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A DETAILED PROCESS OF MEJ STRATEGY
In this section, we will introduce the spectral clustering process
in detail. Spectral clustering is an effective graph theory-based
clustering method [22], which mainly includes six steps, which
are Similarity Matrix, Adjacency matrix (W), Degree Matrix (D),
Laplacian Matrix, Feature Matrix, and Clustering, respectively. The
detailed workflow is shown in A.
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Figure A: The workflow of spectral clustering. Spectral clus-
tering mainly contains six steps, Similarity Matrix, Adja-
cency matrix (W), Degree Matrix (D) , Laplacian Matrix, Fea-
ture Matrix, and Clustering, respectively.

Besides, we also give the detailed calculation process. In sub-
section 3.5, given an input image I𝑡 , we defined the final results
matrix X and G = S

(
N𝑘 | F𝑐 , F𝑝

)
. For spectral clustering S, we

first need to calculate the similarity matrix (w𝑖, 𝑗 ) by the Gaussian
kernel function and expres it as

w𝑖, 𝑗 =


K
(
F𝑖 , F𝑗

)
= exp

{
− ∥F𝑖−F𝑗 ∥22

2𝜎2

}
if (𝑖, 𝑗 ∈ E)

0 if (𝑖, 𝑗 ∉ E) ,
(1)

where ∥F𝑖 − F𝑗 ∥2 is the squared Euclidean distance, and 𝜎 is the
bandwidth parameter of the Gaussian kernel. In spectral clustering,
we can define Graph-based as G = {V,E}, where V and E denotes
the sets of vertex and edge andV is expressed asV = {1, 2, 3, · · · ,N},
and E is expressed as E :W= [w𝑖, 𝑗 ], 1 ≤ 𝑖, 𝑗 ≤ 𝑁 . Note that the
calculation way of our Inter-class similarity (IS) is the same as the
definition of computing the similarity matrix in spectral clustering
[22]! Besides, we can define A ∈ V, B ∈ V, and A ∩ B = ∅,
then we express it as W (A,B) = ∑

𝑖∈A, 𝑗∈Bw𝑖, 𝑗 . Suppose that the
K categories existed, then we can know that V =

⋃K
𝑘=1 A𝑘 , and

A𝑖 ∩ A𝑗 = ∅,∀ 𝑖, 𝑗 ∈ {1, 2, · · · ,K}. The object function can be
defined as

𝑚𝑖𝑛
{A𝑘 }K𝑘=1

N𝑐𝑢𝑡 (A1,A2 · · ·AK) ==
K∑︁
𝑘=1

W
(
A𝑘 ,A𝑘

)∑
𝑖∈A𝑘 D𝑖

, (2)

whereD𝑖 denotes the degree matrix andD𝑖 =
∑N
𝑗=1𝑤𝑖 𝑗 .A𝑘 denotes

the complementary set of A𝑘 . We then use the trace of the matrix

to rewrite Equation 2 as

𝑚𝑖𝑛
{A𝑘 }𝐾𝑘=1

N𝑐𝑢𝑡 (A1, · · ·A𝑘 ) = 𝑡𝑟

©­­­­­­­«

W
(
A1,A1

)∑
𝑖∈A1 D1

· · · 0
.
.
.

. . .
.
.
.

0 . . .
W

(
A𝐾 ,A𝐾

)∑
𝑖∈A𝐾 D𝐾

ª®®®®®®®¬
= 𝑡𝑟 (O · P−1),

(3)
where the matrix O is expressed as

O =

©­­­­«
W

(
A1,A1

)
· · · 0

.

.

.
. . .

.

.

.

0 · · · W
(
A𝐾 ,A𝐾

)
ª®®®®¬𝐾×𝐾

, (4)

and the matrix P is expressed as

P =
©­­«
∑
𝑖∈A1 D𝑖 · · · 0
.
.
.

. . .
.
.
.

0 · · · ∑
𝑖∈A𝐾 D𝑖

ª®®¬𝐾×𝐾

. (5)

Suppose that 𝑥𝑖 ∈ {0, 1} and ∑𝐾
𝑗=1 𝑥𝑖 𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑖 ≤

𝐾 . 𝑥𝑖 𝑗 denotes the i-th sample belongs to the j-th category. 𝑋 =

(𝑥1, 𝑥2 · · · 𝑥𝑁 )𝑇𝑁×𝐾 . Then, we can know that

𝑋𝑇𝑋 = (𝑥1, 𝑥2 · · · 𝑥𝑁 )
©­­­­«
𝑥1
𝑥2
.
.
.

𝑥𝑁

ª®®®®¬
=

©­­«
N1 · · · 0
.
.
.

. . .
.
.
.

0 · · · N𝐾

ª®®¬𝐾×𝐾

=
©­­«
∑
𝑖∈A1 1 · · · 0
.
.
.

. . .
.
.
.

0 · · · ∑
𝑖∈A𝐾 1

ª®®¬𝐾×𝐾

,

(6)

where N𝐾 denotes the number of samples belonging to category
K in N samples.

∑K
𝑘=1 NK = N, NK =

∑
𝐼 ∈AK 1 Therefore, we can

find that the Equation 5 can be rewritten as

P =
©­­«
∑
𝑖∈A1 D𝑖 · · · 0
.
.
.

. . .
.
.
.

0 · · · ∑
𝑖∈A𝐾 D𝑖

ª®®¬
=

𝑁∑︁
𝑖=1

𝑥𝑖D𝑖𝑥𝑇𝑖 = 𝑋𝑇D𝑋 ,

(7)

where D = 𝑑𝑖𝑎𝑔 (W · 1𝑁 ) and the Equation 4 can be written as

O = 𝑋𝑇D𝑋 − 𝑋𝑇W𝑋 , (8)

where 𝑋𝑇W𝑋 can be described as
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𝑋𝑇W𝑋 = (𝑥1 · · · 𝑥𝑁 )
©­­«
W11 · · · W1𝑁
.
.
.

. . .
.
.
.

W𝑁 1 · · · W𝑁𝑁

ª®®¬
©­­­­«
𝑥𝑇1
𝑥𝑇2
.
.
.

𝑥𝑇𝑛

ª®®®®¬
=

(
𝑁∑︁
𝑖

𝑥𝑖W𝑖1 · · ·
𝑁∑︁
𝑖=1

𝑥𝑖W𝑖𝑁

) ©­­­«
𝑥𝑇1
.
.
.

𝑥𝑇𝑛

ª®®®¬
=

©­­­­­­«

∑︁
𝑖∈𝐴1

∑︁
𝑗∈𝐴1

W𝑖 𝑗

∑︁
𝑖∈𝐴1

∑︁
𝑗∈𝐴𝐾

W𝑖 𝑗

.

.

.
. . .

.

.

.∑︁
𝑖∈𝐴𝐾

∑︁
𝑗∈𝐴1

W𝑖 𝑗

∑︁
𝑖∈𝐴𝐾

∑︁
𝑗∈𝐴𝐾

W𝑖 𝑗

ª®®®®®®¬
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑥𝑖W𝑖 𝑗𝑥
𝑇
𝑗 .

(9)

Thus, the Equation 8 can be rewritten as

O = 𝑋𝑇D𝑋 − 𝑋𝑇W𝑋

= 𝑋𝑇 (D −W)𝑋

= 𝑋𝑇 L𝑋 .

(10)

Besides, the Equation 3 can be rewritten as

𝑚𝑖𝑛
{A𝑘 }𝐾𝑘=1

N𝑐𝑢𝑡 (A1, · · ·A𝐾 ) = 𝑡𝑟
{
𝑋𝑇 (D −W)𝑋 ·

(
𝑋𝑇D𝑋

)−1}
,

(11)
where L denotes the Laplacian Matrix and L can be expressed as
L = D −W. In spectral clustering, we perform eigendecomposition
of L to obtain the eigenvalues and corresponding eigenvectors.
Then, we select the eigenvectors corresponding to the smallest
𝑘 eigenvalues to form the feature matrix and apply 𝑘-means
clustering to divide the data into 𝑘 cluster. Then, to tackle the
problem of class imbalance, the resampling is used to the cluster
results G and the process can be expressed as G′ = R𝑠 (G). R𝑠
denotes the resampling. Building on the resampled dataset G′, we
compute the within-cluster confidence uncertainty, denoted as C𝑘 ,
for each cluster 𝑘 . This uncertainty is quantified by the standard
deviation of the resampled confidence scores

C𝑘 =

√√√
1

N𝑘 − 1

N𝑘∑︁
𝑖=1

(
C𝑖
𝑘
− C𝑖

)2
, (12)

where C𝑘 denotes the confidence uncertainty. C𝑖 and C𝑖
𝑘
denotes

the confidence average and 𝑖-th resampled samples confidence
scores in 𝑘-th cluster. Besides, the class probability distribution
uncertainty can be calculated by

P𝑘 = − 1
|N𝑘 |

∑︁
𝑖∈N𝑘

4∑︁
𝑗=1

P𝑖 𝑗 𝑙𝑜𝑔 P𝑖 𝑗 , (13)

where N𝑘 is the number of re-samples in cluster 𝑘 . P𝑖 𝑗 denotes the
the probability of the 𝑗-th category of the 𝑖-th samples. Therefore,
the overall uncertainty score of input image I𝑡 is the expressed as

M(U𝑡
𝑑
| I𝑡 ,Θ𝑛 ) =

1
N𝑘

N𝑘∑︁
𝑘=1

(C𝑡
𝑘
+ P𝑡

𝑘
) , (14)

where C𝑡
𝑘
, 𝑎𝑛𝑑 P𝑡

𝑘
denotes uncertainty of confidence, probability

distribution, and tiny object of image I𝑡 , respectively.

B MORE IMPLEMENTATION DETAILS
In this section, we present more implementation details. As shown
in TableA. Here, Setting 1 is about experimental parameter settings,
including multiple hyperparameters, e.g., optimizer weight decay,
warmup epochs, warmup initial momentum, box loss gain, cls loss
gain, etc. Setting 2 is about the number of sampling times during the
experimental process. 1𝑠𝑡 , 2𝑛𝑑 , · · · 20𝑡ℎ denotes the rounds. In the
unlabeled target samples, the number of T1 (Rainy), T2 (Foggy),
and T3 (Night) is 2502, and the number of T4 (BDD-intrusion)
is 839. Therefore, we adopt the method of rounding to the nearest
whole number to select samples, i.e., final query samples = [N·R],
where N denote the number of samples in the target domain, R
denotes the rate of sampling, [·] denotes the rounding function, e.g.,
1𝑠𝑡 : 2502×0.1% ≈ 3 images, 2𝑛𝑑 : 2502×0.2% ≈ 5 (added 2 images).
All selected samples are sent to annotate. Then, the labeled samples
and source domain are merged to retrain the proposed framework
ADAID-YOLO until meeting the max annotation budget B.

Settting 1 Value Settting 2
(Budget B)

Query samples
T1: F T2: R T3: Ng T4: B

batch_size 24 Round 1 (1𝑠𝑡 ) 3 3 3 1
epoch 150 Round 2 (2𝑛𝑑 ) 5 5 5 2

initial learning rate 0.01 Round 3 (3𝑟𝑑 ) 8 8 8 3
SGD momentum 0.937 Round 4 (4𝑡ℎ) 10 10 10 3

optimizer weight decay 5e−4 Round 5 (5𝑡ℎ) 13 13 13 4
warmup epochs 3.0 Round 6 (6𝑡ℎ) 15 15 15 5

warmup initial momentum 0.8 Round 7 (7𝑡ℎ) 18 18 18 6
warmup initial bias lr 0.1 Round 8 (8𝑡ℎ) 20 20 20 7

box loss gain 0.05 Round 9 (9𝑡ℎ) 23 23 23 8
cls loss gain 0.5 Round 10 (10𝑡ℎ) 25 25 20 8

cls BCELoss positive_weight 1.0 Round 20 (20𝑡ℎ) 50 50 50 17

Table A: The detailed illustration of experiments setting. ‘T’
denotes the target domain. ‘R’, ‘F’, ‘Ng’, and ‘B’ denote the
Normal-Rainy, Normal-Foggy, and Normal-Night and BDD-
intrusion datasets, respectively.

C DETAILED INFORMATION FOR DATASETS
In this section, we will provide more information for using datasets,
including description, statistical analysis and visualization images.
The detailed description and statistical analysis are shown in Ta-
ble B. We conduct comprehensive experiments on five different
source/target domains to verify the effectiveness of our sampling
strategy. Here, the Noraml-CMC, Foggy-CMC, Rainy-CMC, Night-
CMC, and BDD-intrusion datasets are built on public Cityscapes,
Cityperson, and BDD-100K datasets [10]. In the validation set, the
intrusion cases reach 11.82 and 4.74 Intrusion/No-Intrusion labels,
respectively. Note that when we conduct experiments on BDD-
intrusion datasets, only 839 images in Normal-CMC are chosen to
serve as the source domain. The main reason is that 839 images
(samples) can meet the characteristics of our intrusion detection
task, i.e., containing detection and segmentation labels in the target
domain (BDD-intrusion). Besides, we also provide detailed visu-
alization images. As presented in Figure B. From Figure B, we
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Figure B: An illustration of related datasets. Here, we use domain intrusion datasets and provide some visualization images
from some intrusion datasets, Normal-CMC, Foggy-CMC, Rainy-CMC, Night-CMC, and BDD-intrusion [10]. These datasets
contain multiple different and common domains, e.g., Normal, Foggy, Night, Rainy, and Snow, which can meet the requirements
of our ADA-ID task.

can find that: 1) These intrusion datasets contain multiple differ-
ent normal/adverse weather (domains), including Sunny, Rainy,
Snow,Night, and Foggy. These multiple different domains provide
a cross-domain foundation for our ADA-ID task. 2) Five datasets
can provide correct category/Intrusion labels, which denotes these
datasets can meet the requirements of our ADA-ID task.

D BASELINE MODEL DESCRIPTION
In this section, we provide detailed illustrations for using classic
models, including Random Sampling, Least Confident [36], Margin
Sampling [27], and Entropy Sampling [36].
• 1) Random Sampling: RS denotes samples are chosen by Ran-
dom strategy from the unlabeled target domain. And these samples
will be labeled by Expert (Oracle).
• 2) Least Confident [36]: LC indicates that the samples of lowest
confidence are chosen for annotation.
• 3) Margin Sampling [27]: MS indicates that samples where the
difference between the model’s most likely and second most likely
predicted categories is the smallest will be chosen to annotate.
• 4) Entropy Sampling [36]: ES is used to measure the uncertainty
of a system, the greater the entropy, the greater the uncertainty
of the system; the smaller the entropy, the lesser the uncertainty
of the system. The samples of the most entropy will be chosen to
annotate.

Datasets Descriptions Classes Train set Val set Intrusion cases
(Val set)

Normal-CMC Source Domain 4 2502 429 11.82

Rainy-CMC Target Domain 1 4 2502 429 11.82

Foggy-CMC Target Domain 2 4 2502 429 11.82

Night-CMC Target Domain 3 4 2502 429 11.82

BDD-intrusion Target Domain 4 4 839 429 4.74

Table B: The detailed description and statistics of using
datasets. In our experiments, the Source domain is Normal-
CMC, and the source domain denotes Normal weather. Four
different target domains are exited, Foggy-CMC, Rainy-CMC,
Night-CMC, and BDD-intrusion, respectively. The target do-
main denotes the Adverse weather. Adequate source and tar-
get domain datasets provide a foundation for the proposed
ADA-ID task.

E MORE EXPERIMENT RESULTS
E.1 More quantitative experiment.
In this subsection, we will conduct more experiments to illustrate
the effectiveness of our strategies. We first test the performance of
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Task
(Source→Target) AL Strategy

Framework: ADAID-YOLO

Annotation budget: 0.1% (1/839), 1𝑠𝑡

mIOU(%) mAP@.5(%) mAP@.5:.95(%) AccY(%) AccN(%) Acc(%) Closed Gap
ΔmIOU(%) ↑ / ΔmAP@.5(%) ↑ / ΔAcc(%) ↑

N→B

Source Only 76.6 26.9 11.1 27.0 27.2 27.2 -

Random 77.3 27.7 11.6 21.7 31.5 28.5 +7.9% / +10.4% / +19.7%

Margin Sampling [27] 74.9 26.5 10.6 22.2 32.9 29.6 -19.1% / -5.2% / +36.4%

Entropy [36] 75.0 28.2 12.0 20.9 34.3 30.2 -18.0% / +16.9% / +45.5%

RIPU [37] 76.8 28.8 11.7 26.5 32.6 30.8 +2.2% / +24.7% / +54.5%

Least Confident [36] 75.6 27.8 11.5 26.9 33.2 31.3 -11.2% / +11.7% / +62.1%

Ours 78.2 29.9 12.0 26.5 34.1 31.8 +18.0% / +39.0% / +69.7%

Oracle (Fully-Supervised) 85.5 34.6 13.8 29.1 35.9 33.8 -

Table C: The quantitative results on different adaptation scenarios under 0.1% (1𝑠𝑡 ) annotation budget. Here, ‘N’ and ‘B’ denote
using different datasets: Normal-CMC and BDD-intrusion, respectively. Source only denotes the training on the source domain
and inference on the target domain. Oracle denotes training and inference on the target domain.

different cross-domain tasks, e.g., Noraml-CMC→BDD-intrusion.
Like section 4, we also test the performance under the annotation
budget 0.1% (1/839) and provide multiple metrics, e.g., mIOU, mAP,
AccY, AccN and Acc. The results are shown in Table C. From Table
C, we can find that for intrusion detection performance, compared
with source only, our strategies can surpass it by 4.6% and outper-
form classic active learning strategies. Besides, for the performance
of segmentation and detection, our strategy also shows the best
performance, 78.2% mIOU and 29.9% mAP, which demonstrates the
effectiveness of our proposed approach.

E.2 Compared with more UDA works.
In this subsection, we will conduct more comparison experiments
to explore the superiority of our strategy. Specifically, we first test
the performance of various target annotation budgets. Then, we
compare the performance between our strategy and some common
but effective promising UDA methods, e.g., DANN [9], and I-DANN
[10], etc. The results are shown in FigureC. From FigureC, we can
find that the best performance can be reached when the promising
I-DANN is used. Besides, we also can see that 1) In different cross-
domain tasks, when using our strategy, 0.5% of data annotations
can surpass the performance of multiple UDA methods, e.g., JAN
[19], etc. 2) In Normal→Rainy cross-domain tasks, our sampling
approaches can effectively improve the performance of intrusion
detection, even surpassing the performance of best UDA method
with only 2% data annotation, which demonstrates the superiority
of our approach.

E.3 Visualisation Comparisons.
In this subsection, we will present more comparison visualization
results to verify the rationality of the proposed sampling strategy.
To be fair, we compare the visualization results on multiple different
sampling approaches and several cross-domain tasks, e.g., N→F,
N→B, N→Ng. All experiments are conducted in round 1. The spe-
cific visualization results are presented D. From the D, we can find
that, when adopting 0.1% samples (1𝑠𝑡 round), our strategies can

Figure C: The comparison results of promising UDA works.
Task: N→R and N→F. We can find that our sampling ap-
proaches can effectively improve the performance of intru-
sion detection, even surpassing the performance of the best
UDA method on N→R with only 2% data annotation.

select informative samples for the ADA-ID task, not only effec-
tively detecting the typical Intrusion/No-Intrusion behaviors and
intruder category, but also giving correct Intrusion/No-Intrusion la-
bels (‘Y’/‘N’). These advantages indicate that our proposed sampling
strategies are effective.

F COMPARISON OF PSEUDO LABEL
STRATEGY

In this section, we introduce and compare three different of obtain-
ing the pseudo GT detailed. As shown in E. To get Pseudo-Labelling
(𝐺𝑇 ) to help identify areas of uncertainty in segmentation, we
need to design an effective Pseudo-Labeling strategy. However, the
ground truth of the target domain is not known. How do we get
pseudo ground truth? We think that three different but feasible
ways can be considered. As shown in Figure E. 1) Training a larger
UDA model using source/target domain (D𝑠

⋃
D𝑡 ) and then per-

forming inference (D𝑡 ) to get the pseudo ground truth. However,
this approach needs expensive training costs. 2) Using the promis-
ing zero-shot segmentation model, SAM [16]. However, we need
to provide extra prompts, i.e, location of points or boxes when we
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Figure D: An illustration of comparative results using different strategies. Here, we present more visualization results to verify
the effectiveness of our strategies. From the results, we can find that, when adopting 0.1% samples (1𝑠𝑡 round), our strategies can
select informative samples for the ADA-ID task, not only effectively detecting the typical Intrusion/No-Intrusion behaviors and
intruder category, but also giving correct Intrusion/No-Intrusion labels (‘Y’/‘N’). These advantages indicate that our proposed
sampling strategies are effective.
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Figure E: Comparison of three different strategies. Here, the
first strategy (Larger pre-trained UDAmodel) is expensive for
training costs. The second strategy is to use SAM [16] to ob-
tain the Preudo GT. However, this strategy can cause spatial
information leakage due to extra prompts. The aforemen-
tioned two strategies are not suited for our ADA-ID task. In
the third strategy, we use a simple condition diffusion model
to get the translation images (Target domain→Source-like
target domain). Then, using the pre-trained model ADAID-
YOLO for inference to obtain the Preudo GT.

use the SAM model, which causes spatial information leakage to
some extent. This is because we do not know the spatial location
of the restricted AoI in the picture. 3) Therefore, to get pseudo
ground truth, we propose a new efficient and low-cost strategy,
Dynamic Diffusion Pseudo-Labeling. Specifically, We first train a
well-designed condition diffusion model for learning the translation
of the source domain (D𝑠 ) and the target domain (D𝑡 ). Then, we
use the pre-trained Denoising UNet model to infer input data from
the target domain for obtaining the source-like target data, and use
it to obtain the 𝐺𝑇 . The results of the ablation experiments show
the effectiveness of our method, which not only generates correct
pseudo ground truth but maintains a high inference speed.
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