
Under review as a conference paper at ICLR 2021

A MEAN PERCENTILE RANK

We begin our definition of MPR by defining percentile rank (PR). First, given a set J , let pi,J =
Pr(J ∪ {i} | J). The percentile rank of an item i given a set J is defined as

PRi,J =

∑
i′ 6∈J 1(pi,J ≥ pi′,J)

|Y\J |
× 100%

where Y\J indicates those elements in the ground set Y that are not found in J .

For our evaluation, given a test set Y , we select a random element i ∈ Y and compute PRi,Y \{i}. We
then average over the set of all test instances T to compute the mean percentile rank (MPR):

MPR =
1

|T |
∑
Y ∈T

PRi,Y \{i}.

B HYPERPARAMETERS FOR EXPERIMENTS IN TABLE 2

Preventing numerical instabilities: The first term on the right side of Eq. 2 will be singular whenever
|Yi| > K, where Yi is an observed subset. Therefore, to address this in practice we set K to the
size of the largest subset observed in the data, K ′, as in Gartrell et al. (2017). However, this does
not entirely address the issue, as the first term on the right side of Eq. 2 may still be singular even
when |Yi| ≤ K. In this case though, we know that we are not at a maximum, since the value of the
objective function is −∞. Numerically, to prevent such singularities, in our implementation we add a
small εI correction to each LYi when optimizing Eq. 2 (we set ε = 10−5 in our experiments).

We perform a grid search using a held-out validation set to select the best performing hyperparameters
for each model and dataset. The hyperparameter settings used for each model and dataset are
described below.

Symmetric low-rank DPP (Gartrell et al., 2016). For this model, we use K for the number of item
feature dimensions for the symmetric component V , and α for the regularization hyperparameter for
V . We use the following hyperparameter settings:

• Both Amazon datasets: K = 30, α = 0.
• UK Retail dataset: K = 100, α = 1.
• Instacart dataset: K = 100, α = 0.001.
• Million Song dataset: K = 150, α = 0.0001.

Baseline NDPP (Gartrell et al., 2019). For this model, to ensure consistency with the notation used
in Gartrell et al. (2019), we use D to denote the number of item feature dimensions for the symmetric
component V , and D′ to denote the number of item feature dimensions for the nonsymmetric
components, B and C. As described in Gartrell et al. (2019), α is the regularization hyperparameter
for the V , while β and γ are the regularization hyperparameters for B and C, respectively. We use
the following hyperparameter settings:

• Both Amazon datasets: D = 30, α = 0.
• Amazon apparel dataset: D′ = 30.
• Amazon three-category dataset: D′ = 100.
• UK Retail dataset: D = 100, D′ = 20, α = 1.
• All datasets: β = γ = 0.

Scalable NDPP. As described in Section 3, we useK to denote the number of item feature dimensions
for the symmetric component V and the dimensionality of the nonsymmetric component C. α is the
regularization hyperparameter. We use the following hyperparameter settings:

• Amazon apparel dataset: K = 30, α = 0.
• Amazon three-category dataset: K = 100, α = 1.
• UK dataset: K = 100, α = 0.01.

12

Under review as a conference paper at ICLR 2021

• Instacart dataset: K = 100, α = 0.001.

• Million Song dataset: K = 150, α = 0.01.

For all of the above model configurations we use a batch size of 200 during training, except for the
scalable NDPPs trained on the Amazon apparel, Amazon three-category, Instacart, and Million Song
datasets, where a batch size of 800 is used.

C TRAINING TIME

In Fig. 1, we report the wall-clock training time of the decomposition of Gartrell et al. (2019) (NDPP)
and our scalable NDPP for the Amazon: 3-category (Fig. 1(a)) and UK Retail (Fig. 1(b)) datasets.
For the Amazon: 3-category dataset, both approaches show comparable results, with the scalable
NDPP converging 1.07 times faster than NDPP. But for the UK Retail dataset, which has a much
larger ground set, our scalable NDPP achieves convergence about 8.31 times faster. We do not have a
timing comparison for the Instacart dataset because the model with the decomposition of Gartrell
et al. (2019) cannot be trained on this dataset due to prohibitive memory and computational costs.

0 200 400

wall clock time (sec)

0

50

100

150

200

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Scalable NDPP
NDPP

(a) Amazon: 3-category

0 1000 2000

wall clock time (sec)

0

200

400

600

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Scalable NDPP
NDPP

(b) UK Retail

Figure 1: The negative log-likelihood of the training set for Gartrell et al. (2019)’s NDPP (blue,
dashed) and our scalable NDPP (red, solid) versus wall-clock time for the (a) Amazon: 3-category
and (b) UK Retail datasets.

D BENCHMARK ALGORITHMS FOR MAP INFERENCE

We test following approximate algorithms for MAP inference:

Greedy local search. This algorithm starts from the output of greedy, Y G, and replaces i ∈ Y G
with j /∈ Y G that gives the maximum improvement of the determinant, if such i, j exist. Kathuria
& Deshpande (2016) showed that running the search for such a swap O(k2 log(k/ε)) times with
an accuracy parameter ε gives a tight approximation guarantee for MAP inference for symmetric
DPPs. We set the number of swaps to bk2 log(10k)c for ε = 0.1 and use greedy local search
as a baseline, since it is strictly an improvement on the greedy solution. The proposed greedy
conditioning can be used for fast greedy local search. Specifically, for each i ∈ Y G, Algorithm 1 can
compute marginal improvements conditioned by Y G \ {i} in time O(MKk) thus its runtime can be
O(MKk4 log(k/ε)). However, it is the slowest among all of our benchmark algorithms.

Stochastic greedy. This algorithm computes marginal gains of a few items chosen uniformly at
random and selects the best among them. Mirzasoleiman et al. (2015) proved that (M/k) log(1/ε)
samples are enough to guarantee an (1− 1/e− ε)-approximation ratio for submodular functions (i.e.,
symmetric DPPs). We choose ε = 0.1 and set the number of samples to b(M/k) log(10)c. Under
this setting, the time complexity of stochastic greedy is O(MKk2 log(1/ε)), which is better than
the naïve exact greedy algorithm. However, we note that it is worse than that of our efficient greedy
implement (Algorithm 1). This is because the stochastic greedy uses different random samples for
every iteration and this does not take advantage of the amortized computations in Lemma 2. In our
experiments, we simply modify line 10 in Algorithm 1 for stochastic greedy (argmax is operated

13

Under review as a conference paper at ICLR 2021

on a random subset of marginal gains), hence it can run in O(MKk + (M/k) log(1/ε)) time. In
practice, we observe that stochastic greedy is slightly slower than exact greedy due to the additional
costs of random sampling process.

MCMC sampling. We also compare inference algorithms with sampling from a nonsymmetric
DPP. To the best of our knowledge, exact sampling of a non-Hermitian DPP was studied in Poulson
(2019), which requires the Cholesky decomposition with O(M3) complexity. This is infeasible for a
large M . To resolve this, Markov Chain Monte-Carlo (MCMC) based sampling is preferred Li et al.
(2016) for symmetric DPPs. In particular, we consider a Gibbs sampling for k-DPP, which begins
with a random subset Y with size k, and picks i ∈ Y and j /∈ Y uniformly at random. Then, it swaps
them with probability

det(LY ∪{j}\{i})

det(LY ∪{j}\{i}) + det(LY)
(11)

and repeat this process for several steps. Li et al. (2016) showed that O(Nk log(k/ε)) swaps are
enough to approximate the ground-truth distribution under symmetric DPPs. However, for a fair
runtime comparison to Algorithm 1, we set the number of swaps to b3N/Kc.
We provide the wall-clock time of the above algorithms for real-world datasets in Table 4. Observe
that the greedy algorithm is the fastest method for all datasets except Million Song. For Million Song,
MCMC sampling is faster than other approaches, but it has much larger relative errors in terms of
log-determinant (see Table 3), which is not suitable for our purposes.

Table 4: Wall-clock time (in milliseconds) of MAP inference algorithms on NDPPs learned from
real-world datasets.

Algorithms Amazon: Apparel Amazon: 3-category UK Retail Instacart Million Song

Greedy local search (Kathuria & Deshpande, 2016) 5.78 ms 9.67 ms 58.74 ms 1.024 s 7.277 s
Greedy (Algorithm 1) 0.14 ms 0.34 ms 1.60 ms 36.16 ms 338.09 ms

Stochastic greedy (Mirzasoleiman et al., 2015) 0.25 ms 0.47 ms 1.79 ms 36.94 ms 348.67 ms
MCMC sampling (Li et al., 2016) 0.19 ms 0.35 ms 2.85 ms 42.85 ms 303.20 ms

E COROLLARY OF THEOREM 2

Theorem 2 requires the technical condition σmin > 1 but in practice there is no particular evidence
that this condition holds. While this condition can be achieved by multiplying L by a constant, this
leads to a (potentially large) additive term in Eq. 10. Here, we provide Corollary 1 which excludes
the σmin > 1 assumption from Theorem 2, and quantifies this additive term.
Corollary 1. Consider a nonsymmetric low-rank DPP L = V V > + BCB>, where V ,B are of
rank K, and C ∈ RK×K . Given a cardinality budget k, let σmin and σmax denote the smallest and
largest singular values of LY for all Y ⊆ [[M]] and |Y | ≤ 2k. Let κ := σmax/σmin. Then,

log det(LY G) ≥ 4(1− e−1/4)

2 log κ+ 1
log det(LY ∗)−

(
1− 4(1− e−1/4)

2 log κ+ 1

)
k (1− log σmin) (12)

where Y G is the output of Algorithm 1 and Y ∗ is the optimal solution of MAP inference in Eq. 4.

The proof of Corollary 1 is provided in Appendix G.5. Note that instead of log(σmax)/ log(σmin),
Corollary 1 has a log(σmax/σmin) term in the denominator.

F PERFORMANCE GUARANTEE FOR GREEDY MAP INFERENCE

The matrices learned on real datasets are too large to compute the exact MAP solution, but we can
compute exact MAP for small matrices. In this section, we explore the performance of the greedy
algorithm studied in Theorem 2 for 5 × 5 synthetic kernel matrices. More formally, we first pick
K = 3 singular values s1, s2, s3 from a kernel learned for the “Amazon: 3-category” dataset (a plot
of these singular values can be seen in Fig. 2(c)) and generate L = V1diag([s1, s2, s3])V >2 , where
V1,V2 ∈ R5×3 are random orthonormal matrices. To ensure that L is a P0 matrix, we repeatedly

14

Under review as a conference paper at ICLR 2021

10 20 30 40
0

0.2

0.4

0.6

0.8

1

(a) Symmetric DPP

10 20 30 40
0

0.2

0.4

0.6

0.8

1

(b) Nonsymmetric DPP

0 10 20 30

10-5

100

105

(c) Singular values

Figure 2: Approximation ratios of greedy with respect to different values of log(σmax/σmin) from
Corollary 1 under (a) symmetric DPP and (b) nonsymmetric DPP. (c) The singular values of the
kernels learned for the “Amazon: 3-category” dataset. We construct 10,000 random P0 matrices
L ∈ R5×5, with rank K = 3, whose singular values are from the learned kernels.

sample V1,V2 until all principal minors of L are nonnegative. We also evaluate the performance of
the symmetric DPP, where the kernel matrices are generated similarly to the NDPP, except we set
V1 = V2. We set k = 3 and generate 10,000 random kernels for both symmetric DPPs and NDPPs.

The results for symmetric and nonsymmetric DPPs are shown in Fig. 2(a) and Fig. 2(b), respectively.
We plot the approximation ratio of Algorithm 1, i.e., log det(LY G)/ log det(LY ∗), with respect
to log(σmax/σmin), from Corollary 1. We observe that the greedy algorithm for both often shows
approximation ratios close to 1. However, the worst-case ratio for NDPPs is worse than that of
symmetric DPPs; log det(LY) for L ∈ P+

0 is non-submodular, and the greedy algorithm with a
nonsubmodular function does not have as tight of a worst-case bound as in the symmetric case.

15

Under review as a conference paper at ICLR 2021

G PROOFS

G.1 PROOF OF LEMMA 1

Lemma 1. Let ` ≤ M be an even integer and let A ∈ RM×M be a skew-symmetric matrix with
rank `. Then, there exist B ∈ RM×` and positive numbers λ1, . . . , λ`/2, such that A = BCB>,
where C ∈ R`×` is the block-diagonal matrix with (`/2) diagonal blocks of size 2 given by Σi,
i = 1, . . . , `/2.

Proof. First, A = PΣP> for some orthogonal matrix P ∈ RM×M and

Σ =



0 λ1

−λ1 0

0 λ2 0
−λ2 0

. . .
0 λ`/2

0 −λ`/2 0
0

. . .
0



(13)

(see, e.g.,(Thompson, 1988, Proposition 2.1), which is easily extended to the case when M is odd).

Let C be the `×` supmatrix of Σ obtained by keeping its first ` rows and columns and let Q =

(
I`
0

)
,

where I` is the ` × ` identity matrix. Then, Σ = QCQ> and one can write A = PQCQ>P>.
Setting B = PQ proves the lemma.

G.2 PROOF OF THEOREM 1

Theorem 1. Given an NDPP with kernel L = V V > +BCB>, parameterized by V of rank K, B
of rank K, and a K ×K matrix C, we can compute the regularized log-likelihood (Eq. 2) and its
gradient in O(MK2 +K3 +nK ′3) time, where K ′ is the size of the largest of the n training subsets.

Proof. We first show that the log-likelihood can be computed in time linear in M . Using the matrix
determinant lemma, one can easily verify that the DPP normalization term can be computed as

det(I + L) = det

(
I + (V BC)

(
V >

B>

))
= det

(
I2K +

(
V >

B>

)
(V BC)

)
(14)

where I2K is the identity matrix with dimension 2K. As Eq. 14 requires a matrix-multiplication
between (2K)×M matrices and the determinant of (2K)×(2K) matrices, this allows us to transform
a O(M3) operation into an O(MK2 +K3) one.

Having established that the normalization term in the likelihood can be computed in O(MK2 +K3)
time, we proceed with characterizing the complexity of the other terms in the likelihood. The first
term in Eq. 2 consists of determinants of size |Yi|. Assuming that these never exceed size K ′, each
can be computed in at most O(K ′3) time. The regularization term is a simple sum of norms that can
be computed in O(MK) time. Therefore, the full regularized log-likelihood can be computed in
O(MK2 +K3 + nK ′3) time.

16

Under review as a conference paper at ICLR 2021

To prove that the gradient of the log-likelihood can be computed in time linear in M , we begin by
showing that the logarithm of DPP normalization term can be factorized as follows:

Z = log det(I + L) (15)

= log det

(
I2K +

(
V >

B>

)
(V B)

(
IK 0
0 C

))
(16)

= log det

((
IK 0
0 C−1

)
+

(
V >

B>

)
(V B)

)
+ log det

(
IK 0
0 C

)
(17)

= log det

(
IK + V >V V >B

B>V C−1 + B>B

)
+ log det(C) (18)

= log det
(
IK + V >V

)
+ log det

(
C−1 + B>(I − V (IK + V >V)−1V >)B

)
+ log det(C)

(19)

where Eq. 17 follows from the determinant commutativity (i.e., det(AB) = det(A) det(B))
and Eq. 18 and Eq. 19 come from the Schur’s determinant identity3. For simplicity, we write
X = I − V (IK + V >V)−1V > and (C−1)> = C−> and note that X depends only on V .

The gradient of Z has three parts: ∇Z = (∇V Z,∇BZ,∇CZ) where each can be computed as

∇V Z = ∇V log det(IK + V >V) +∇V log det(C−1 + B>XB) (20)

= 2V (IK + V >V)−1

−XB((C−1 + B>XB)−1 + (C−> + B>XB)−1)B>XV (21)

∇BZ = ∇B log det(C−1 + B>XB) (22)

= XB
(
(C−1 + B>XB)−1 + (C−> + B>XB)−1

)
(23)

∇CZ = ∇C log det(C) +∇C log det(C−1 + X) (24)

= C−> −C−>(C−1 + B>XB)−>C−> (25)

Observe that X combines a M ×M identity matrix with M ×K matrices, hence multiplying it with
aM×K matrix (e.g., XV or XB) can be computed inO(MK2) time. Since each of the remaining
matrix inverses in Eq. 21, Eq. 23, and Eq. 25 involve a K ×K matrix inverse, with a cost of O(K3)
operations, we have a net computational cost of O(MK2 +K3) for computing ∇ log det(I + L).

The gradient of the first term in Eq. 2 involves computing gradients of determinants of size at most
K ′, which results in size K ′ matrix inverses, since for a matrix A, ∂

∂Aij
(log det(A)) = (A−1)>ij .

Each of these inverses can be computed in O(K ′3) time. The gradient of the simple sum-of-norms
regularization term can be computed in O(MK) time. Therefore, combining these results with the
results above for the complexity of the gradient of the normalization term, we have the following
overall complexity of the gradient for the full log-likelihood: O(MK2 +K3 + nK ′3).

G.3 PROOF OF LEMMA 2

Lemma 2. Given B ∈ RM×K , C ∈ RK×K , and Y = {a1, . . . , ak} ⊆ [[M]], let bi ∈ R1×K be the
i-th row in B and BY ∈ R|Y |×K be a matrix containing rows in B indexed by Y . Then, it holds that

B>Y (BYCB>Y)−1BY =

k∑
j=1

p>j qj , (6)

where row vectors pj , qj ∈ R1×K for j = 1, . . . , k satisfy p1 = ba1/(ba1Cb>a1), q1 = ba1 , and

pj+1 =
baj − bajC

>∑j
i=1 q

>
i pi

bajC(baj − bajC
>∑j

i=1 q
>
i pi)

>
, qj+1 = baj − bajC

j∑
i=1

p>i qi. (7)

3det

(
A B
C D

)
= det(A) det(D −CA−1B).

17

Under review as a conference paper at ICLR 2021

Proof. We prove by induction on k. When k = 1, the result is trivial because

B>Y (BYCB>Y)−1BY = b>a1(ba1Cb>a1)−1ba1 = p>1 q1. (26)

Now we assume that the statement holds for k − 1. Let Y := {a1, . . . , ak−1} and a := ak. From the
inductive hypothesis, it holds

B>Y (BYCB>Y)−1BY =

k−1∑
j=1

p>j qj . (27)

Now we write

B>Y ∪{a}

(
BY ∪{a}CB>Y ∪{a}

)−1

BY ∪{a} (28)

= B>Y ∪{a}

((
BY

ba

)
C
(
B>Y b>a

))−1

BY ∪{a} (29)

=
(
B>Y b>a

)(BYCB>Y BYCb>a
baCB>Y baCb>a

)−1(
BY

ba

)
. (30)

To handle the inverse matrix we employ the Schur complement, which yields(
X y
z w

)−1

=

(
X−1 0

0 0

)
+

1

(w − zX−1y)−1

(
X−1yzX−1 −X−1y
−zX−1 1

)
(31)

for any non-singular square matrix X ∈ Rk×k, column vector y ∈ Rk and row vector z ∈ R1×k,
unless (w − zX−1y)−1 = 0. Applying this, we have(
BYCB>Y BYCb>a
baCB>Y baCb>a

)−1

=

(
(BYCB>Y)−1 0

0 0

)
+

1

baCb>a − baCB>Y (BYCB>Y)−1BYCb>a(
(BYCB>Y)−1BYCb>a baCB>Y (BYCB>Y)−1 −(BYCB>Y)−1BYCb>a

−baCB>Y (BYCB>Y)−1 1.

)
(32)

Substituting Eq. 32 into Eq. 30, we obtain

B>Y ∪{a}

(
BY ∪{a}CB>Y ∪{a}

)−1

BY ∪{a} (33)

= B>Y
(
BYCB>Y

)−1
BY +

(
b>a −B>Y (BYCB>Y)−1BYCb>a

) (
ba − baCB>Y (BYCB>Y)−1BY

)
baC

(
b>a −B>Y (BYCB>Y)−1BYCb>a

)
(34)

=

k−1∑
j=1

p>j qj +

(
b>a −

∑k−1
j=1 p>j qjCb>a

)(
ba − baC

∑k−1
j=1 p>j qj

)
baC

(
b>a −

∑k−1
j=1 p>j qjCb>a

) (35)

=

k−1∑
j=1

p>j qj + p>k qk (36)

where the third line holds from the inductive hypothesis Eq. 27 and the last line holds from the
definition of pk, qk ∈ R1×K .

G.4 PROOF OF THEOREM 2

Theorem 2. Consider a nonsymmetric low-rank DPP L = V V > + BCB>, where V ,B are of
rank K, and C ∈ RK×K . Given a cardinality budget k, let σmin and σmax denote the smallest and
largest singular values of LY for all Y ⊆ [[M]] and |Y | ≤ 2k. Assume that σmin > 1. Then,

log det(LY G) ≥ 4(1− e−1/4)

2(log σmax/log σmin)− 1
log det(LY ∗) (10)

where Y G is the output of Algorithm 1 and Y ∗ is the optimal solution of MAP inference in Eq. 4.

18

Under review as a conference paper at ICLR 2021

Proof. The proof of Theorem 2 relies on an approximation guarantee of nonsubmodular greedy
maximization (Bian et al., 2017, Theorem 1). We introduce their result in below.

Theorem 3 ((Bian et al., 2017, Theorem 1)). Consider a set function f defined on all subsets
of {1, . . . ,M} = [[M]] is monotone nondecreasing and nonnegative, i.e., 0 ≤ f(Y) ≤ f(X) for
∀Y ⊆ X ⊆ [[M]]. Given a cardinality budget k ≥ 1, let Y ∗ be the optimal solution of max|Y |=k f(Y)

and Y 0 = ∅, Y t := {a1, . . . , at}, t = 1, . . . , k be the successive chosen by the greedy algorithm
with budget k. Denote γ be the largest scalar such that∑

i∈X\Y t
(f(Y t ∪ {i})− f(Y t)) ≥ γ(f(X ∪ Y t)− f(Y t)), (37)

for ∀X ⊆ [[M]], |X| = k and t = 0, . . . , k − 1, and α be the smallest scalar such that

f(Y t−1 ∪ {i} ∪X)− f(Y t−1 ∪X) ≥ (1− α) (f(Y t−1 ∪ {i})− f(Y t−1)). (38)

for ∀X ⊆ [[M]], |X| = k and i ∈ Y k−1 \X . Then, it holds that

f(Y k) ≥ 1

α

(
1− e−αγ

)
f(Y ∗). (39)

In order to apply this result for MAP inference of NDPPs, the objective should be monotone
nondecreasing and nonnegative. We first show that σmin > 1 is a sufficient condition for both
monotonicity and nonnegativity.

Lemma 3. Given a P0 matrix L ∈ RM×M and the budget k ≥ 0, a set function f(Y) = log det(LY)
defined on Y ⊆ [[M]] is monotone nondecreasing and nonnegative for |Y | ≤ k when σmin > 1.

The proof of Lemma 3 is provided in Appendix G.6. Next, we aim to find proper bounds on α
and γ. To resolve this, we provide the following upper and lower bounds of the marginal gain for
f(Y) = log det(LY).

Lemma 4. Let f(Y) = log det(LY) and assume that σmin > 1. Then, for Y ⊆ [[M]], |Y | < 2k and
i /∈ Y , it holds that

f(Y ∪ {i})− f(Y) ≥ log σmin, (40)
f(Y ∪ {i})− f(Y) ≤ 2 log σmax − log σmin (41)

where σmin and σmax are the smallest and largest singular values of LY for all Y ⊆ [[M]], |Y | ≤ 2k.

The proof of Lemma 4 is provided in Appendix G.7. To bound γ, we consider X ⊆ [[M]], |X| = k
and denote X \ Y t = {x1, . . . , xr} 6= ∅. Then,∑

i∈X\Y t
(f(Y t ∪ {i})− f(Y)) =

r∑
j=1

f(Y t ∪ {xr})− f(Y t) ≥ r log σmin (42)

where the last inequality comes from Eq. 40. Similarly, we get

f(X ∪ Y t)− f(Y t) =

r∑
j=1

f({x1, . . . , xj} ∪ Y t)− f({x1, . . . , xj−1} ∪ Y t) (43)

≤ r(2 log σmax − log σmin) (44)

where the last inequality comes from Eq. 41. Combining Eq. 42 to Eq. 44, we obtain that∑
i∈X\Y t f(Y t ∪ {i})− f(Y t)

f(X ∪ Y t)− f(Y t)
≥ log σmin

2 log σmax − log σmin
(45)

which allows us to choose γ =
(

2 log σmax

log σmin
− 1
)−1

.

To bound α, we similarly use Lemma 4 to obtain

f(X ∪ Y t−1 ∪ {i})− f(X ∪ Y t−1)

f(Y t−1 ∪ {i})− f(Y t−1)
≥ log σmin

2 log σmax − log σmin
(46)

19

Under review as a conference paper at ICLR 2021

and we can choose α = 1− log σmin

2 log σmax−log σmin
= 2(log σmax−log σmin)

2 log σmax−log σmin
.

Now let κ = log σmax

log σmin
. Then γ = 1

2κ−1 and α = 2(κ−1)
2κ−1 . Putting γ and α into Eq. 39, we have

1

α
(1− e−αγ) ≥ 2κ− 1

2(κ− 1)

(
1− e−

2(κ−1)

(2κ−1)2

)
(47)

≥ 2κ− 1

2(κ− 1)
4 exp(−1/4)

2(κ− 1)

(2κ− 1)2
(48)

=
4 exp(−1/4)

2κ− 1
(49)

where the second inequality holds from the fact that maxκ≥1
2(κ−1)
(2κ−1)2 = 1

4 and 1 − e−x ≥
4 exp(−1/4)x for x ∈ [0, 1/4].

G.5 PROOF OF COROLLARY 1

Corollary 1. Consider a nonsymmetric low-rank DPP L = V V > + BCB>, where V ,B are of
rank K, and C ∈ RK×K . Given a cardinality budget k, let σmin and σmax denote the smallest and
largest singular values of LY for all Y ⊆ [[M]] and |Y | ≤ 2k. Let κ := σmax/σmin. Then,

log det(LY G) ≥ 4(1− e−1/4)

2 log κ+ 1
log det(LY ∗)−

(
1− 4(1− e−1/4)

2 log κ+ 1

)
k (1− log σmin) (12)

where Y G is the output of Algorithm 1 and Y ∗ is the optimal solution of MAP inference in Eq. 4.

Proof. Now consider L′ = (e
σmin

)L where e is the exponential constant. Then, σ′min =

σmin(e
σmin

) = e and σ′max = σmax(e
σmin

). Using the fact that log det(L′Y) = log det(LY) −
|Y | log σmin, we obtain the result.

G.6 PROOF OF LEMMA 3

Before stating the proof, we introduce interlacing properties of singular values.

Theorem 4 (Interlacing Inequality for Singular Values, (Thompson, 1972, Theorem 1)). Consider
a real matrix A ∈ RM×N with singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(M,N) and its supmatrix
B ∈ RP×Q with singular values β1 ≥ β2 ≥ · · · ≥ βmin(P,Q). Then, the singular values have the
following interlacing properties:

σi ≥ βi, for i = 1, . . . ,min(P,Q), (50)
βi ≥ σi+M−P+N−Q, for i = 1, . . . ,min(P +Q−M,P +Q−N). (51)

Note that when M = N and P = Q = N − 1, it holds that βi ≥ σi+2 for i = 1, . . . , N − 2.

We are now ready to prove Lemma 3.

Lemma 3. Given a P0 matrix L ∈ RM×M and the budget k ≥ 0, a set function f(Y) = log det(LY)
defined on Y ⊆ [[M]] is monotone nondecreasing and nonnegative for |Y | ≤ k when σmin > 1.

Proof. Since L ∈ P0, its all principal submatrices are also in P0. By the definition of a P0 matrix, it
holds that

|det(LY)| = det(LY) =
∏
i

σi(LY) (52)

where σi(LY) for i ∈ [[|Y |]] are singular values of LY . Then, F (Y) =
∑
i log(σi(LY)) is

nonnegative for all Y such that |Y | ≤ K due to σi(LY) ≥ σmin > 1. Similarly, we have
F (Y ∪ {a}) − F (Y) =

∑|Y |+1
i=1 log σi(LY ∪{a}) −

∑|Y |
i=1 log σi(LY) ≥ log σmin > 0 from

Eq. 50.

20

Under review as a conference paper at ICLR 2021

G.7 PROOF OF LEMMA 4

Lemma 4. Let f(Y) = log det(LY) and assume that σmin > 1. Then, for Y ⊆ [[M]], |Y | < 2k and
i /∈ Y , it holds that

f(Y ∪ {i})− f(Y) ≥ log σmin, (40)
f(Y ∪ {i})− f(Y) ≤ 2 log σmax − log σmin (41)

where σmin and σmax are the smallest and largest singular values of LY for all Y ⊆ [[M]], |Y | ≤ 2k.

Proof. For a P0 matrix, we remark that its determinant is equivalent to the product of all singular
values. For Y ⊆ [[M]] and i /∈ Y , from the interlacing inequality of Eq. 50 we have that

F (Y ∪ {i})− F (Y) =

|Y |+1∑
j=1

log σ′j −
|Y |∑
j=1

log σj ≥ log σ′|Y |+1 ≥ log σmin (53)

where σ′j and σj are the j-th largest singular value of LY ∪{i} and LY , respectively. Similarly, using
Eq. 51, we get

F (Y ∪ {i})− F (Y) ≤ log(σ′1σ
′
2)− log σ|Y | ≤ 2 log σmax − log σmin. (54)

21

	Introduction
	Background
	New kernel decomposition and scalable learning
	MAP inference
	Approximation guarantee for greedy NDPP MAP inference
	Greedy conditioning for next-item prediction

	Experiments
	Datasets
	Experimental setup and metrics
	Predictive performance results for learning
	Performance results for MAP inference

	Conclusion
	Mean Percentile Rank
	Hyperparameters for experiments in tab:predictive-qual
	Training time
	Benchmark algorithms for MAP inference
	Corollary of thm:greedy
	Performance guarantee for greedy MAP inference
	Proofs
	Proof of lemma:skew-sym-decomp
	Proof of theorem:loglik-grad-complexity
	Proof of lmm:bilinear-inverse
	Proof of thm:greedy
	Proof of cor:greedy
	Proof of lmm:monotonicity
	Proof of lmm:marginalgainbound

