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Appendix

A Formal Definition of Inhomogeneous Poisson Process

The inhomogeneous Poisson (point) process is a Poisson point process with a Poisson parameter set
as some time-dependent function r(τ). In particular, the expected number of points observed in a time
interval [a, b] is Λ(a, b) =

∫ b
a
r(τ)dτ . Let N(a, b) represent the number of points of inhomogeneous

Poisson process with intensity function r(t) occurring in the interval [a, b], then the probability of n
points existing in the interval [a, b] is given by,

P (N(a, b) = n)
Λ(a, b)n

n!
e−Λ(a,b)

In this paper, the points mean the conversions and the time-dependent intensity function r(·) is
defined in Eq. (2) and it depends on the realization of the conversions and parameter θ.

B Poisson Process Estimation

Lemma 1 (Bernstein’s Inequality [24]). Suppose X1, · · ·Xn are independent, mean-zero, sub-
exponential random variables, and a = (a1, · · · , an) is an n dimensional constanst vector. Then, for
every ε > 0, we have

Pr(|
n∑
i=1

aiXi| ≥ ε) ≤ 2 exp
(
− c′min

( ε2

max ‖Xi‖2ψ ‖a‖
2 ,

ε

maxi ‖Xi‖ψ ‖a‖∞

)
n
)

where ‖Xi‖ψ is the sub-exponential norm (Orlicz norm) of Xi and c′ is an absolute constant
(Bernstein constant). ‖a‖ is the Euclidean norm and ‖a‖∞ = maxi |ai|.

Proof of Theorem 1. Denote Ψh = {0, 1}h−1. We first introduce the main idea of the
the PAMM algorithm. Since conversions follow the Poisson process, we have N t

h ∼
Poisson(

∫ h+1/2

h
r(τ ;wt, θh)dτ) and N

t

h ∼ Poisson(
∫ h+1

h+1/2
r(τ ;wt, θh)dτ) independently.

Note that for all t ∈ Ωφ and Λφ, their history winning records before h are exactly the same. Suppose
sφ = max{j : j ≤ h− 1, φj = 1}. It is not difficult to see that

E(Xφ) =

∫ h+1/2

h

r(τ ;wt, θ)dτ −
∫ h+1/2

h

r(τ ;wt
′
, θ)dτ

=

∫ h+1/2

h

∑
wti≤h−1

dwti (τ ;wti − wti−1, θwi)dτ +

∫ h+1/2

h

dh(τ ;h− st, θh)dτ

−
∫ h+1/2

h

∑
wt
′
i ≤h−1

d
w
φ(t)
i

(τ ;wt
′

i − wt
′

i−1, θwt′i
)dτ

=

∫ h+1/2

h

dh(τ ;h− st, θh)dτ = βh(h− sφ)
(
1− e−λh/2

)
(14)

where t and t′ are two arbitrary episodes in Ωh and Λh (nonempty). Similarly, we have

E(Yφ) = βh(h− sφ)
(
1− e−λh/2

)
e−λh/2. (15)

Therefore, E(Xφ) and E(Yφ) precisely locate the parameter of interest, θh. By aggregating the
information over different φ, we can thus estimate {βh(`), 0 ≤ ` ≤ h} and λh based on the method
of moments. Notice that λh is shared for all episodes with the same φ while βh(`) is shared only
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within a subset of Ψh, for a given `. Therefore, we will tailor the moment match operations according
to different aggregation levels, as indicated in (10) and (12). Next, we proceed to study the theoretical
property of the algorithm. Define

µh =
∑
φ∈Ψh

αφβh(h− sφ)(1− e−λh/2)

and
ηh =

∑
t∈Ψh

αφβh(h− sφ)e−λh/2(1− e−λh/2).

Taking the logarithm of the ratio between the two quantities, we get

log(µh/ηh) = λh/2.

Our estimator λ̂h is motivated by the above identity with the observation that

E µ̂h = µh; E η̂h = ηh.

We start with deriving the concentration of µ̂h. Note that the terms N t
h in (7) are Poisson random

variables, with their expectation upper bounded by∫ h+1/2

h

r(τ ;wt, θh)dτ ≤ CT .

Therefore, each of these items is a sub-exponential random variable with ‖N t
h‖ψ ≤ CT . To use

Lemma 1, we can see that the a vector corresponding to (9) reads as

‖a‖2 =
∑
φ∈Ψh

α2
φ(

1

nφ
+

1

n′φ
)

=
∑
φ∈Ψh

( 1
1
nφ

+ 1
n′
φ

)2( 1
nφ

+ 1
n′φ

)

(
∑
φ∈Ψh

1
1
nφ

+ 1
n′
φ

)2
=

1∑
φ∈Ψh

1
1
nφ

+ 1
n′
φ

=
2∑

φ∈Ψh
ñφ

where ñφ is the harmonic mean of nφ and n′φ. Also, we have

‖a‖∞ =
1∑

φ∈Ψh
1

1
nφ

+ 1
n′
φ

max
φ

1
1
nφ

+ 1
n′φ

max(
1

nφ
,

1

n′φ
) ≤ 2∑

φ ñφ
.

Define ñh = 1
‖a‖2 =

∑
φ∈Ψh

ñφ

2 . With the c0-bounded assumption and the exploration stage
requirement for sample, it is easy to see that we have ñh ≥ c0nh (happening with probability tending
to 1 regarding the randomness of bidding). Therefore, for sufficiently large nh, by Lemma 1, we
have,

Pr(|µ̂h − µh| > ε) ≤ 2 exp(−c′min(
ε2

2C2
T

,
ε

2CT
)ñh) ≤ 2 exp(−c̃min(

ε2

2C2
T

,
ε

2CT
)nh)

for constant c̃ = c′c0. Assuming δ > exp(− c̃
2nh), and setting ε =

√
2CT√

c̃

√
log 1/δ
nh

, we will be able
to use the sub-gaussian bound of the concentration, which gives

Pr(|µ̂h − µh| >
√

2C2
T

c̃

√
log 1/δ

nh
) ≤ 2δ.

For notational convenience, we will denote this relation by

µ̂h = µh +OP
(√2C2

T

c̃

√
log 1/δ

nh

)
(16)
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where OP
(√ log 1/δ

nh

)
refers to any generic term in the order of

√
log 1/δ
nh

with probability at least
1− 2δ.

Furthermore, by Taylor expansion, we have

log(µ̂h) = log µh +
µ̂h − µh
µh

+ o(|µ̂h − µh|).

Since λh ≤ Cλ and |βh(`)| ≥ cβ , we have

|µh| ≥ cβ(1− e−cλ/2) (17)

in which the right hand side is a constant. Therefore, we have

| log µ̂h − logµh| = OP
(
2

√
C2
T

c2β(1− e−cλ/2)2c̃

√
log 1/δ

nh

)
= OP

(√ log 1/δ

nh

)
.

Similarly, because
ηh ≥ cβe−

1
2cλ (1− e−cλ/2), (18)

we can also show the same property for log η̂h with

| log η̂h − log ηh| = OP
(
2

√
C2
T

c2β(1− e−cλ/2)2c̃

√
log 1/δ

nh

)
.

Combining the results for log µ̂h and log η̂h, we know that

|λ̂h − λh| = OP
(
4

√
C2
T

c2β(1− e−cλ/2)2c̃

√
log 1/δ

nh

)
.

Note that our proof allows negative values be βh(`). This is because the only places where we use
the lower bound cβ so far are (17) and (18). In general, as long as we can have a lower bound for
|µh| and |ηh|, the proof still works.

For the estimation of βh(`), a similar approach can be taken, but the stratum of focus will be on the
slide Ψh,`. First, notice that (14) and (15) remain valid for Ψh,`. Indeed, all of the Xφ’s share the
same expectation. Define

µh` = βh(`)(1− e−λh/2), ηh` = βh(`)(1− e−λh/2)e−λh/2.

Now the moment matching equation becomes

βh(`) =
µ2
h`

µh` − ηh`
.

In this case, we still have

E µ̂h` =
∑

φ∈Ψh,`

αφ`βh(`)(1− e−λh/2) = βh(`)(1− e−λh/2)

and
E η̂h` =

∑
φ∈Ψh,`

αφ`βh(`)(1− e−λh/2)e−λh/2 = βh(`)(1− e−λh/2)e−λh/2.

Therefore, we just need to check the concentration bounds of µ̂h` and η̂h`. Define h̃(`) =

∑
φ∈Ψh,`

ñφ

2
where ñφ is the harmonic mean of nφ and n′φ. With the assumption that ñh(`) ≥ c0nh(`), by the
same derivation as for µ̂h, we can get

|µ̂h` − µh`| = OP
(√2C2

T

c̃

√
log 1/δ

nh(`)

)
15



as long as δ > exp(− c̃
2nh(`)). Similarly,

|η̂h` − ηh`| = OP
(√2C2

T

c̃

√
log 1/δ

nh(`)

)
.

Now, define f(x, y) = x2

x−y . By multivariate Taylor expansion, we have

|f(µ̂h`, η̂h`)−f(µh`, ηh`)| ≤ ‖∇f(µh`, ηh`)‖
√
|η̂h` − ηh`|2 + |η̂h` − ηh`|2+o(

√
|η̂h` − ηh`|2 + |η̂h` − ηh`|2)

where ∇f(µh`, ηh`) is the gradient with

‖∇f(x, y)‖ =
|x|
√

2x2 − 4xy + 4y2

(x− y)2
≤ |x|(|x|+ |x− 2y|)

(x− y)2
.

Substituting µh` and ηh` into the gradient leads to

‖∇f(µh`, ηh`)‖ ≤ 2− 2e−λh/2 ≤ 2.

Therefore, we have

|β̂h(`)− βh(`)| = |f(µ̂h`, η̂h`)− f(µh`, ηh`)| = OP
(
8

√
2C2

T

c̃

√
log 1/δ

nh(`)

)
.

Notice that we have C1 = 4

√
C2
T

c2β(1−e−cλ/2)2c′c0
and C2 = 8

√
2C2

T

c′c0
.

C Proof of Theorem 2

To prove Theorem 2, we need several auxiliary lemmas. First, we provide a lemma to bound
R(π; θ̂, F̂ ) − R(π; θ, F̂ ). The importance of this lemma is that we provide a reformulation of
function R(π; θ̂, F̂ ) by utilizing the fact that the conversion incrementality can only happen if the
learner wins the opportunity to show the ad to the user. This observation makes our regret bound
independent of the number of actions.

Lemma 2. Given estimated parameters θ̂ and F̂ , for any bidding policy π, we have

R(π; θ̂, F̂ )−R(π; θ, F̂ ) ≤ E
L∼P̂π,oh(·)∼Ber(F̂h(·))

[
H∑
h=1

∣∣β̂h(`h)− βh(`h)
∣∣ · I{oh(π(`h)

)
= 1
}]

,

where P̂π(L) is the probability of sequence L = (`1, `2, · · · , `H) induced by the MDP parameterized
by θ̂ and F̂ by adopting policy π and oh(b) models whether the learner wins (oh(b) = 1) or not
(oh(b) = 0) at round h with bid b (given HOB follows distribution F̂h at each round h).

Proof. Recall, by definition of R(π; θ̂, F̂ ) in Eq. (6), for any θ̂ and F̂ ,

R(π; θ̂, F̂ ) = E
L∼P̂π

[
H∑
h=1

[
β̂h(`h) · v − p̂h(πh(`h))

]
· F̂h(πh(`h))

]
, (19)

Let oh(b) denote the realized outcome of the learner at round h, s.t.,

oh(b) =

{
1 w.p. F̂h(b)

0 w.p. 1− F̂h(b)
(20)
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Given the above reformulation of R(π; θ̂, F̂ ), we can derive the difference between R(π; θ̂, F̂ ) and
R(π; θ, F̂ ) for any bidding policy π and any distribution of HOB F̂h at each round h,

R(π; θ̂, F̂ )−R(π; θ, F̂ ) = E
L∼P̂π,oh(·)∼Ber(F̂h(·))

[
H∑
h=1

[(
β̂h(`h)− βh(`h)

)
· v
]
· I{oh(π(`h)) = 1}

]

≤ E
L∼P̂π,oh(·)∼Ber(F̂h(·))

[
H∑
h=1

∣∣β̂h(`h)− βh(`h)
∣∣ · I{oh(πh(`h)) = 1}

]
(21)

Second, we extend the well-known simulation lemma in standard RL [16] to our case. Please note
both transition probability and expected utility function of the learner (Eq. (3)) depend on F .
Lemma 3. For any fixed bidding strategy π, we have∣∣R(π; θ, F̂ t)−R(π; θ, F )

∣∣ ≤ (H2 + 2H)

√
log(2H/δ)

2t
. (22)

holds with probability at least 1− δ. In addition, we have with probability at least 1− δ,

OPT(θ, F )−OPT(θ, F̂ t) ≤ (H2 + 2H)

√
log(2H/δ)

2t
.

Proof. Denote M̂ t as the MDP induced by a bidding policy π and parameters θ, F̂ t. Similarly, let
M represent the MDP for a bidding policy π with parameters θ and F . Let Γ̂th(·|`, b) and Γh(·|`, b)
be the transition at round h for MDP M̂ t and M , respectively.

Given the MDP re-formulation in Subsection 3.1, we have for any `, b and h = 2, 3, · · · , H ,∑
`′

∣∣Γ̂h(`′|`, b)− Γ̂th(`′|`, b)
∣∣ =

∣∣Γ̂th(`+ 1|`, b)− Γh(`+ 1|`, b)
∣∣+
∣∣Γh(1|`, b)− Γ̂h(1|`, b)

∣∣
= 2

∣∣F̂ th−1(b)− Fh−1(b)
∣∣ ≤ 2 sup

b

∣∣F̂ th−1(b)− Fh−1(b)
∣∣

In addition, we denote rh as the expected reward function for the MDP M at round h, similarly, we
can also define r̂th for the MDP M̂ t. For any (`, b), we can bound |rh(`, b)− r̂th(`, b)| as below:

|rh(`, b)− r̂th(`, b)|
=

∣∣(βh(`) · vh − p̂th(b))F̂ th(b)− (βh(`) · vh − ph(b))Fh(b)
∣∣

≤
∣∣βh(`)vh(F̂ th(b)− Fh(b))

∣∣+
∣∣bF̂ th(b)− bFh(b)

∣∣+
∣∣∣ ∫ b

0

F̂ th(v)dv −
∫ b

0

Fh(v)dv
∣∣∣

≤ 3 sup
b

∣∣F̂ th(b)− Fh(b)
∣∣,

where the first equality is based on the definition of rh(·, ·) and r̂th(·, ·), the second inequality is
based on triangle inequality and the last inequality holds because of the fact that βh(`)vh ∈ [0, 1] and
b ∈ [0, 1].

By DKW inequality (Lemma 4) and union bound, with probability at least 1 − δ, we have for all
h ∈ [H]

sup
b
|F̂ th(b)− Fh(b)| ≤

√
log(2H/δ)

2t

Given the above bound of transition and reward between two MDPs M and M̂ t and the Simulation
Lemma (Lemma 6), with probability at least 1− δ, we have∣∣R(π; θ, F̂ t)−R(π; θ, F )

∣∣ ≤ H(H − 1)

√
log(2H/δ)

2t
+ 3H

√
log(2H/δ)

2t
(23)

= (H2 +H)

√
log(2H/δ)

2t
(24)
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For notation simplicity, we denote π∗ as the optimal bidding policy corresponding to parameters θ
and F , then we have

OPT(θ, F )−OPT(θ, F̂ t) = R(π∗; θ, F )−R(π∗; θ, F̂ t) +R(π∗; θ, F̂ t)−OPT(θ, F̂ t)

≤ R(π∗; θ, F )−R(π∗; θ, F̂ t),

where the first inequality holds because of the definition of OPT(θ, F̂ t) and the second inequality
is based on Eq. (22) for the fixed bidding policy π∗. Using the same argument as in Eq. (23), we
complete the proof.

Given the above two auxiliary lemmas, we are ready to prove Theorem 2.

Proof of Theorem 2. For notation simplicity, let

OPT(ĈR
t
, F ) := max

θ∈ĈR
t
OPT(θ, F )

In addition, we denote τ as the number of episodes for pure explorations. Note, in each pure
exploration t ≤ τ , we exactly increase nh(`) by 1 for one (h, `) pair. To make sure nh(`) ≥ log(4T/δ)

C0
,

we only need τ ≤ H2 log(4T/δ)
C0

.

We first propose a new decomposition of the expected regret Regret(T ) in the following way,

Regret(T )

= T ·OPT(θ, F )− E

[
T∑
t=1

R(πt; θ, F )

]

≤ Hτ + (T − τ) ·OPT(θ, F )− E

[
T∑

t=τ+1

R(πt; θ, F )

]

= Hτ + (T − τ) ·OPT(θ, F )−
T∑

t=τ+1

OPT(θ, F̂ t−1)︸ ︷︷ ︸
(i)

+

T∑
t=τ+1

OPT(θ, F̂ t−1)−
T∑

t=τ+1

OPT(ĈR
t−1

, F̂ t−1)︸ ︷︷ ︸
(ii)

+

T∑
t=τ+1

OPT(ĈR
t−1

, F̂ t−1)− E

[
T∑

t=τ+1

R(πt; θ, F̂ t−1)

]
︸ ︷︷ ︸

(iii)

+E

[
T∑

t=τ+1

R(πt; θ, F̂ t−1)−
T∑

t=τ+1

R(πt; θ, F )

]
︸ ︷︷ ︸

(iv)
(25)

The first inequality above is based on the fact the reward (expected utility of the learner) at each
round is bounded by [0, 1]. Then we bound the above terms separately in the following.

Term (i). By Lemma 3, for any fixed t ∈ [T ], we have |OPT(θ, F ) − OPT(θ, F̂ t)| ≤ (H2 +

2H)
√

log(2H/δ)
2t holds with probability at least 1− δ. Then by union bound over t = τ, · · · , T − 1,

we have

(T − τ) ·OPT(θ, F )−
T∑

t=τ+1

OPT(θ, F̂ t−1) =

T−1∑
t=τ

OPT(θ, F )−OPT(θ, F̂ t)

≤ (H2 +H)

T−1∑
t=τ

√
log(2HT/δ)

2t

≤ (H2 +H)
√

log(2HT/δ)T

holds with probability at least 1− δ.
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Term (ii). After pure explorations, for any t ≥ τ + 1, we have 4e−C0nh(`) < δ/T . Then by

Theorem 1, we have with probability at least 1 − δ/T , the true parameter θ ∈ ĈR
t
. Then by the

definition of OPT(ĈR
t
, F̂ t), for any t ∈ [T ], we have OPT(θ, F̂ t) − OPT(ĈR

t
, F̂ t) ≤ 0 holds

with probability 1− δ/T . Taking union bound over t = τ, · · · , T − 1, then with probability at least
1− δ, we have

T∑
t=τ+1

OPT(θ, F̂ t−1)−
T∑

t=τ+1

OPT(ĈR
t−1

, F̂ t−1) ≤ 0.

Term (iii). For notation simplicity, let θ̃t ∈ ĈR
t

be the parameter corresponding to πt+1. Actually, it
is the Then we can bound Term (iii) as below,

T∑
t=τ+1

OPT(ĈR
t−1

, F̂ t−1)−
T∑

t=τ+1

R(πt; θ, F̂ t−1)

=

T∑
t=τ+1

R(πt; θ̃t−1, F̂ t−1)−
T∑

t=τ+1

R(πt; θ, F̂ t−1)

≤
T∑

t=τ+1

E
(`t1,··· ,`tH)∼P̂πt ,oh(·)∼Ber(F̂ t−1

h (·))

[
H∑
h=1

∣∣β̃t−1
h (`th)− βh(`th)

∣∣ · I{oh(πt(`th)
)

= 1
}]

,

(26)

where the inequality is based on Lemma 2 in Appendix. Here we slightly abuse the notation, let
oth := oh

(
πt(`th)

)
. An important observation is that oth can be viewed as the action the learner takes

at round h in the tth episode and it only contains two different options, i.e., 0 (lose) or 1 (win). This
rewriting can help us reduce the dependency of regret bound with number of bids, and we can easily
extend to handle continuous bid space. Let nth(`, o) represent the total number observations of pair
(`, o) up to round h and tth episode. Then we have,

Equation (26) ≤E

[
T∑
t=1

H∑
h=1

C2

√
log(T/δ)

nth(`th, o
t
h)
· I{oth = 1}

]

≤C2

√
log(T/δ)E

[
T∑

t=τ+1

H∑
h=1

√
1

nth(`th, o
t
h)
· I{oth = 1}

]

≤C2

√
log(T/δ)E

 H∑
h=1

H∑
`=1

nth(`,1)∑
i=1

1√
i


≤C2

√
log(T/δ)H3T ,

(27)

where the first inequality is based on the fact that θ̃t ∈ ĈR
t
,∀t ∈ [T ] and nth(`, 1) = nh(`) in episode

t given the definition in Algorithm 2. The third inequality is based on Lemma 5.

Term (iv). Again, applying Lemma 3 and union bound over t = 1, · · · , T − 1, we can bound term
(iv) in the following way,

E

[
T∑

t=τ+1

R(πt; θ, F̂ t−1)−
T∑

t=τ+1

R(πt; θ, F )

]
≤ E

[
T∑

t=τ+1

R(πt; θ, F̂ t−1)−R(πt; θ, F )

]
≤ (H2 +H)

√
log(2HT/δ)T

Putting it all together, we can bound the regret as below,

Regret(T ) ≤ O
(
H2
√

log(HT/δ)T +H2 log(T/δ)
)

holds with probability at least 1− δ.
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D Auxiliary Technical Lemmas

In this section, we enumerate several useful technical lemmas used in this paper. First, we introduce
the well-known Dvoretzky–Kiefer–Wolfowitz (DKW) inequality which is used to bound the gap
between F̂ t(·) and F (·).

Lemma 4 (DKW Inequality). For any episode t, at each round h ∈ [F ], supb |F̂ th(b) − Fh(b)| ≤√
log(2/δ)

2t holds with probability at least 1− δ.

Second, we describe the celebrated simulation lemma, which was introduced and named in [16]. For
completeness of the presentation, we provide the proof for this lemma.

Lemma 5 (Lemma 7.5 in [1]). Consider arbitrary T sequence of trajectories, {`th, oth}Hh=1 for
t = 1, · · · , T , we have

T∑
t=1

H∑
h=1

1√
nt(`th, o

t
h)
· I{oth = 1} ≤

H∑
h=1

H∑
`=1

nth(`,1)∑
i=1

1√
i

Finally, we describe the well-known simulation lemma. For completeness of exposition, we provide
a simple proof for this lemma.

Lemma 6 (Simulation Lemma [16]). Consider two different MDPs M and M ′ with the same state
and action spaces, S and A. If the transition (P and P ′ resp.) and reward functions (r and r′ resp.,
bounded by [0, 1]) of these two MDPs satisfy

∀s ∈ S, a ∈ A,
∑
s′∈S

∣∣P (s′|s, a)− P ′(s′|s, a)
∣∣ ≤ ε1, and ∀h ∈ [H],

∣∣rh(s, a)− r′h
∣∣ ≤ ε2,

Then for every non-stationary policy π and fixed initial state s1, the two MDPs satisfy

∣∣∣∣∣∣ E
{sh,ah}Hh=1∼M,π

 ∑
h∈[H]

rh(sh, ah)

− E
{sh,ah}Hh=1∼M ′,π

 ∑
h∈[H]

r′h(sh, ah)

∣∣∣∣∣∣ ≤ H(H − 1)

2
ε1 +Hε2

(28)

Proof. First, we denote V πh (s,M) as the total reward from round h to H when the state at round h is
s. Similarly we can define V πh (s,M ′).

Then Eq. (28) is equivalent to show |V π1 (s1,M)− V π1 (s1,M
′)| ≤ H(H−1)

2 ε1 + Hε2 and we will
prove it using the inductive hypothesis that for any state s, policy π and round h = 1, 2, · · · , H ,

|V πh (s,M)− V πh (s,M ′)| ≤ (H − h)(H − h+ 1)

2
ε1 + (H − h+ 1)ε2

For h = H , the hypothesis is clearly true since reward of two MDPs at round H only differs at most
ε2 and this establishes the base case.
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For the inductive step, we utilize the recursive formula of V πh (s,M) and V πh (s,M ′) in the following
way, ∣∣V πh (s,M)− V πh (s,M ′)

∣∣
=

∣∣ E
s′∼P (·|s,a),a=π(s)

[
r(s, a) + V πh+1(s′,M)

]
− E
s′∼P ′(·|s,a),a=π(s)

[
r′(s, a) + V πh+1(s′,M ′)

] ∣∣
≤ ε2 +

∣∣∣∑
s′

P (s′|s, a)V πh+1(s′,M)−
∑
s′

P ′(s′|s, a)V πh+1(s′,M ′)
∣∣∣

≤ ε2 +
∣∣∣∑
s′

P (s′|s, a)V πh+1(s′,M)−
∑
s′

P ′(s′|s, a)V πh+1(s′,M)
∣∣∣

+
∣∣∣∑
s′

P ′(s′|s, a) ·
(
V πh+1(s′,M)− V πh+1(s′,M ′)

)∣∣∣
≤ ε2 + (H − h) ·

∑
s′

∣∣P (s′|s, a)− P ′(s′|s, a)
∣∣+
∑
s′

P ′(s′|s, a)
∣∣V πh+1(s′,M)− V πh+1(s′,M ′)

∣∣
≤ ε2 + (H − h)ε1 +

(H − h− 1)(H − h)

2
ε1 + (H − h)ε2

=
(H − h)(H − h+ 1)

2
ε1 + (H − h+ 1)ε2,

where the first inequality holds since |r(s, a)− r′(s, a)| ≤ ε2; the second inequality is based on the
triangle inequality; the third inequality is because of the fact that V πh+1(s,M) ≤ H − h (recall the
reward at each round is bounded by [0, 1]); the fourth inequality holds due to the inductive hypothesis.
Then we complete the proof.
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