonstrate the flexibility and further scaleability of the approach, we designed two further tasks
for the 3D WATERCOURSE environment that require optimizing two meshes in order to manipulate
the flow of a fluid: DOUBLEMESHREROUTE and DOUBLEMESHRAMP. Unlike in the original 3D
WATERCOURSE tasks, in these two tasks the global rotation θg (in the z plane) of the meshes can be
optimized as well as the heightfields, leading to a design dimensionality of 1252 (each mesh has 626
parameters to optimize). Both tasks are particularly out of distribution for this environment, since
there was only ever one mesh (with a sinewave heightfield) without any vertical rotation seen during
training.

In both cases, the positions of the meshes are fixed to (−0.25,−0.1, 0.0) and (0.7,−0.2, 0.0) respec-
tively, allowing them to be offset in both the height and distance from the water emitter.

D.6.1 DOUBLEMESHREROUTE task

In this task, the reward region is placed at (0.5, 0.0, 0.5), which is just underneath the edge of the
first mesh. In order to move the fluid to this location, the fluid needs to be guided by the first mesh
into a stream, and then rerouted by the second mesh to bounce back and underneath the first mesh.
We define the reward as the Gaussian probability for each particle uvunder µ̂ with µ = (0.5, 0.0, 0.5)
(a region at (0.5, 0.5) on the floor), i.e.

fRreroute := meanv(N (uv; µ̂, σ))− γR mean(∇ϕmap)

with σ = 0.1 and a regularization term γR = 100 to provide smoothness, as in the original 3D
WATERCOURSE tasks.

The mesh rotations are initialized to 20◦ and −40◦ respectively, and then allowed to be optimized
further along with the heightfields (rotations end up at 35.6◦ and −44.2◦ respectively after optimiza-
tion). After 100 optimization steps, in this task the designs achieve a reward of 1.16 when evaluated
with the ground truth simulator.

Figure A.18: Double mesh task where both the global rotation and the heightfield of two meshes can
be optimized, a total of 625×2 + 2 = 1252 parameters. The model is the same one as used for the
Direction and Cluster templates. This design task involves rerouting the fluid to the red ball region.
To do so, the meshes must cooperate to reroute the fluid against its direction of travel using steep
rotations. The mesh was never rotated in the training data, and only one mesh was ever seen in the
training data.

30

D.6.2 DOUBLEMESHRAMP task

In this task, the reward region is placed at (2.5, 0.0, 0.5), which is past the edge of the second mesh.
In order to move the fluid to this location, the fluid needs to be guided by the first mesh into a stream,
and then rerouted by the second mesh to bounce back and underneath the first mesh. We define the
reward as the Gaussian probability under µ̂ with µ = (2.5, 0.0, 0.5), i.e.

fRramp
:= meanv(N (uv; µ̂, σ))− γR mean(∇ϕmap)

with σ = 0.1 and a regularization term γR = 100.

The mesh rotations are initialized to 0◦, and then allowed to be optimized further along with
the heightfields (rotations end up at −4.4◦ and −7.8◦ respectively after optimization). After 100
optimization steps, in this task the designs achieve a reward of 0.52 when evaluated with the ground
truth simulator.

Figure A.19: Double mesh task where both the global rotation and the heightfield of two meshes can
be optimized, a total of 625×2 + 2 = 1252 parameters. The model is the same one as used for the
Direction and Cluster tasks. This design task involves rerouting the fluid to the red ball region. To do
so, the meshes must cooperate to extend a ramp so that the water makes it all the way to the far side.
Only a single, non-rotated mesh was seen in the training data.

31

	Optimizer hyperparameters
	Model architecture and training
	Task domains
	2D Fluid Tools
	3D Watercourse
	Airfoil

	Further results
	Model accuracy
	Other optimizers
	Effects of design parameterization
	Failure modes of gradient descent

	Failure modes of the MPM solver
	Further designs found in 2D Fluid Tools

	End2End Surrogate Reward Models
	3D Watercourse
	2D Fluid Tools

	Further tasks for 3D Watercourse
	DoubleMeshReroute task
	DoubleMeshRamp task

