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Abstract
The rapid development of Vision Foundation Model (VFM) brings
inherent out-domain generalization for a variety of down-stream
tasks. Among them, domain generalized semantic segmentation
(DGSS) holds unique challenges as the cross-domain images share
common pixel-wise content information (i.e., semantics) but vary
greatly in terms of the style (e.g., urban landscape, environment
dependencies). Effectively fine-tuning VFM for DGSS has recently
become an open research topic for the vision community. In this pa-
per, we present a novel Spectral-dEcomposed Token (SET) learning
framework to advance the frontier. Delving into further than exist-
ing fine-tuning token & frozen backbone paradigm, the proposed SET
especially focuses on the way learning style-invariant features from
these learnable tokens. Particularly, the frozen VFM features are
first decomposed into the phase and amplitude components in the
frequency space, which mainly contain the information of content
and style, respectively, and then separately processed by learnable
tokens for task-specific information extraction. After the decom-
position, style variation primarily impacts the token-based feature
enhancement within the amplitude branch. To address this issue,
we further develop an attention optimization method to bridge the
gap between style-affected representation and static tokens during
inference. Extensive cross-domain experiments under a variety of
backbones and VFMs show the state-of-the-art performance. We
will make the source code publicly available.
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Figure 1: Segmentation performance on unseen target do-
main (in mIoU, %) v.s. trainable parameter number (in
million, M). GTAV [43] is used as the source domain and
CityScapes [14] is used as unseen target domain. The pro-
posed SET shows state-of-the-art performance with little
trainable parameters.

1 Introduction
The emergence of various Vision Foundational Models (VFMs) has
started a new era for semantic segmentation. Most of these meth-
ods assume that the unseen target domains in the reference stage
share the independent and identical distribution (i.i.d.) with the
accessed source domain in the training stage. In the real-world
applications like autonomous driving, this assumption usually does
not necessarily hold. As a matter of fact, large style variations be-
tween the source and unseen target domains can be witnessed due
to many shifting factors such as urban landscape, weather, and
lighting conditions [10, 28, 45].

Domain generalized semantic segmentation (DGSS) is the task
to address this challenge, in which the segmentation models are
trained only on the source domain but inferred on arbitrary unseen
target domains [1, 2, 16]. Before the VFM era, extensive efforts
have been made on DGSS, which focus on either style decoupling
[1, 2, 12, 16, 36, 37] or style augmentation [21, 26, 60, 62]. However,
the representation ability of the scene content (e.g., semantics) it-
self, which is relatively stable between different domains, remains
less explored. In recent years, VFMs (e.g., CLIP [41], DALL-E [42],
DINOv2 [32], and SAM [24]) have significantly advanced a vari-
ety of vision tasks. The inherited generalization ability of VFM
from large-scale image pre-training [25] has great potential to be
harnessed for DGSS.
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Figure 2: A toy example on how different styles of a driving
scene (left row) impact the amplitude (second row) and the
phase component (third row). As the styles change, the phase
component remains stable, while the amplitude adjusts cor-
respondingly. Thus, the amplitude component provides a
feasible path to inspect the cross-domain style variation.

Recent works show that, in the context of DGSS, fine-tuning
VFM with learnable tokens yields better generalization than the
one with full parameter tuning [51]. However, the key challenge of
DGSS, i.e., the domain gap caused by the style variation, remains
unaddressed. Hence, we naturally raise an open research question:
how to learn style-invariant representation by fine-tuning VFMs?
Spectral decomposition has been long acknowledged effective to
handle the style and content information separately in the context
of domain generalization [53, 55], where the style/content infor-
mation highly rests in the high-/low- frequency component [49].
This further leads to our second research question: how to design a
frequency-space-based method to effectively composite the style and
content information from the VFM features?

In this paper, we propose a novel Spectral-dEcomposited Token
(SET) learning scheme to address this challenge. Fast fourier trans-
form (FFT) [3] is implemented to decompose the image feature from
the previous frozen VFM layer to the amplitude and phase compo-
nents. The phase component, which contains more low-frequency
component on the scene content, is relatively stable despite the
cross-style variation [38, 54]. In contrast, the amplitude component,
which has more high-frequency component on the styles [6, 55],
can be rather unstable when handling images from different do-
mains. Therefore, the token-based fine-tuning in the amplitude
branch deserves more attentions in domain generalization.

To this end, we design a token-based feature enhancement pipeline
which extracts task-specific information and adjusts the spectral-
decomposed features in amplitude and phase branches separately.

Learnable tokens capture task-relevant features within each branch,
and enhance the original feature representations based on their sim-
ilarities. During inference, these tokens are fixed. However, since
the amplitude component is susceptible to style variation, the en-
hancement process in the amplitude branch can become unstable
due to the fluctuating representation and static tokens. Therefore,
we further propose an attention optimization method to make the
token-based enhancement more robust to style changes. Finally,
the enhanced amplitude and phase components are projected back
to the spatial space and input to the subsequent layer.

We conduct extensive experiments in various domain-generalized
semantic segmentation scenarios, where models are trained on one
dataset from [14, 30, 43, 44, 56] as the source domain and vali-
dated on the remaining four datasets as unseen target domains.
Although all datasets share the same 19 semantic categories, they
differ in scene styles. Results demonstrate that our proposed SET
achieves up to an improvement of: 1) 20% onmIoU over state-of-the-
art CNN-based methods [26, 36]; 2) 10% mIoU over Mask2Former
based methods [1, 16]; 3) up to 3.12%mIoU over the VFM based Rein
[51] on unseen ACDC-snow domain. Additionally, the proposed
SET can be seamlessly transferred to a variety of VFMs with good
generalization capability.

Our contributions are summarized as follows:

• We propose a novel spectral-decomposed token learning
(SET) scheme for DGSS. It harnesses the style-invariant prop-
erties for VFM.

• The proposed SET, consisting of three key steps, namely,
spectral decomposition, learning spectral tokens, and atten-
tion optimization in the amplitude branch, can be seamlessly
integrated into existing VFMs in a trainable manner.

• Extensive experiments show the proposed SET outperforms
the VFM based state-of-the-art by up to 1.66% and 3.12%
mIoU on unseen CityScapes and ACDC-snow domains.

2 Related Work
2.1 Domain Generalization
Domain generalization focused on the scenarios where the target
domain is unavailable during training. Various approaches have
been proposed in the past decade. A straight-forward research line
is to design variations of the normalization techniques [13, 29, 46],
which are simple and effective to enhance the representation ro-
bustness to style robustness. Additionally, extensive advanced tech-
niques, to name a few, adversarial training [15], domain alignment
[9, 47], meta-learning [7, 40], data augmentation [48, 58, 61], self-
supervised learning [4], and regularization techniques [23, 50], have
been adapted to learn the domain-invariant representation.

However, the above works usually focus on the non task-specific
settings, not especially devised for DGSS. In DGSS, the key chal-
lenge lies in that the cross-domain images share common content
information (i.e., semantics) but vary greatly in terms of the style
variation (e.g., urban landscape, environment dependencies).

2.2 Vision Foundation Models
Foundation model is a new paradigm for deep learning. Its key
idea is to pre-train a deep network on a board set of unlabeled
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images, which has a strong representation ability to be fine-tuned
on a variety of down-stream tasks. This paradigm firstly emerges
in the field of Natural Language Processing (NLP), and later also
draws increasingly attention in the community of computer vision.
For simplicity, in the following text, the foundation models in the
computer vision field is termed as Vision Foundation Model (VFM).

Here, we review several typical VFMs in the past few years: Con-
trastive Language-Image Pre-Training (CLIP) [41] acquires high-
fidelity visual representations via contrastive learning with large-
scale image-text pairs. Masked Auto-encoder (MAE) [18] employs a
masked image modeling framework to derive latent image represen-
tations. Segment AnythingModel (SAM) [24] pioneers a promptable
model pre-trained on a diverse dataset for segmentation tasks. Ex-
plore the limits of Visual representation at scAle (EVA) [17] merges
Masked Image Modeling pre-training with CLIP’s vision features as
the target of pretext tasks. Self-DIstillation with NO labels (DINO)
[32] pre-trains the deep model on extensive, meticulously curated
datasets without explicit supervision.

To summarize, these VFMs have shown great successes on im-
proving a variety of downstream tasks, underscoring their remark-
able generalization capabilities. Nevertheless, an in-depth explo-
ration of their effectiveness in the specialized realm of DGSS tasks
remains rarely explored. The recent-developed Rein shows that
fine-tuning VFM [8, 22] with learnable tokens yields the better
generalization than the one with full parameter tuning [51].

2.3 Domain Generalized Semantic Segmentation
Semantic segmentation in driving scenes can encounter great do-
main shift, caused by factors such as adverse weather, diverse illu-
mination, and urban landscape diversity. In the past decade, domain
adaptation methods [39, 59] have shown great successes, but they
can only generalize to the target domain that has learned in the
training stage. To generalize to arbitrary unseen target domains,
DGSS has drawn increasing attentions in the past few years.

In the convolutional neural network (CNN) era, DGSS methods
can be categorized into two types, namely style decoupling and
style augmentation. For style-decoupling-based methods, instance
normalization (e.g., IBN [33], Iternorm [20]) and instance whiten-
ing (e.g., IW [34], SAW [36], ISW [12], DIRL [52]) operations are
commonly used. For style-augmentation-based methods, external
training images from other sources are usually used to enrich the
domain diversity [21, 26, 37, 57, 60, 62]. Later in the Vision Trans-
former (ViT) era, DGSSmethods usually leverage the strong content
representation ability of mask attentionmechanism [1, 2, 16], which
learns a more global-wise representation than convolution and is
more robust to the cross-domain style variation.

Nevertheless, the exploration of DGSS methods based on VFMs
remains relatively limited. A recent work Rein shows that, fine-
tuning VFM with learnable tokens yields better generalization for
DGSS than full parameter tuning [51].

3 Methodology
3.1 Problem Definition
In DGSS, there are source domain 𝑆 = (𝑥𝑠 , 𝑦𝑠 ) and a number of
target domains 𝑈1,𝑈2, · · · ,𝑈𝑛 , which have rather different feature

distributions. Here 𝑥𝑠 represents an image and 𝑦𝑠 denotes its cor-
responding pixel-wise label. The target domain 𝑈 is inaccessible
during training. Our objective is to train a VFM-based semantic
segmentation model which is capable of achieving superior gener-
alization performance when inferring on these target domains.

The overview of the proposed Spectral-dEcomposed Tokens
(SET) framework is shown in Fig. 3. To efficiently fine-tune VFMs,
spectral-decomposed tokens are applied to each frozen layer.Within
each layer, the frozen features are decomposed into amplitude and
phase components by Fast Fourier Transform (FFT) (in Sec. 3.2).
Spectral tokens are linked to amplitude and phase branches to ex-
tract the task-specific information and enhance the original features
(in Sec. 3.3). Additionally, since the style variation mainly affects the
amplitude component, we further design an attention optimization
method to improve the generalization ability of the learned tokens
(in Sec. 3.4). Finally, two enhanced components are projected back
to the spatial space by Inverse Fast Fourier Transform (IFFT) and
fed into the subsequent layer.

3.2 Spectral Decomposition
As discussed above, the low-frequency and high-frequency compo-
nents in the frequency space provide a feasible solution to separate
the content and style information. Inspired by this, we turn to the
spectral decomposition [5, 35] via Fast Fourier Transform (FFT)
to realize this objective. Specifically, given the intermediate image
features 𝑋𝑘 ∈ R𝑑×𝐻×𝑊 of layer 𝑘 , it is fed to a 2D Fast Fourier
Transform, independently to each channel to obtain the correspond-
ing projected representations𝑋𝑓 ∈ R𝐻×𝑊 in frequency space. This
process on 𝑋𝑖 within each channel can be computed as

𝑋𝑓 (𝑥,𝑦) =
𝐻−1∑︁
ℎ=0

𝑊 −1∑︁
𝑤=0

𝑋𝑖 (ℎ,𝑤)𝑒−2𝑗𝜋 (𝑥
ℎ
𝐻
+𝑦 𝑤

𝑊
) , (1)

where 𝐻 and𝑊 are the height and the width of the image features.
In addition, 𝑑 denotes the feature dimension.

On the other hand, the inverse transformation from the fre-
quency space to the spatial space is usually implemented by the
Inverse Fast Fourier Transform (IFFT), which is mathematically
computed as

𝑋𝑘 (ℎ,𝑤) = 1
𝐻𝑊

𝐻−1∑︁
𝑥=0

𝑊 −1∑︁
𝑦=0

𝑋𝑓 (𝑥,𝑦)𝑒2𝑗𝜋 (𝑥
ℎ
𝐻
+𝑦 𝑤

𝑊
) . (2)

The frequency representation 𝑋𝑓 can be divided into two parts,
namely the real part 𝑋𝑟𝑒𝑎𝑙

𝑓
and the imagery part 𝑋 𝑖𝑚𝑔

𝑓
respectively,

defined as
𝑋𝑓 (𝑥,𝑦) = 𝑋𝑟𝑒𝑎𝑙

𝑓
+ 𝑖𝑋 𝑖𝑚𝑔

𝑓
. (3)

Decomposing the image feature𝑋𝑖 into its amplitude𝛼 and phase
𝜌 is known as spectral decomposition, given by

𝛼 =

√︂
(𝑋𝑟𝑒𝑎𝑙

𝑓
)2 + (𝑋 𝑖𝑚𝑔

𝑓
)2,

𝜌 = arctan(𝑋 𝑖𝑚𝑔

𝑓
/𝑋𝑟𝑒𝑎𝑙

𝑓
).

(4)

Through this series of mathematical transformations, the fre-
quency representation 𝑋𝑓 can be presented as

𝑋𝑓 = 𝛼𝑐𝑜𝑠 (𝜌) + 𝑖𝛼𝑠𝑖𝑛(𝜌). (5)
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Figure 3: Framework overview of the proposed Spectral-dEcomposed Token (SET) learning scheme. Embedded into each frozen
layer of a VFM, the proposed SET consists of three steps, namely spectral decomposition (in Sec. 3.2), learning spectral tokens
(in Sec. 3.3) and attention optimization in amplitude branch (in Sec. 3.4). By default, DINOv2 [32] is used as the frozen VFM,
while the proposed SET is versatile to different VFMs.

Define the function to decompose the frequency feature into its
amplitude and phase components as𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (·), and the opposite
process as 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (·), this process can be presented as

𝛼, 𝜌 = 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑋𝑘 ),
𝑋𝑘 = 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝛼, 𝜌) . (6)

3.3 Learning Spectral Tokens
Leveraging learnable tokens with only a few number of parameters
[19] has been turned out to be an effective path to fine-tune the
VFMs. Following this simple yet effective paradigm, in our pipeline,
learnable tokens are utilized to refine the spectral components 𝛼𝑘
and 𝜌𝑘 of features at each layer within the frozen VFM backbone.
Since these tokens refine the original features in the frequency
domain, we name them as spectral tokens in this paper. Specifically,
for the features 𝑋𝑘 generated by the 𝑘-th layer 𝑉𝑘 , spectral compo-
nents 𝛼𝑘 , 𝜌𝑘 is obtained by spectral decomposition. The enhanced
spectral features 𝛼𝑘 , 𝜌𝑘 are produced by token-based adjustment
𝛽 (·) and composed to output feature as the input for the subsequent
layer, given by

𝛼𝑘 , 𝜌𝑘 = 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑋𝑘 ),
𝛼𝑘 = 𝛼𝑘 + 𝛽 (𝛼𝑘 ), 𝜌𝑘 = 𝜌𝑘 + 𝛽 (𝜌𝑘 ),
𝑋𝑘+1 = 𝑉𝑘+1 (𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝛼𝑘 , 𝜌𝑘 )).

(7)

Assume we have a set of spectral tokens 𝑇 = {𝑇𝐷
𝑖

∈ R𝑙×𝑑 |𝐷 ∈
[𝛼, 𝜌], 1 ≤ 𝑖 ≤ 𝑁 }, where 𝑇𝛼

𝑘
and 𝑇 𝜌

𝑘
denote the learnable tokens

for 𝛼𝑘 and 𝜌𝑘 , respectively. 𝑁 is the number of layers in VFM,
𝑙 denote the length of each token (number of features in each
token), and 𝑑 denote the feature dimension of 𝑇𝑖 , which is equal
to the channel number in spectral-decomposed features. During
training, the backbone is kept frozen and the task-specific posterior

is acquired from the DGSS dataset through these spectral tokens,
bridging the scene disparity concerning the pre-training datasets
and fine-tuning datasets.

To achieve this, each spectral token includes a bag of learnable
features to capture the task-specific knowledge in frequency do-
main. Within the token-based adjustment process 𝛽 (·), these bag
features are used to enhance the spectral-decomposed features
based on their similarity. Through this enhancement, task-relevant
representations in the original features are further highlighted,
while task-irrelevant category information is partially filtered out.

Specifically, inner-product is utilized to measure the similarity
between token features and original features from frozen layers.
Similarity map 𝑀𝛼

𝑘
∈ R𝐻𝑊 ×𝑙 is built to capture the association

between spectral-decomposed features (𝛼𝑘 as example) and spectral
token (amplitude token 𝑇𝛼

𝑘
as example). Following the widely-used

attention mechanism, a softmax function is applied to each line of
𝑀𝛼
𝑘
to normalize the weights of token features. To summarize, the

feature-token similarity can be mathematically computed as

𝑀𝛼
𝑘
= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝛼𝑘 ×𝑇𝛼
𝑘√

𝑑
) . (8)

Through the feature-token similarity map𝑀𝛼
𝑘
, we can select the

relevant token features for each position of the spectral-decomposed
features. These relevant token features include learned task-specific
knowledge which is used to enhance the original features. Before
added into the frozen spectral-decomposed features, the token fea-
tures are further processed by a Multi-Layer Perceptron (MLP) layer
to generate a more suitable representation for enhancement. This
intermediate process 𝛽 (𝛼𝑘 ) can be presented as

𝛽 (𝛼𝑘 ) = 𝑀𝛼
𝑘
×𝑀𝐿𝑃 (𝑇𝛼

𝑘
). (9)
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Finally, another MLP layer is adapted to the enhanced features.
This layer is designed to extract task-related information and filter
out the irrelevant representations. The overall process of token-
based adjustment 𝛽 (·) can be written as

𝛽 (𝛼𝑘 ) = 𝑀𝐿𝑃 (𝛼𝑘 + 𝛽 (𝛼𝑘 )),

𝛽 (𝜌𝑘 ) = 𝑀𝐿𝑃 (𝜌𝑘 + 𝛽 (𝜌𝑘 )).
(10)

3.4 Attention Optimization
During inference, the parameters of the learnable tokens are fixed.
As shown in Fig. 2, the style variations can significantly reflect in the
amplitude component. As a result, when dealing with images from
unseen target domains, the weights of the feature-token similarity
map in the amplitude branch may be severely affected by the style
change. Since the task-related category information is stored in the
tokens features, the perturbation of weights leads to the injection
of incorrect category information during the enhancement process,
thereby weakening the domain generalization ability. To address
this problem,we further proposed an attention optimizationmethod
to adjust the similarity map in amplitude branch.

Specifically, we perform a further normalization on the feature-
token similarity map,

𝑀𝑛𝑜𝑟𝑚
𝑘

=
𝑀𝛼
𝑘
− 𝜇

𝜎
, (11)

where 𝜇 ans 𝜎 denote the mean and standard deviation of𝑀𝛼
𝑘
. Let

𝐻,𝑊 denote the size of similarity map, 𝜇 ans 𝜎 are computed by

𝜇 =
1

𝐻𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

𝑀𝑖, 𝑗 ,

𝜎2 =
1

𝐻𝑊

𝐻∑︁
𝑖=1

𝑊∑︁
𝑗=1

(𝑀𝑖, 𝑗 − 𝜇)2 .

(12)

Due to the softmax operation when acquiring𝑀𝛼
𝑘
, the original

mean value of𝑀𝛼
𝑘
is 1

𝑙
and themax standard deviation is

√︃
1
𝑙
(1 − 1

𝑙
),

where 𝑙 is the number of features in each token. After normalization,
the standard deviation increases to 1, which means higher weights
are assigned to the relevant token features and the weight distribu-
tion becomes more uneven. When amplitude feature representation
affected by style variation, its similarity with fixed tokens trained
on source dataset decreases, leading to more uniform weight distri-
bution within the feature-token similarity map. By the proposed
attention optimization, the weight distribution is refined and the
relevant token features receive more attention, alleviating the im-
pacts of style change for token-based fine-tuning. After that, the
enhancement process in amplitude branch can be written as

𝛼𝑛𝑜𝑟𝑚
𝑘

= 𝛼𝑘 +𝑀𝐿𝑃 (𝛼𝑘 +𝑀𝑛𝑜𝑟𝑚
𝑘

×𝑀𝐿𝑃 (𝑇𝛼
𝑘
)) . (13)

Finally, amplitude component is combined with phase compo-
nent, projected back to the spatial space and fed into the next layer
in VFM, given by

𝑋𝑘+1 = 𝑉𝑘+1 (𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝛼𝑛𝑜𝑟𝑚
𝑘

, 𝜌𝑘 )) . (14)

3.5 Implementation Details
Following prior work [51], the model is trained 40000 iterations
with a batch size of 4 and an initial learning rate of 1e-4 for DGSS
tasks. The resolution of input images is 512×512. DINOv2 is chosen
as the default VFM, and the segmentation head of Mask2Former
[11] is utilized to produce pixel-level prediction.

4 Experiment
4.1 Datasets & Evaluation Protocols
4.1.1 Datasets We conduct the experiments on five driving-scene
semantic segmentation datasets.
CityScapes [14] is constructed based on the driving-scenes in
Germany cities, which includes 2,975 and 500 well-annotated sam-
ples for training and validation, respectively. The resolution of
CityScapes is 2,048×1,024.
BDD-100K [56] provides diverse scenes of driving videos under var-
ious weather conditions. It contains 7,000 and 1,000 fine-annotated
samples for training and validation of semantic segmentation, re-
spectively. The resolution of BDD-100K is of 1,280×720.
SYNTHIA [44] provides a large-scale synthetic dataset, and pro-
vides 9,400 images with a resolution of 1,280×760.
Mapillary [30] provides a large-scale semantic segmentation dataset
based on street scenes with 25,000 samples.
GTAV [43] is a synthetic semantic segmentation dataset rendered
by the GTAV game engine. It provides 24,966 simulated urban-street
samples with a resolution of 1,914×1,052.

4.1.2 Evaluation Settings We illustrate our domain generalization
settings as follows. Firstly, we use C, B, S, M and G to denote
the above five datasets respectively. Following prior DGSS works
[12, 33, 34, 36], the segmentation model is trained on one dataset as
the source domain, and is validated on the rest of the four datasets
as the target domains. Three settings include: 1) G → {C, B, M,
S}; 2) S→ {C, B, M, G}; and 3) C to→ {B, M, G, S}. We employ the
mIoU (%) metric for the evaluation. All the reported performance
is directly cited from prior works [12, 33, 34, 36].

4.1.3 Baselines Existing DGSS methods are included for compar-
ison, namely, IBN [33], IW [34], Iternorm [20], DRPC [57], ISW
[12], GTR [37], DIRL [52], SHADE [60], SAW [36], WildNet [26],
AdvStyle [62], SPC [21], HGFormer [16], CMFormer [1], DIDEX
[31] and Rein [51].

4.2 Comparison with State-of-the-art
4.2.1 GTAV Source Domain Table 1 compares the performance
of the proposed SET with existing state-of-the-art DGSS methods
under the G → {C, B, M, S} setting. The proposed SET shows an
mIoU improvement of 1.66%, 1.24%, 1.58% and 1.15% on C, B, M and
S unseen target domains, respectively, compared to the VFM based
state-of-the-art Rein [51]. In addition, the mIoU improvements on
ResNet based and Mask2Former based DGSS methods are more
than 20% and 10%, respectively. It is worthy noting that the source
domain GTAV is a synthetic dataset, while C, B and M target do-
mains are real datasets. The positive outcomes under this setting
demonstrates the feature generalization ability of the proposed SET.
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Method Venue Trained on GTAV (G)
→ C → B →M → S

ResNet based:
IBN [33] ECCV 2018 33.85 32.30 37.75 27.90
IW [34] CVPR 2019 29.91 27.48 29.71 27.61

Iternorm [20] CVPR 2019 31.81 32.70 33.88 27.07
DRPC [57] ICCV 2019 37.42 32.14 34.12 28.06
ISW [12] CVPR 2021 36.58 35.20 40.33 28.30
GTR [37] TIP 2021 37.53 33.75 34.52 28.17
DIRL [52] AAAI 2022 41.04 39.15 41.60 -

SHADE [60] ECCV 2022 44.65 39.28 43.34 -
SAW [36] CVPR 2022 39.75 37.34 41.86 30.79

WildNet [26] CVPR 2022 44.62 38.42 46.09 31.34
AdvStyle [62] NeurIPS 2022 39.62 35.54 37.00 -

SPC [21] CVPR 2023 44.10 40.46 45.51 -
Mask2Former based:

CMFormer [1] AAAI 2024 55.31 49.91 60.09 43.80
VFM based:
DIDEX∗ [31] WACV 2024 62.0 54.3 63.0 -
REIN∗ [51] CVPR 2024 66.4 60.4 66.1 48.86†

Ours - 68.06 61.64 67.68 50.01
↑1.66 ↑1.24 ↑1.58 ↑1.15

Table 1: G → {C, B, M, S} setting. Performance comparison
between the proposed SET (ours) and existing DGSS methods.
’-’: The metric is either not reported or the official source
code is not available. Evaluation metric mIoU is given in
(%). ’*’: only one decimal result is reported. ’†’: results are
re-implemented.

Method Venue Trained on SYNTHIA (S)
→ C → B →M → G

ResNet based:
IBN [33] ECCV 2018 32.04 30.57 32.16 26.90
IW [34] CVPR 2019 28.16 27.12 26.31 26.51

DRPC [57] ICCV 2019 35.65 31.53 32.74 28.75
ISW [12] CVPR 2021 35.83 31.62 30.84 27.68
GTR [37] TIP 2021 36.84 32.02 32.89 28.02
SAW [36] CVPR 2022 38.92 35.24 34.52 29.16

AdvStyle [62] NeurIPS 2022 37.59 27.45 31.76 -
Mask2Former based:

CMFormer [1] AAAI 2024 44.59 33.44 43.25 40.65
VFM based:
REIN† [51] CVPR 2024 48.59 44.42 48.64 46.97

Ours - 49.65 45.45 49.45 48.05
↑1.06 ↑1.03 ↑0.81 ↑1.08

Table 2: S → {C, B, M, G} setting. Performance comparison
between the proposed SET (ours) and existing DGSS methods.
’-’: The metric is either not reported or the official source
code is not available. Evaluation metric mIoU is given in
(%). ’*’: only one decimal result is reported. ’†’: results are
re-implemented.

4.2.2 SYNTHIA Source Domain Table 2 compares the performance
of the proposed SET and existing state-of-the-art DGSS methods
under the S → {C, B, M, G} setting. The proposed SET shows im-
provements of 1.06%, 1.03%, 0.81% and 1.08% on mIoU against the
runner-up method Rein [51]. In addition, the mIoU improvements

Method Venue Trained on Cityscapes (C)
→ B →M → G → S

ResNet based:
IBN [33] ECCV 2018 48.56 57.04 45.06 26.14
IW [34] CVPR 2019 48.49 55.82 44.87 26.10

Iternorm [20] CVPR 2019 49.23 56.26 45.73 25.98
DRPC [57] ICCV 2019 49.86 56.34 45.62 26.58
ISW [12] CVPR 2021 50.73 58.64 45.00 26.20
GTR [37] TIP 2021 50.75 57.16 45.79 26.47
DIRL [52] AAAI 2022 51.80 - 46.52 26.50

SHADE [60] ECCV 2022 50.95 60.67 48.61 27.62
SAW [36] CVPR 2022 52.95 59.81 47.28 28.32

WildNet [26] CVPR 2022 50.94 58.79 47.01 27.95
Mask2Former based:
HGFormer∗ [16] CVPR 2023 53.4 66.9 51.3 33.6
CMFormer [1] AAAI 2024 59.27 71.10 58.11 40.43
VFM based:
REIN† [51] CVPR 2024 63.54 74.03 62.41 48.56

Ours - 65.07 75.67 63.80 49.61
↑1.53 ↑1.64 ↑1.39 ↑1.05

Table 3: C → {B, M, G, S} setting. Performance comparison
between the proposed SET (ours) and existing DGSS methods.
’-’: the metric is either not reported or the official source code
is not available. Evaluation metric mIoU is given in (%). ’†’:
results are re-implemented.

Component Trained on GTAV (G)
VFM Spe. Token AO → C → B →M → S
✓ 63.30 56.10 63.90 46.50
✓ ✓ 65.23 59.34 64.32 47.10
✓ ✓ 66.40 60.40 66.10 48.86
✓ ✓ ✓ 66.78 60.59 66.08 48.92
✓ ✓ ✓ ✓ 68.06 61.64 67.68 50.01

Table 4: Ablation studies on key components of SET under
the G → {C, B, M, S} setting. 𝑉𝐹𝑀 : use only frozen VFM to
predict, 𝑆𝑝𝑒.: spectral decomposition, 𝑇𝑜𝑘𝑒𝑛: spectral tokens,
𝐴𝑂 : attention optimization.

on ResNet based and Mask2Former based DGSS methods are more
than 20% and 10%, respectively, when generalized to B, M and G
unseen target domains.

4.2.3 CityScapes Source Domain Table 3 compares the perfor-
mance of the proposed SET and existing state-of-the-art DGSS
methods under the C → {B, M, G, S} setting. The proposed SET
also shows a clear performance improvement than the second-best
Rein [51]. Specifically, the mIoU improvements on the B, M, G and
S unseen target domains are 1.53%, 1.64%, 1.39% and 1.05%, respec-
tively. In addition, the mIoU improvements on ResNet based and
Mask2Former based DGSS methods are more than 15% and 8% in
average. To better understand how the proposed SET improves the
feature generalization when compared with Rein [51], Fig. 4 visual-
izes the feature space of the Rein baseline (left) and the proposed
SET (right). The proposed SET allows the samples from different
unseen target domains to be more uniformly distributed.
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Figure 4: T-SNE visualization of the feature space from base-
line (left), and the proposed SET (RDWT; right). The model
is trained on the CityScapes source domain, and inferred on
the rest four unseen target domains. The proposed SET al-
lows the unseen target domain samples to bemore uniformly
distributed. Better zoom in to view.

Attention Optimization Trained on GTAV (G)
Image Phase Amplitude → C → B →M → S
✓ 64.91 56.97 64.20 46.72

✓ 63.27 56.38 62.71 46.08
✓ ✓ 66.01 58.83 64.62 48.16

✓ 68.06 61.64 67.68 50.01
Table 5: Ablation studies on attention optimization within
different components. 𝐼𝑚𝑎𝑔𝑒 denotes the original image fea-
tures, 𝑃ℎ𝑎𝑠𝑒 denotes phase component, 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 denotes
amplitude component.

4.3 Ablation Studies
4.3.1 On Key Components Table 4 studies the impact of each com-
ponent in the proposed SET. The experiments are conducted under
the G → {C, B, M, S} setting. When only the frozen VFM (DINOv2)
is used for DGSS (in the first row), the mIoU is relatively low. The
spectral decomposition operation (in the second row) contributes to
1.93%, 3.24%, 0.42% and 0.60% mIou gain on the C, B, M and S target
domains by separately learning the amplitude and phase informa-
tion. Furthermore, when spectral tokens are implemented (in the
third row), the performance gain are 3.10%, 4.30%, 3.10% and 2.36%
mIou on the C, B, M and S target domains, respectively. Finally,
based on the spectral tokens, attention optimization contributes to
an additional improvement of 1.28%, 1.05%, 1.60% and 1.09%.

4.3.2 On Attention Optimization Table 5 further studies the atten-
tion optimization operation on each component. The outcomes
show that, attention optimization in phase branch can potentially
harm the model’s representational capability. In contrast, the opti-
mal choice is to only used for amplitude component, which shows
the most predominate improvement on the generalization ability.

4.4 Generalization Ability Test
4.4.1 On Different VFMs We validate if the proposed SET can be
generalized to a variety of VFMs. It is integrated into CLIP [41],

Backbone Fine-tune Trainable mIoU
Method Params* Citys BDD Map Avg.

CLIP [41]

Full 304.15M 51.3 47.6 54.3 51.1
Freeze 0.00M 53.7 48.7 55.0 52.4
Rein [51] 2.99M 57.1 54.7 60.5 57.4
SET 6.13M 58.2 55.3 61.4 58.3

MAE [18]

Full 330.94M 53.7 50.8 58.1 54.2
Freeze 0.00M 43.3 37.8 48.0 43.0
Rein [51] 2.99M 55.0 49.3 58.6 54.3
SET 6.13M 56.2 51.0 60.2 55.8

SAM [24]

Full 632.18M 57.6 51.7 61.5 56.9
Freeze 0.00M 57.0 47.1 58.4 54.2
Rein [51] 4.51M 59.6 52.0 62.1 57.9
SET 6.13M 60.7 52.8 63.2 58.9

EVA02 [17]

Full 304.24M 62.1 56.2 64.6 60.9
Freeze 0.00M 56.5 53.6 58.6 56.2
Rein [51] 2.99M 65.3 60.5 64.9 63.6
SET 6.13M 66.4 61.8 65.6 64.6

DINOV2 [32]

Full 304.20M 63.7 57.4 64.2 61.7
Freeze 0.00M 63.3 56.1 63.9 61.1
Rein [51] 6.13M 66.4 60.4 66.1 64.3
SET 6.13M 68.0 61.6 67.6 65.7

Table 6: Generalization ability test of the proposed SET on
different VFM models. One decimal result is reported and
compared following prior references.

Method Venue Trained on Cityscapes (C)
→ Fog → Night → Rain → Snow

ResNet based:
IBN∗ [33] ECCV 2018 63.8 21.2 50.4 49.6
IW∗ [34] CVPR 2019 62.4 21.8 52.4 47.6
ISW∗ [12] CVPR 2021 64.3 24.3 56.0 49.8

Mask2Former based:
ISSA∗ [27] WACV 2023 67.5 33.2 55.9 53.2

CMFormer∗ [1] AAAI 2024 77.8 33.7 67.6 64.3
VFM based:
Rein† [51] CVPR 2024 79.48 55.92 72.45 70.57
Ours 80.06 57.29 74.80 73.69

↑0.58 ↑1.37 ↑2.35 ↑3.12
Table 7: Generalization of the proposed CMFormer to the
adverse condition domains (rain, fog, night and snow) on
ACDC dataset [45]. ’*’: Only reports one decimal results. ’†’:
Reports re-implementation result.

MAE [18], SAM [24], EVA02 [17] and DINOV2 [32] under full-
training, full-freezing and fine-tuning scheme, respectively. One
decimal result is reported and compared following prior references.
Besides, Rein [51], as the fine-tuning baseline, is also involved for
comparison. Table 6 reports the outcomes under the G → {C, B, M}
setting. Our SET shows a significant performance improvement
than Rein [51] and other methods with all listed VFMs.

4.4.2 On Adverse Conditions We further inspect the generalization
ability of the proposed SET to a variety of adverse conditions. Ad-
verse Conditions Dataset with Correspondences (ACDC) (ACDC)
[45] is the largest semantic segmentation dataset under adverse
conditions. Following prior works, fog, night, rain and snow are set
as four different unseen domains. CityScapes is used as the source



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous Authors

Unseen images ISW SAW Rein OursWildNet SPC

Figure 5: Visual segmentation results on unseen target domains under the C→ B, M, G, S setting. The proposed SET is compared
with ISW [12], SAW [36], WildNet [26], SPC [21] and Rein [51].

Unseen images ISW SAW Rein OursWildNet SPC

Figure 6: Visual segmentation results on unseen target domains under the C → ACDC setting. The proposed SET is compared
with ISW [12], SAW [36], WildNet [26], SPC [21] and Rein [51].

domain. Table 7 compares the performance between SET and ex-
isting methods. It significantly outperforms existing ResNet based
methods by at least 20% mIoU and Mask2Former based methods by
at least 10% mIoU on all the adverse domains. Notably, compared
with Rein [51] baseline, our SET shows improvements of 0.58%,
1.37%, 2.35% and 3.12% on mIoU in the fog, night, rain and snow
domain, respectively.

4.5 Quantitative Segmentation Results
Fig. 5 demonstrates some visual segmentation results on unseen
target domains under the C→ B, M, G, S setting. Fig. 6 illustrates
the visual segmentation results under the C→ ACDC setting. On
both settings, the segmentation results show that the proposed
SET shows better pixel-wise prediction than the compared DGSS
methods, especially in terms of the completeness of objects.

5 Conclusion
In this paper, we aim to fine-tune VFM for the down-stream task
DGSS. While the VFMs have inherent generalization to out-of-
distribution, how to exploit the style-invariant property of a VFM
remains to be the bottleneck. We propose a Spectral-Decomposed
Token (SET) learning scheme. As the content and style information
in a scene reflects more from the low- and high- frequency compo-
nents in the frequency space, we transform the frozen VFM features
into the phase and amplitude components respectively. Then, spec-
tral tokens are adapted to enhance the learning of task-specific
knowledge within each branch. As the cross-domain differences
mainly affects the amplitude branch, an attention optimization
method is further proposed to mitigate the impacts of style varia-
tion. Extensive experiments under multiple cross-domain settings
show the state-of-the-art performance of the proposed SET and its
flexibility on a variety of VFMs.
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