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Abstract

The vast majority of work in self-supervised learning have focused on assessing
recovered features by a chosen set of downstream tasks. While there are several
commonly used benchmark datasets, this lens of feature learning requires assump-
tions on the downstream tasks which are not inherent to the data distribution itself.
In this paper, we present an alternative lens, one of parameter identifiability: assum-
ing data comes from a parametric probabilistic model, we train a self-supervised
learning predictor with a suitable parametric form, and ask whether the parameters
of the optimal predictor can be used to extract the parameters of the ground truth
generative model.

Specifically, we focus on latent-variable models capturing sequential structures,
namely Hidden Markov Models with both discrete and conditionally Gaussian
observations. We focus on masked prediction as the self-supervised learning task
and study the optimal masked predictor. We show that parameter identifiability is
governed by the task difficulty, which is determined by the choice of data model
and the amount of tokens to predict. Technique-wise, we uncover close connections
with the uniqueness of fensor rank decompositions, a widely used tool in studying
identifiability through the lens of the method of moments.

1 Introduction

Self-supervised learning (SSL) is a relatively new approach to unsupervised learning, where the
learning algorithm learns to predict auxiliary labels generated automatically from the data without
human annotators. The hope is that with a properly designed prediction task, a successfully learned
predictor would capture some knowledge about the underlying data. While SSL has been enjoying a
rapid growth on the empirical front, theoretical understanding of why and when SSL works is still
nascent. In no small part, this is because formalizing the desired guarantees seems challenging. For
instance, the focus of SSL has largely been on learning good features, which in practice has been
quantified by downstream performance on various benchmark datasets [Wang et al.l 2018 [2019,
Deng et al.,[2009, |Zhai et al.,|2019, [Tamkin et al., [2021]]. To provide theoretical underpinning to this,
one needs to make extra assumptions on the relationship between the self-supervised prediction task
and the downstream tasks [[Arora et al., 2019} Saunshi et al., [2020, [HaoChen et al., 2021} [Lee et al.,
2021al Wang et al., 2021} Wei et al., 2021} 'Wen and Lil 2021]].

While associating SSL with downstream supervised tasks is a useful perspective and has led to several
very interesting theoretical results, we take a step back and revisit a more general goal of SSL, which
is to learn some informative functionals of the data distribution. Naturally, the key question here is
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what functionals should be considered informative. While downstream performance is a notable valid
choice, in this work, we choose an alternative criterion that is meaningful even without referencing
any downstream tasks.

The alternative lens we are interested in is whether the functionals of the data distribution extracted
by the SSL predictors can be simply stitched together to obtain the data distribution itself, given
additional side-information about the family from which the data distribution is drawn. While this
might seem like a tall order, masked prediction based SSL algorithms (which is essentially what
pseudo-likelihood corresponds to) have classically been used for learning parametric graphical models
such as Ising models [Ravikumar et al., 2010} Bresler, 2015} |Vuffray et al.,|2016]]. But can this be
done for broader classes of parametric models?

In this paper, we take a preliminary step towards this and ask the question of parameter identifiability:
assuming the data comes from a ground truth parametric probabilistic model, can common self-
supervised tasks uniquely identify the parameters of the ground truth model? More precisely, are the
parameters of the model uniquely determined by the optimal predictor for the SSL task (Definition|[T))?
An appeal of this identifiability perspective is that when a SSL task is sufficient for parameter
identifiability, the model parameters can then be recovered straightforwardly from the parameters
from the optimal SSL predictor. Parameter identification also has the desirable property of being
independent of any downstream task.

A priori, it is unclear whether we can achieve such model parameter identifiability via self-supervised
tasks, since it requires recovering the full (parametric) generative model which is arguably more
difficult than learning generic latent representations. This work provides a positive answer for broad
classes of HMMs: we show that the commonly-used masked prediction task |Pathak et al.l [2016|
Devlin et al., 2018, [He et al., 2021, [Lee et al., 2021al], wherein a model is trained to predict a
masked-out part of a sample given the rest of the sample, can identify the parameters of a HMM.
As noted earlier, while such masked prediction for parameter learning has been applied in classical
settings such as Ising models [Ravikumar et al., 2010} Bresler| [2015} [Vuffray et al.,|2016], the HMM
setup in this work is more challenging due to the presence of latent variables. HMMs are also more
suitable for modeling practical sequential data, and have been commonly adopted in theoretical
analyses as a clean proxy for languages [Wei et al., [2021] |Xie et al., [2021]].

Concretely, the two HMM models we consider in this work are 1) the classic HMM with discrete latent
and discrete observables, and 2) a HMM variant with discrete latents and continuous observables that
are conditionally Gaussian given the latent, which we abbreviate as G-HMMs. We show that:

» Parameter identifiability is governed by the difficulty of the masked prediction task. The task
difficulty is related to the amount of information provided by the combination of the model and the
prediction task—where the difficulty can be increased by using a more complicated model, or by
predicting more tokens. For instance, predicting the conditional mean of one token given another
does not yield identifiability for a discrete HMM (Theorem 2)), but does so when data comes from
a G-HMM (Theorem [3). Moreover, the identifiability in the latter case quite strongly leverages
structural properties of the posterior of the latent variables (Section [3.1)).

* Tools for characterizing the uniqueness of tensor decompositions (e.g., Kruskal’s Theorem [Kruskall
1977, [Allman et al., [2009]) can be leveraged to prove identifiability: For both HMM (Theorem [3))
and G-HMM (Theorem@), if we have predictors of the tensor product of tokens (e.g., E[zo®xz3|z1]),
we can use the predictor output to construct a 3-tensor whose rank-1 components are uniquely
determined and reveal the parameters of the model.

The rest of the paper is structured as follows. Section[2|provides relevant definitions, preliminaries and
assumptions. Section [3|states the main results of this work. Main proofs, including the identifiability
proof via tensor decomposition, are provided in Section {4} with the rest deferred to the appendix.
We then discuss related works in Section[5] Finally, we emphasize that this work is a first-cut study
on this lens of parameter recovery for analyzing SSL tasks based on masked prediction, and our
encouraging results suggest interesting open directions in this thread of analyzing self-supervised
learning via parameter recovery, which are discussed briefly in the conclusion.
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2 Setup

This work focuses on two classes of latent-variable sequence models. The first are fully discrete
hidden Markov models (HMMs), and the second are HMMs whose observables marginally follow
a mixtures of Gaussians with identity covariance. We denote the observations and hidden states
respectively by {x;}¢>1 and {h;};>1 for both classes. The hidden states hy — hs — --- form
a Markov chain, and conditional on h;, the observable z; is independent of all other variables.
Throughout, we refer to {z, };>1 as tokens, following the nomenclature from language models.

2.1 Models

Discrete Hidden Markov Model We first describe the parameterization of the standard HMMs
with discrete latents and observations. Let X := {1, ...,d} = [d] denote the observation space, and
let H := [k] be the state spaceﬂ The parameters of interest are the transition matrix T € R¥** and
the emission matrix O € R*** defined in the standard way as

P(hyp1 =1 | hy =3) =Ty, P(xy =1i| hy = j) = Oy.

Conditionally-Gaussian HMM (G-HMM) We next describe the parameterization of
conditionally-Gaussian HMMs (G-HMMs). The state space H := [k] is the same as in the pre-
vious case, while the observation space is now continuous with X’ := R?. The parameters of interest
are T' € R**¥_ the transition matrix, and {1;};e(x) C R?, the means of the k identity-covariance
Gaussians. Precisely,

P(hsr =i hi=3) =Ty, Plog=a|hy=i) = (2m) "% exp (= [lo — uil|*/2).

We use M := [u1, . . ., ] € R¥¥ to denote the matrix whose columns are the Gaussian means.

2.2 Masked prediction tasks

We are interested in the (regression) task of predicting one or more “masked out” tokens as a function
of another observed token, with the goal of minimizing expected squared loss under a distribution
given by an HMM or G-HMM (equation [I). In the case of the discrete HMMs, we will specifically
be predicting the one-hot encoding vectors of the observations. Thus, both for HMM and G-HMM,
predicting a single token will correspond to predicting a vector. For notational convenience, we
will simply associate the discrete states or observations via their one-hot vectors {e1, ez, ... } in the
appropriate space and interchangeably write h = 7 or i = ¢;, and similarly for x. For the task of
predicting the tensor product of (one-hot encoding vectors of) tokens ® <7 x, from another token
x¢ (where T is some index set and ¢ ¢ T), the optimal predictor with respect to the squared loss
calculates the conditional expectation:

f(zy) = arg IH}HE{%}TET”VGC((@TGT Tr) — Vec(f(ft))”% =E[®re7 2, | 24] € (Rd)@ﬂv (D

where “vec” returns the vectorized form of a tensor.

We use the shorthand “® 7, |z,” to refer to this prediction task. For instance, consider the case of
predicting x5 given x1 under the HMM with parameters (O, T'). The optimal predictor, denoted by

f2I1, can be written in terms of (O, T') as]

N (2) =Elzy | 2 = 2] = Z Elzy | ho =i|P(ho =i | z1 = )
i€[k]

=> Y Elwp | hy=i|P(hg =i |hy=j) Py =j|z) =) ZOTMZZG

i€[k] je (k] —[6(x)], i€lk] jelk
=[o()];

'Our results will assume d > k; see Section
*The computation here relies on Assumption 1] given in Section



Here ¢ : R? — RF denotes the posterior distribution of a hidden state h; given the corresponding
observation xy, i.e., ¢(x) = Elh; | xf]E]

Our goal is to study the parameter identifiability from the prediction tasks, when the predictors have
the correct parametric form. Formally, we define identifiability from a prediction task as follows:
Definition 1 (Identifiability from a prediction task, HMM). A prediction task suffices for identifiability
if, for any two HMMSs with parameters (O, T) and (O, T), equality of their optimal predictors for
this task implies that there is a permutation matrix 11 such that O = Olland T =TT TTI.

In other words, the mapping from (the natural equivalence classes of) HMM distributions to optimal
predictors for a task is injective, up to a permutation of the hidden state labels. By identifiability
from a collection of prediction tasks, we refer to the injectiveness of the mapping from HMM
distributions to the collections of optimal predictors for the tasks. Identifiability for G-HMMs is

defined analogously with O, O changed to M, M.
2.3 Assumptions

We now state the assumptions used in our results. The first assumption is that the transition matrices
of the HMMs are doubly stochastic.

Assumption 1 (Doubly stochastic transitions). The transition matrix T is doubly stochastic, and the
marginal distribution of the initial hidden state h is stationary with respect to T

This assumption guarantees that the stationary distribution of the latent distribution is uniform for any
t, and the transition matrix for the reversed chain is simply 7" . Moreover, this assumption reduces
the parameter space and hence will make the non-identifiability results stronger.

We require the following conditions on the parameters for the discrete HMM:

Assumption 2 (Non-redundancy, discrete HMM). Every row of O is non-zero.

Assumption [2] can be interpreted as requiring each token to have a non-zero probability of being
observed, which is a mild assumption. We also require the following non-degeneracy condition:

Assumption 3 (Non-degeneracy, discrete HMM). rank(T') = rank(O) = k < d.

Note that Assumption [3| only requires the parameters to be non-degenerate, rather than have singular
values bounded away from 0. The reason is that this work will focus on population level quantities
and make no claims on finite sample behaviors or robustness.

For G-HMM, we similarly require the parameters to be non-degenerate:
Assumption 4 (Non-degeneracy, G-HMM). rank(T) = rank(M) = k < d.

Moreover, we assume that the norms of the means are known and equal:
Assumption 5 (Equal norms of the means). For each i € [k], p; is a unit vector.E]

Assumptions are fairly standard [see, e.g.,|/Anandkumar et al.,|2012]; in particular, Assumption
M) are required to enable efficient learning, since learning degenerate HMMs can be computationally
hard [Mossel and Roch, [2005]. Assumption [5] may be an artifact of our proofs, and it would be
interesting to relax in future work.

Our notion of identifiability from a prediction task (or a collection of prediction tasks) will restrict
attention to HMM s satisfying Assumptions|[T} 2] 3] and G-HMMs satisfying Assumptions [T} ] 5]

2.4 Uniqueness of tensor rank decompositions

Some of our identifiability results rely on the uniqueness of tensor rank-1 decompositions [Hitchcock|
1927]]. An order-t tensor (or t-tensor) is an t-way multidimensional array; a matrix is a 2-tensor.
The tensor rank of a tensor W is the minimum number R such that W can be written as a sum of R

2
Nlwe—pilla
2

3For discrete HMMs, ¢(z¢) = %. For GHMMs, [¢(z¢)]i = ——— ( -
1O T @¢[l1 i eXP (7”‘7%—#3'“2)
JE 2
does not need to be indexed by ¢ due to the stationarity assumption in Section
4Assurnptioncan be changed to |||z = cforall ¢ € [k], for any other fixed number ¢ > 0.

Vi € [K]. ¢



rank-1 tensors. That is, if a t-tensor W has rank-R, it means that W = Zie[ Rl ®Rjelt Ui(j ) for some

matrices U € R *E where Ui(j ) denotes the i column of matrix U().

In this work, we only need to work with 3-tensors of the form W = Zie[ R] A; ® B; ® C; for some

matrices A € R *E B e R2xE (' ¢ R7s*E 45 3-tensors will suffice for identifiability in all of
our settings of interestE] A classic work by Kruskal|[1977]] gives a sufficient condition under which
A, B, C can be recovered up to column-wise permutation and scaling. The condition is stated in
terms of the Kruskal rank, which is the maximum number r such that every r columns of the matrix
are linearly independent. Let k4 denote the Kruskal rank of matrix A, then:

Proposition 1 (Kruskal’s theorem, [Kruskal| [1977])). The components A, B, C of a 3-tensor W :=
> i€[R) A; ® B; ® C; are identifiable up to a shared column-wise permutation and column-wise
scaling if ka + kp + ko > 2R + 2.

We note that this work focuses on identifiability results rather than providing an algorithm or sample
complexity bounds, though the proofs can be adapted into algorithms [see, e.g.,[Harshman), [1970]
under slightly more restrictive conditions (which will be satisfied by all of our identifiability results).

3 Identifiability from masked prediction tasks

We now present the main (non-)identifiability results, and show that the combination of the data
generative models and the prediction task directly impacts the sufficiency of identifiability.

3.1 Pairwise prediction

We begin with the simplest prediction task: namely predicting one token from another. We refer to
such tasks as pairwise prediction tasks. For HMMs, this task fails to provide parameter identifiability:

Theorem 2 (Nonidentifiability of HMM from predicting x¢|z1). Foranyt € Z,t > 2, there exists a
pair of HMM distributions with parameters (O, T) and (O, T), each satisfying Assumptions @and
such that the optimal predictors for the task x|x1 are the same under each distribution, but there
is no permutation matrix I1 € R¥*F such that O = Ol and T = I1"T1I are both satisfied.

Theorem 2| follows from the fact that the optimal predictor has the form of a product of (stochastic)
matrices, and generally, one cannot uniquely recover matrices from their product sans additional
conditions [[Donoho and Elad, 2003, |Candes et al., 2006, [Spielman et al.,|2012, |Arora et al., 2014,
Georgiev et al.l 2005, |/Aharon et al., 2006} |(Cohen and Gillis} 2019]]. Specifically, by equation m the
optimal predictor is f (1) = E[z¢|z1] = OT' " 1¢(z1) (where ¢(z1) := E[hq|z¢] is the posterior).
When ¢ = 2, we can find a non-permutation matrix R such that O = OR, T = R'TR give the same
predictor as O, T For t > 2, even if 0= O, we show that the matrix power T’ t=1 ig not identifiable:

Claim 1 (Nonidentifiability of matrix powers). For anyt € Z,t > 2, there exist stochastic matrices
T, T satisfying Assumption such that T # T and Tt = T*.

On the other hand, pairwise prediction actually does suffice for identifiability for G-HMM:

Theorem 3 (Identifiability of G-HMM from predicting x2|x1). Under Assumption and |5} if the
optimal predictors for the task xs|x1 under the G-HMM distributions with parameters (M, T) and

(M, T) are the same, then (M, T) = (M, T) up to a permutation of the hidden state labels.

Comparing Theorem 2] and [3|shows that the specific parametric form of the generative model matters.
Note that HMM and G-HMM have a similar form when conditioning on the latent variable; that is,
with ¢t = 2, the predictor conditioned on the hidden variable hs is P(z2|he = i) = OT; for HMM,
and P(xolhy = i) = MT; for G-HMM. The salient difference between these two setups lies in the
posterior function: while the posterior function for HMM is linear in the observable, the posterior
function for G-HMM is more complicated and “reveals” more information about the parameter.

5To apply our results on higher order tensors, one can consider an order-3 slice of the higher order tensor.



To formalize the above intuition, first recall that the GHMM posterior has entries [¢(x¢)]; =

exp (_ Hwt—;m%)
wr—ps |2
5 e px XD (_ [ 2;]n2> ) )
function nearly suffices to identify M: if M, M parameterize two posterior functions ¢, ¢ where
¢ = ¢, then up to a permutation, M must be equal to either M or a unique (and somewhat special)
transformation of M. The next step is to further exclude the (special) transformation, which is
achieved using the constraint that 7", T" are stochastic matrices. The first step of the proof sketch is
captured by following lemma:

Lemma 1. Ford > k > 2, under Assumption & = ¢ implies M = M or M = HM, where H

is a Householder transformation of the form H := I; — 200" € R¥?, with © := \/%
To provide some geometric intuition about how H acts on M, note that ¢ is a unit vector in the
column space of M and perpendicular to the affine hull of A := {y; : i € [k]}, which means T u; is
the same for all i € [k]. As aresult, M = [fiy, ..., fix] = [Hp1, ..., Hpg) = M — 267 1) [0, ..., 0]
is a translation of M along the direction of ©, such that the translated points {/i; };c[x) lie on the
opposite side of the origin. It is non-trivial to argue that H M is the only solution (other than M
itself) that preserves ¢, and we defer the proof to Appendix It is, however, easy to see that
H M indeed results in a matching posterior, whose sufficient conditions are 1) M is a translation of
M, and 2) ||ji;||> — ||| is the same for all i € [k]. M := HM indeed satisfies both conditions.

, Vi € [k]. We will show that for G-HMM, even matching the posterior

Proof sketch for TheoremE} We first show that if M, T and M, T produce the same predictor, then
their posterior function must be equal up to a permutation (Lemma[2). We can then apply Lemma
[T] to recover M up to a permutation and a Householder transformation H. Then, we show that if
M = HM, then the corresponding T must have negative entries and thus would not be a valid
stochastic matrix. Hence it must be that M, M are equal up to permutation.

Finally, by way of remarks, another way to think of the difference between the two setups is that
for HMM, P(z2|z1) is a mixture of categorical distributions, which itself is also a categorical
distribution. This also implies that the nonidentifiability from pairwise prediction in the HMM case
cannot be resolved by changing the squared loss to another proper loss function. On the other hand,
for G-HMM, the conditional distribution P(x5|21) is a mixture of Gaussians, which is well known
to be identifiable. In fact, if we were given access to the entire conditional distribution P(z3|x1)
(instead of just the conditional mean), it is even easier to prove identifiability for G-HMM. Though
this is already implied from identifiability from the conditional means, we provided a (much simpler)
proof in Appendix [A.3]assuming access to the full conditional distribution.

3.2 Beyond pairwise prediction

The conclusion from Theorem [2]is that a single pairwise prediction task does not suffice for identifia-
bility on HMMs. The next question is then: can we modify the task to obtain identifiability? A natural
idea is to force the model to “predict more”, and one straightforward way to do so is to combine
multiple pairwise prediction tasks. It turns out that this does not resolve the nonidentifiability issue,
as we can show that the parameters are not identifiable even when considering all possible pairwise
tasks involved 3 (adjacent) tokens:

Theorem 4 (Nonidentifiability of HMM from all pairwise predictions on 3 tokens). There exists a
pair of HMM distributions with parameters (O, T) and (O,T), each satisfying Assumptions
and and also O # O, such that, for each of the tasks xo|x1, x1|T2, T3|x1, and x1|xs, the optimal
predictors are the same under each distribution,

We briefly remark that the reason for only considering adjacent time steps is that when the tokens
are at least two time steps apart, matching predictors only matches powers of the transition matrices,
which in general does not ensure the transition matrices themselves are matched as shown in Claim [T}

®These 4 pairwise tasks cover all possible pairwise tasks on 3 adjacent tokens. In particular, there is no need
to consider x2|x3 or x3|x2, since they are the same as z1|x2 and x2|x1.



For the intuition of the nonidentifiability result in Theorem @] recall that the limitation of pairwise
predictions on HMMs comes from non-uniqueness of matrix factorization. While adding additional
pairwise prediction tasks introduces more equations on the product of matrices, these equations are
highly dependent, and the proof works by providing counterexamples that can simultaneously satisfy
all these equations.

The above intuition leads to another way of forcing the model to “predict more”, that is, to increase
the number of predicted tokens. The hope is that doing so results in equations on tensor
to matrices— for which there is a lot of classical machinery delineating tensors for which the rank-1
decomposition is unique, as discussed in Section[2.4] This intuition proves to be true and we show
that increasing the number from 1 to 2 already suffices for identifiability:

Theorem 5 (Identifiability from masked prediction on three tokens, HMM). Let (t1,t2,t3) be any
permutation of (1,2, 3), and consider the prediction task xi, ® x,|xt,. Under Assumption

if the optimal predictors under the HMM distributions with parameters (O, T) and (O, T) are the
same, then (O, T) = (O, T) up to a permutation of the hidden state labels.

Compared to prior results on identifiability from third order moments [Allman et al., 2009, |Anand-
kumar et al.| 2012} 2014], the difficulty in our setup is that we only have access to the conditional
2-tensors (i.e. matrices) given by the predictors. The proof idea is to construct a third-order tensor by
linearly combining the conditional 2-tensors for each possible value of the token being conditioned
on, such that Kruskal’s theorem applies and gives identifiability. Note, importantly, that the weights
for the linear combination cannot depend on the marginal probabilities of the token being conditioned
on, since we do not have access to these marginals, and it is unclear whether we could extract unique
marginals given the conditional probabilities we are predicting. Thus, the above theorem cannot be
simply derived from results showing parameter identifiability from the 3rd order moments.

It can be show that this tensor decomposition argument can also be applied to G-HMM, with the help
of Lemmal|I] We leave the details to Theorem|[6]in Appendix

4 Proofs

We now discuss proofs for some of the main results. Section[d.T|proves the identifiability of HMM
parameters from the task of predicting two tokens (Theorem[5) using ideas from tensor decomposition,
and Section .2 shows the identifiability proof of pairwise prediction on G-HMM. The rest of the
proofs are deferred to the appendix.

4.1 Proof of Theorem |S; identifiability of predicting two tokens for HMM

There are three cases for the two-token prediction task, i.e. 1) 2 ® z3|x1, 2) 1 ® x3|x2, and 3)
21 ® xo|x3. We will prove for the first two cases, as the third case is proved the same way as the
first case by symmetry. In all cases, the idea is to use the predictor to construct a 3-tensor whose
components are each of rank-k, so that applying Kruskal’s theorem gives identifiability.

Case 1, 75 ® z3|z1: O, T and O, T producing the same predictor means f2®31'(z) := E[zs ®

z3|z1] = E[ze ® z3]x1] := f2®3/1(2,), where E, E are parameterized by the corresponding parame-
ters. Let X := {e; : i € [d]}, and consider the following 3-tensor:

W = Z r1 ® E[.’EQ X x3|x1] = Z r1 ® Ehg\zl [E[l‘g ® l‘3|$1“h2]

r1EX r1EX
—Z Z h2—1|fL’1 T ®E[$2|h2—l]®E[$3‘h2—Z]
iclk] z1€X 2)
:Z<Z(T¢>(m1 )Ty )@0 ® (OT);,
i€lk] x1€X

=aj



where O; denotes the i column of O, and similarly for (OT);. Note that W can also be written as
r1EX i€lk] x1€X

We want to apply Kruskal’s theorem for identifiability. In particular, we will show that each component
in equation 2] forms a matrix of Kruskal rank k. The second and third components clearly satisfy this

o7
condition by Assumptlon For the first component, recall that ¢(x) = \|0Tz|\ and write a; as

. 1
Z ( P(e (d)))T ®. ('d) = diag ([M]je[d]> OTT@Ek). 4)

J€ld]

Putting a; into a matrix form, we get A := [aq, ..., ax] = dlag([l/H( () )TO|| liera))OT ", ﬂWthh
is of rank k£ by Assumption[3] Hence components W are all of Kruskal rank k, and columns of OT', O
are identified up to column-wise permutation and scaling by Kruskal’s theorem. The indeterminacy

in scaling is further removed noting that columns of O, T" need to sum up to 1. Lastly, 7" is recovered
as T = OTOT.

Case 2, 1 ® x3|zo:  The optimal predictor for the task of predicting 1, x5 given x4 takes the form
E[z) @ z3]xs) = (OT )diag(¢p(x2))(OT) . (5)

Similarly as the previous case, we would like to construct a 3-tensor whose components can be
uniquely determined by Kruskal’s theorem. Let X" be the same as before, and consider the 3-tensor

W= Y 2 ®@E[r1 @aslra] = Y 79 ® By, (Bl [ho] @ El3]ha))

T2EX ToE€X

= Z Z )" E )2 ®E[x1|he] ® E[zs|he] = Z a; ® (0T"); ® (OT);, (©)

i€[k] x2€X i€ [k]

=ag

where the first component can be simplified to

= ((d))TO ) el — Lo B p=1,()
0= Y — L o = (diag (0] 1]sea)) Ol = D0 @)
j€ld] H( hTol,

The matrix A := [a1, ..., a;] = D~1Ois of rank k, hence we can identify (up to permutation) columns
of each component of W by Kruskal’s theorem. This means if O, T and O, T produce the same
predictor, then we have OT = OT, OT T = OT", and that O, O are matched up to a scaling of rows
(i.e. D). Next, to determine D, note that ', T are doubly stochastic by Assumptlon which means
the all-one vector 1 € R¥ satisfies 71 = 71 = 1. Hence OT1 = OT1 = O1 = 10 1h]jera)- We
can then compute D as D = diag(OT1), and recover O as O = DA. Finally, T is also recovered
sinceOT =0T =0T =TT ' =1, =T="T.

4.2 Proof of Theorem [3} identifiability of predicting x given =, for G-HMM

For G-HMM, the predictor for x5 given x; is parameterized as f2I*(z;) = E[za|z1] = MT¢(x1).
If M, T and M, T produce the same predictor, then

@) = MT¢(x) = MTé(z) = f2M(z), Vo e RY ®)
Let R := (MT)1(MT) € R¥*¥_then ¢(z) = Rp(z). The following lemma (proof deferred to
Appendlx i says that ¢, ¢ must then be equal up to a permutation of coordinates:

Lemma 2. If there exists a non-singular matrix R € R¥*¥ such that ¢(x) = Ro(z), V& € RY, then
R must be a permutation matrix.

"We use [ai]ie[d] to denote a d-dimensional vector whose ™ entry is .



Combined with Lemma we have M is equal to (up to a permutation) either M or H M, where H
is the Householder reflection given in Lemmal[I]

The remaining step is to show that H M can be ruled out by requiring T to be a stochastic matrix.
Note that matching both the predictor and the posterior function means we also have MT = MT,

or T = (MTM)T. Recall that H := I; — 2657 for o = ——" L When M = HM, the
V1T MT(MD)T1

column sum of MM is
1VTMIM=1"MH*M =1"M"(I — 200" )M =17 (I — 2M*'50 " M)
4T 9.qT MiMhHTIITMIM o 1TMI(MT)T
1TMT(MH)T1 1TMT(MH)T1

9)
1"T=1"-2.1T=-1T. (

This means the column sum of T'is 177 = 1T(MTM)T = —1T77T = —17, which violates the
constraint that 7" should be a stochastic matrix with positive entries and column sum 1. Hence it must
be that M = M and hence also 7' = T (up to permutation), proving the theorem statement.

5 Related works

Self-supervised learning On the empirical side, self-supervised methods have gained a great
amount of popularity across many domains, including language understanding [Mikolov et al.|[2013]
Vaswani et al., 2017} |Devlin et al.| 2018]], visual understanding [[Doersch et al., 2015} Pathak et al.,
2016, and distribution learning [|[Gutmann and Hyvérinen, |2010, Gao et al.}2020]. Classic ideas such
as contrastive learning [[Hadsell et al., 2006, (Gutmann and Hyvérinen, 2010, |Dosovitskiy et al.l 2014]]
and masked prediction [Mikolov et al.,2013|] remain powerful in their modern realizations [Hénaff
et al., 2019, /Chen et al., | 2020bl |Devlin et al., 2018}, |Radford et al., 2019, |Chen et al., 2020a, |He et al.,
2021]], pushing the state of the art performance and even surpassing supervised pretraining in various
aspects [Lee et al., 2021b, [Liu et al.| 2021].

On the theoretical front, there have been analyses on both masked predictions [Lee et al., [2021a),
Zhang and Hashimoto| 2021]] and contrastive methods [Arora et al., 2019, [Tosh et al., [2020alb),
Wang and [solal 2020, |[HaoChen et al., {2021}, [Wen and Li, |[2021]], with a focus on characterizing the
quality of the learned features for downstream tasks [Saunshi et al., 2020, [Wei et al., |2021]]. These
approaches usually rely on quite strong assumptions to tie the self-supervised learning objective to
the downstream tasks of interest. In contrast, our work takes the view of parameter identifiability,
for which there is no need for downstream assumptions but instead the specific parametric form is
key. Note also that while the parameter recovery lens is a new contribution of our work, [Wen and
L1 [2021] argue (as a side-product of their analysis) that some aspects of a generative model are
recovered in their setup. Their data model, however, is substantially different from ours and has very
different identifiability properties (owing to its basis in sparse coding).

Latent variable models and tensor methods Latent variable models have been widely studied in
the literature. One important area of research is independent component analysis (ICA), where the
data is assumed to be given as a transformation (mixing) of unknown independent sources which
ICA aims to identify. In nonlinear ICA data models, both the sources and the mixing function are
generally not identifiable. However, identifiability of the sources can be shown under some additional
assumptions (e.g. on the dependency structure of different time steps) [Hyvarinen and Morioka, 2016
2017, |Halva and Hyvarinen, |2020]. Similar ideas have also been applied in the self-supervised setting,
where the latent variables can be identified under suitable assumptions on the conditional distribution
of the latent [Zimmermann et al.l|2021]] or on data augmentations [[Von Kiigelgen et al.,2021]]. Unlike
our setup though, the mixing function in these models is deterministic and not the object of recovery.

More related to this work is the line of work on learning latent variable models with tensor methods.
Specific to learning HMMs, Mossel and Roch| [2005]] and /Anandkumar et al.| [2012] 2014] provide
algorithms based on third-order moments. A major difference between these prior works on tensor
methods and ours is that previous results operate on joint moments, while the results in this work are
based on conditional moments given by the optimal predictors for the masked tokens.



6 Conclusion

In this work, we take a model parameter identifiability view of self-supervised learning, which offers
a complementary perspective to the current focus of feature learning for downstream performance.
By analyzing the masked prediction task in the setup of HMMs and its conditionally-Gaussian variant
G-HMM, we showed that parameter recovery is determined by the task difficulty, which can be tuned
by both changing the parametric form of the data generative model, and by changing the masked
prediction task.

We emphasize that this is a first-cut effort in the research program of analyzing SSL through the lens
of model identifiability; we aim to build on this foundation to extend our analyses from HMMs to
more complicated latent sequence and latent variable models. We also note that we have focused
here on population analyses, and model identifiability. It would be of interest to build off this to
develop and analyze the corresponding finite-sample learning algorithms for parametric generative
models given SSL tasks, with sample complexity results, both in the realizable case, as well as in
the agnostic case where we have model mis-specification. Given the use of conditional MLEs and
regressions in SSL, and the natural robustness of these to model mis-specifications, we conjecture
that these approaches will be much more robust when compared to say spectral methods.

Overall, we hope this work on an alternative lens to analyze SSL inspires further research.
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A Missing proofs for G-HMM

This section provides missing proofs for results on G-HMM. We will first prove the two lemmas on
properties of the posterior function (Lemma ] 2)), then show the proof for the three-token prediction
task (Theorem [6) using a tensor decomposition idea similar to that of Theorem[5] At the end, we
show the identifiability from pairwise conditional distributions (as opposed to conditional expectation
as in masked prediction tasks), which is proved by reducing parameter recovery to the identifiability
of Gaussian mixtures (Theorem [7).

A.1 Proofs of helper lemmas

A.1.1 Proof for Lemma

Given the form of the predictor, matching two predictors f, f means that the corresponding posteriors
®, ¢ are matched up to a linear transformation. We will now prove the following lemma, which says
that in this case, ¢, ¢ can in fact only differ by a permutation of coordinates:

Lemma (Lemma [2| restated). If there exists a non-singular matrix R € R¥** such that ¢(x) =
Ro(x), YV € R, then R must be a permutation matrix.

Proof. We will prove the lemma by matching the Jacobian w.r.t. = on both sides. Let’s first quickly

T
recall the Jacobian of the posterior vector ¢(x) € R¥, where [¢(2)]; = ——2 ( A M), = Denote
Yjem xp(——="—)
2
o(x) = - M,..., M} € R, then V,¢(x) = Vo (,)softmax(o(z)) - Vyo(x), where

V,[softmax(0)]; = [softmax(0)]; - (e; — softmax (o)) = [¢p(x)]; - (e; — ¢(x)),
v softmax(o) = diag(d(z)) — d(2)g(x) ", (10)
20(x) = =[x — pa, oy — i)
Hence the Jacobian is
vw¢($) = (diag(¢($)) - ¢<x)¢($>—r) : (M - [,’L‘7:L‘, ""xDT' (11

Denote A := M — [z, z, ...,z € R¥F, and similarly A = M — [z, z, ..., z]. Matching V,¢(z) =
V.Rp(x) gives

diag(Ro(x))AT — Ro(x)(AR(z))" = Rdiag(¢(z))AT — Rp(z)(A¢(x))".  (12)

(@)

Let’s take z = a:g D= cp; for ¢ > 1. We claim that this .’ satisfies lim._, o (;S(xt(f)) — e;. This is

because Vj +# 1,

OND 2 e
Jim M ~ i exp (ll i =l llew — )
T
. ((2(} - 1)”1‘ — ,Uj) (Ui — uj) ) QC/J;F(Ni . /U'j)
= lim exp - 2 R

where the last equality is because 1, (u; — ;) > 0 for any p1;, pu; lying on the same hypersphere.
With such choices of z, the two sides of equation [I2]are now:
LHS = diag(R)AT RTAT (diag(R;) — RiR])AT
= RHS = Z eil; — Re;j(Ae;)" = Ri(A)T — Ri(A)T =0. (14)

Since = := cp; for ¢ — oo lies outside the affine hull of {fi;} e, A is of full rank due to the
following claim:
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Claim 2. Given a linearly independent set {u;};c(x), if {us — v}ic[p) is not linearly independent,
then v = Zie[k] Bi - u; where Zie[k] B; = 1.

Proof. Since {u; — v}ie[x) is linearly dependent, we can write some u; — v as the linear combination
of other {u; — v}ie[k],i#. Let’s take j = k wlog, and denote the coefficients of the linear combination
as {a}ie[k—1]- Then

up — v = Z ai(u; —v) = (1— Z o) =— Z Qg - u + ug (15)
i€lk—1] i1€[k—1] i€[k—1]

The right hand side is non-zero since {u;};c[) are linearly independent by assumption, hence
1 =% cp—1) @ # 0, and we get

—oy 1
v= Z 1_—l'ui+1—uk'

i€ ] Zie[kfl] @ - Zie[kq] @ (16)
—_——— —_———
=P =Pk
Note that } ;) 8; = 1, hence v is an affine combination of {u; : i € [kl}. O

Since A is full rank, it must be diag(R;) — R; R} = 0, which implies R is a permutation matrix. This
is because for any non-zero v s.t. diag(v) — vv " = 0, the entries of v satisfy v? = 1, v;v; = 0 for
i # j. Hence v has exactly one non-zero entry which is +1. Since R¢(z) = ¢(z) where ¢(x), ¢(z)
are both probability vectors with non-negative entries, this non-zero entry has to be 1 (and not -1).
Since R is of rank-k by Assumption[d] this non-zero entry is at different positions for different R;,
hence R is a permutation matrix.

O

A.1.2 Proof of Lemmalll

We show that if M, M parameterize ¢, (Z) respectively and that ¢ = ¢~5, then M must equal to either
M or a unique (and somewhat special) transformation of M:
Lemma (Lemmarestated). Ford > k > 2, then under Assumption b=0 implies M = M

or M = HM, where H is a Householder transformation of the form H := I; — 2007 € R4¥9, with
. (MHT1

e
V1ITMT(MT)T1

Proof. Let’s start with d = k. First, let’s check the conditions for ¢ = d~> For any = € R?, we have

o=l o=l
exp\— ——=5 — exp ( — =/ - ‘
pn= =2l ) o) ey, viem
2 jein] P (- 5=2-) 2 jelk) <P (- =)
R el
b uxfﬂ-uz) - 22t I\rjl'\l2)’w’j €K a7
exp (- F5)  exp (- )
= llz = pll® = llz — @ill® = llz — 51> = llz — 4512, ¥i,j € [K]

- - T - - .
= 2((f1 — ) = (g — 1)) @ = (legl® = 7511%) = (lpal® = [1723]1%), Vi, 5 € [K].
Since the left hand side is linear in z € R? and the ri~ght hand side is a constant, it must be that both
sides are 0. That is, the necessary conditions for ¢ = ¢ are that forany ¢, j € [k], 1) fi; —p; = [i; — 4,

and 2) ||| — || 2i||* = 1|41/ — || 725]|. It can be checked that these two conditions are also sufficient

for ¢ = ¢.

Denote v := f1; — fi;. The norms of the means are known and equal by Assumption[5] which gives
lall® = llaall* = lall® = i = oll* = (25 — v) "o =0, ¥i € [K]. (18)
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The last equality in equation 18| holds for a non-zero v when the span of {2u; — v : i € [k]} is
(d — 1)-dimensional subspace. On the other hand, the span of {2u; — v : ¢ € [k]} is at least (k — 1)
by Assumptiond} When d = k;, it must be that the dimension is exactly (d — 1), which means v is an
affine combination of {2y; : i € [k]} by Claim[2]

Moreover, v has to be orthogonal to {2u; — v : ¢ € [k]}, which leads to the unique choice of v
that is the projection of the origin onto the (d — 1)-dimensional subspace specified by the affine
combinations of {2y, : i € [k]}.

Claim 3. v is the projection of the origin to the hyperplane defined by {2y, : i € [k]}, and is the
only solution to equation[I8]

Proof. Tt is clear that this choice of v satisfies (2i; — v) "v = 0, Vi € [k]. To see that this is the
unique choice, suppose there exists some v’ lying in the hyperplane of {2y}, and denote 6 := v" — v.

Note that § "v = 0: let the hyperplane specified by {24; };¢[x) be specified as {z : (u, z) = c} for
u
Tull®
is proportional to the normal vector w. For any v’ in the hyperplane, it satisfy (u,v") = ¢, and

2

some u € R? and ¢ € R. Then v, the projection of the origin, can be written as v = m . ie. v

6T'U :(UI — U)T’U — <LL7U’> _ ‘ LL
[l [l [aaf] fJeell
(19)
¢ (1, o) — Nl B c? _o
Jul> all flull® full® (>
Then for any v’ satisfying equation
(24— )"V = Cui — v —8)T (v +0)
=(2ui —v) v +2u 5 — UZ(S — 5?} "6 =(2u; —6)T6 =0, Vi € [K]. (20)
0
Since {2p; — 0}ie[r) spans the (k — 1)-dimensional hyperplane and that ¢ lies in the hyperplane, it
must be that § = 0, i.e. v’ = v. O
Note that this choice of v also satisfies ||z; — v|| = ||:||, since v and the origin are reflections w.r.t.

the hyperplane that is the affine hull of {y; : i € [k]}. In other words, {; — v};cpy is related to

{Mz‘}ie[k] via the Householder transformation of the form H := I; — 2%, ie. p; —v = Hpy,.

. . A . A =T . .
Denote ¥ := —Y—. An explicit formula for ¢ is ¢ := ——2L_—L1___ This finishes the proof for
P = P
VITM—TM-T1

llvll2
d=k.

For d > k, the above argument still applies and H remains the only indeterminacy (up to permutation),

(MHT1
ITMT(MT)T1'
dimension d is larger, {y; — v : i € [k]} has to have the same span as {y; : ¢ € [k]}, since having the
same predictor requires the column space of M, M to match. Hence we only need to consider v in
the k-dimensional column space of M, which reduces to the case of d = k.

where H := I; — 200" for v := The reason is that even though the ambient

O

A.2 Identifiability of predicting z;, ® .|+, , G-HMM

Theorem [5|shows that triplet prediction tasks (i.e. predict 2 tokens given 1) suffices for the identifia-
bility of HMM, using tools from the uniqueness of tensor decomposition. The next theorem shows
that the same conclusion also applies for G-HMM:

Theorem 6 (Identifiability from masked prediction on three tokens, G-HMM). Let (t1, to, t3) be any
permutation of (1,2, 3), and consider the prediction task xy, ® x4, |x,. Under Assumption Bl if
the optimal predictors under the G-HMM distributions with parameters (M, T) and (M, T) are the
same, then (M, T) = (M, T) up to a permutation of the hidden state labels.
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Proof. Similar to the discrete case, we will prove zo ® 23|21 and 1 ® x3|x2 separately; the proof
for 1 ® wo|x3 is analogous to xo ® x3|x1 by symmetry and hence omitted. The proofs also follow a
similar strategy as in the proof for Theorem [5] that is, to construct a 3-tensor using the predictor, on
which applying Kruskal’s theorem provides identifiability.

Case 1, 2o ® z3]71: Let X := {2(¥) € R?: i € [k]} be a linearly independent set, and consider
the following 3-tensor:

W .= Z T X E[,TQ [ {L‘3|$1 Z 1 ® Ehg\zl [1‘2 X .%'3|.Z‘1Hh2]

zr;,€X r1€X
= Z 1 ®ZP ha|z1)E[za|hs] ® E[zs|hs]
r1eX
= Z Z hg = ’L|1‘1 T ®E[I2|h2 = Z} X ]E[I3|h2 = ’L] (21)
i€lk] z1€X
= Z (Z To(z1)) Z(-k)ld) ® M; @ (MT);.
i€lk] =1

The matrices formed by second and third components are both of rank-%k by Assumption 4] Hence in

order to apply Kruskal’s theorem on W, it suffices to show that there exists a choice of X’ such that
the matrix A := [ay, ..., az] is of rank k. One such choice is to let z(*) = y;, which gives

=" b(a1 = ) TT e i = Mo(n), ooy ()] T e,
jelk] (22)

A=lay,...,ar] = M[p(u1), ..., d(ur)] " T

Since M, T are both of rank k by Assumption 4] we only need to argue that the matrix @ :
[6(p11), -, d(pr)] € REXF is of full rank. Recall that for a mixture of k& Gaussians with 1dent1fy
covariance and mean {;; € R? : i € [k]}, the posterior function ¢ is defined entrywise as

llz—pesll3
b= —2 =) e, 23)
Zje[k] exp ( llz u;l\z)

To show @ is of full rank, we can equivalently show that a columnwise scaled version of ® is full
llei— i II? )i

kak

rank. In particular, let’s look at the matrix b e , Where (i)ij = exp(— that is, each

column of ® can be considered as a scaled version of the column in ® without the normalization for
a unit /1 norm. It can be seen that ® is a Gaussian kernel matrix which is known to be full rank.

Therefore we have shown that each component of the tensor W := Zie[ a; ® M; @ (MT); has

Kruskal rank %, which allows to recover columns of M, MT up to permutatlon and scaling by
Kruskal’s theorem. The indeterminacy in scaling is further removed since the norms of { M; };¢[q) are
known by Assumption 5}

On the other hand, for any M, T that form the same predictor as M, T, W can also be written as

W = Z 21 @ Elze ® x3|21] = Z 1 ®I§I[:c2 ® x3|T1]
r1EX r1EX

=Y (@) elMan) @ ity (WIT.

i€[k]  ®1

(24)

Hence columns of M, M and MT, MT are both matched up to a shared permutation, which proves
identifiability.

Case 2, E[x; ® z3|z2]: For the task of predicting 1, 23 given xo, the predictor takes the form

E[z1 @ 23]xs] = (OT " )diag(p(x2))(OT) . (25)
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Let X' := {p; : i € [k]} as in the previous case, and consider the 3-tensor

W= Y 2 @E[m) @asza] = Y 72 ® Epyjo, (Bl |ho] ® Elas|ha))

2oEX ToEX
—Z Z (ho|z2)xe ® El[z1|ho] ® El23|h2]

ho zo€X (26)
— Z ( Z )’ 5’“)9:2) ® (MT"); ® (MT);,

i€[k] z2€X

=a;

The first component is of rank-k as shown in the proof for xs ® x3|21, and the other two components
are of rank-k by Assumption Thus Kruskal’s theorem applies and the columns of M7, MT " are
recovered up to a shared permutation.

The first component {a; };c[z] are also recovered, which means that if M, T form the same predictor
as M, T, then for any linearly independent set X" with k elements (not necessarily the previous choice
of {14 }ie[x)) such that X leads to a full rank A, we have A = A where A is parameterized by M, T

For any such X = {z( : i € [k]}, denote X := [z, ..., 2(F)], then
A= X[paW), .., ¢z TTT = X[(z), .., (W) TTT = A, (27)

Since X is of rank-k by the choice of &, this means

AV AN = 71 (€] (k) h(x®D) = @ ;
(D), s 3] = TTIB( D), . 6(2D)] = Ga) = Ro(@D), Vi€ (], g
=R
Moreover, for any valid choice of X', matrices defined with points in sufficiently small neighborhoods

of (") are still of full rank by the upper continuity of matrix rank. Hence the equality in equation
[28 holds for points in these neighborhoods, and thus the Jacobian on both sides should be equal.

Then, the exact same proof of Lemmal 2| applies, and we get b, ¢ are equal up to a permutation of
coordinates. Thus M must be equal to (up to permutation) either M or H M for a Householder

reflection H by Lemma Finally, the solution of H M is eliminated since it would lead to a T that
is not a valid stochastic matrix, as shown in the proof of Theorem 3]

O

A.3 Identifiability from pairwise conditional distribution

We show that matching the entire conditional distribution for G-HMM provides identifiability.
Though this is implied by Theorem [3] which states that matching the conditional expectation already
suffices, having access to the full conditional distribution allows an even simpler proof.

Theorem 7 (Identifiability of conditional distribution). Let M, T and M, T be two set of parameters
satlsfymg Assumpttonlandl If p(xz|x; M, T) = p(xa|21; M T) Vz1, 29 € RY then M = M,
T=T up to a permutation of labeling.

Proof. First note that the conditional distribution of x5 given x1 is a mixture of Gaussian, with means
{#i}iep) and mixture weights given by P(hz|z1) = T'P(hy|r1), hence we can directly apply the
identifiability of Gaussian mixtures to recover the means {t; }ic[x]:

Lemma 3 (Proposition 4.3 in|Lindsay and Basakl [1993]]). Let Qy, denote a Gaussian mixture with
means {&;}jcx) € R Suppose 3l € [d] such that the set {[¢;];} has distinct values, then one can
recover {&;} je[k) from moments of Qy.

We note that the assumption on the existence of a coordinate [ € [k] is with out loss of generality,
since we can first rotate the means to a different coordinate system in which this condition holds,
then rotation back the means. Such rotation is guaranteed to exist since finding such rotation is
equivalent to finding a vector v s.t. v (y1; — ;) # 0 for every 4, j € [k], for which the solution set is

RN\ Uy jep{u s w' (mi — py) = 0} # 0.
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Recovering {11 };c[r) means the scaled likelihood and the posterior both match, i.e. ¢ = v, and

o(x) = P(h|x) = i 1})"”1. The conditional distribution is

p(wslw1) = Y plaalho)p(halhi)p(halz:) =
i.jelk]
Choose a set X := {z(V},c(4) such that Uy := [1p(zM), ..,y (x*))] € R¥*¥ is full rank. @y :=

[p(zM), ..., p(xF))] € R¥*F is also full rank since its columns are nonzero scalings of columns of
W ». Then we have

1
W¢($2)TT¢($1)- (29)

UTPy =0 TPy =0Ty =T =T. (30)
O

B Proof of Theorem 4 non-identifiability of HMM from multiple pairwise
predictions

Theorem (Theorem[drestated: nonidentifiability of HMM from multiple pairwise predictions). There
exists a pair of HMM distributions with parameters (O, T) and (O, T), each satisfying Assumptions
and and also O # O, such that, for each of the tasks x- |x1, x1|®a, x3|T1, and x1|xs, the optimal
predictors are the same under each distribution.

Proof. We provide an example to show the nonidentifiability result in Theorem Ml The goal is to
find O # O, T # T that produce the same predictors for predicting both zs|z; and x3]z;. We will
choose T, T to be symmetric, so that O, T and O, T also form the same predictors for the reversed

direction, i.e., for predicting x1 given x2 and x; given x3, since the reverse chain has transition
matrix 7" =1T.

Let’s consider the case where the all row sums of O and O are k /d. Consequently, the posterior

function is simply ¢(z) = % = 20Tz, and similarly we have ¢(z) = 207 2. The predictors
are of the form:
d d
A (z) = OT¢(x) = %OTOT:E, Al (z) = 0T?¢(z) = EOTQOTx. @31

Matching f2/'(z) = f2I'(z) onall z € X := {e;}c[4) means
OT0"I;,=0T0T =0TO" =T=0'0-T-(0T0)". (32)
Similarly, matching f3I' = 3 gives OT20T = OT207, hence
oT*0" =o0otor(0to)" -otorOto)TOT
Qor.(0t0)Toto - TOT =0T - TO = (010)T - 010 = I,

where step (¢) uses 000 = O, since O, O share the same column space.

(33)

Denote R := OTO; R s orthogonal by the last equality in equation To construct the desired

example, consider £ = 3, and let R represent a rotation with axis of rotation %(el + eg + e3).

This axis is the direction pointing from the origin to the projection of the origin on the hyperplane
P.:={veR: > ic[a Vi = c} for any positive constant c (i.e. P is parallel to the hyperplane in
which probability vectors lie). This means such rotation guarantees Rv € P., Vv € P., and has the
following property:

Claim 4. Each row and each column of R sums up to 1.

Define O := OR, T := RTTR, Claimensures that row sum and column sum of O, T remain the
same as those of O, T. When the rotation angle represented by R is sufficiently small, entries 0,T
remain in [0, 1], hence such O, T form a valid example. We will provide a concrete example in the
subsequent subsection.

O
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B.1 Example for Theorem[4]

The intuition of the nonidentifiability result in Theorem []is related to the non-uniqueness of matrix
factorization: while adding additional pairwise prediction tasks introduces more equations on the
product of matrices, these equations can be highly dependent, and there are cases where different set
of matrices can simultaneously satisfy all the equations.

We now provide a concrete example for the non-identifiability of predicting xs|z1, z1|zo, xg\a:l,
and x1|z3, by finding 2 set of O, T" such that the corresponding predictors (of the form specified in
equation [31)) match. Let d = 4, k= 3,

[0.23016003  0.3549092  0.16493077] 0.24120928 0.35062535 0.1581653
o= 0.30716059 0.06962305 0.37321636 O— 0.28937626 0.07433156 0.38629218
~ 1 0.2580854  0.26965425 0.22226035|’ ~ = [0.26077674 0.26749114 0.22173212|°’
10.20459398  0.3058135  0.23959252 ] 0.20863772 0.30755194 0.23381033
[0.56893146 0.35811118  0.07295736 ~ 0.59740926 0.30452087 0.09806987
T = |0.35811118 0.10805638 0.53383243| , T'= |0.30452087 0.1331689  0.56231024
0.07295736  0.53383243 0.39321021 0.09806987 0.56231024 0.33961989

det(0) = det(O) = 0.0110, det(T) = det(T) = —0.1611.
(34

Note that 7, T are both symmetric as desired by the proof of Theorem EL which means this is also
a valid counter example for learning to predict x1|z2 and z1|z3, and hence for all of z3|z1, 1|22,
$3|CL‘1, and .1‘1‘.%3.

B.2 Proof of Claim[d

Proof. We would like to show that each row and each column of R sums up to 1. Denote the
d-dimensional simplex by Ay, ie. Ay := {z € R? D el @i = 1}, and let Pe = {v € R? :
Do clq) Vi = c} for some positive constant ¢ denote a hyperplane parallel to the hyperplane in which
probability vectors lie.

Let’s first check that the columns of R sum up to 1. Any v € P. can be written as v = ¢ -
[o1, a9, .y g—1,1 — Zie[d_l] o] for some [av, ..., g—1] € Ag_1. Let r; denote the iy, row of
R, then Rv € P. means Zie[d] (ri, vy = <Zi€[d] ri,v) = c. Let 8; denote the j;, coordinate of
> ie(q Ti» then

Z Bicvi + Ba(l — Z @) =1, V[oq, ..., aq-1] € Ag—q

i€[d—1] i€ld—1]
= Z Bd a;+ Bg=1, V[Ozl, ...,Oéd_ﬂ € Ag_1 (€R)
i€[d—1]

=6 =1 Vie [d]
It then follows that R~! = R also has columns summing up to 1, since

SRRy = (> i, (RY);) = (1, (R7Y);) =1, Vj € [d]. (36)

i€[d] i€[d]

C Nonidentifiability from large time gaps

As noted earlier, there is an inherent obstacle when using prediction tasks on tokens that are more
than 1 time gaps apart. For instance, if we are predicting x4 given x; for some ¢ > 1 with G-HMM,
then we are still able to identify M from the posterior function, however it remains to to recover 7'
from T". For general matrices, it is clear that matching a power of a matrix does not imply the matrix
itself is matched. For our case, even though requiring 7" to be stochastic adds additional constraints,
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matching the matrix power still does not suffice to identify the underlying matrix, as formalized in
the following claim.

Claim 5 (Nonidentifiability of matrix powers (Claim l|restated)). For any positive integer t, there
exist stochastic matrices T, T satisfying Assumption suchthat T # T and T* = T".

Proof. As in Theorem[d] the nonidentifiability comes from the non-uniqueness of matrix factorization.
Specifically for this case, we will set T to be equal to 7" up to a special rotation that gets composed
when taking the matrix power. That is, we want T = RT = T R for some matrix R that implicitly
performs a rotation, so that Tt = T*Rt. Since R corresonds to a rotation, we can choose the rotation
angle properly so that R = I, and hence T* = T* but T # T.

Precisely, using notations for the G-HMM setup, set a € [0, 1], and let the parameters (T, M) be

given by
1 -1/2  -1/2

,M=1 0 —V3/2 V3/2

V2 1/V/2 1/V2

cos(f) —sin(d) O

sin(d) cos(d) 0| arotation that acts on
0 1

0
the first two dimensions. We will show that for any 6 € R, we have

T:= (M~ (R(0))'M)-T=T- (M~ (R(0))

a 0 1—a
1—a a 0
0 1—a a

T =

Let 6 be some rotation angle, and denote by R(6) :=

M. (37)

Assuming equation , since R(6) represents a rotation of angle 6, (R(G))T corresponds to a rotation
of angle 76 for any integer 7 (7 could be negative). Setting 6 := 27”, we then have

T =(M~'(R(9)) ' M-T)" =T (M~ (R(9))
=T'M~'-R@2m)-M =T".

-1 t

M) =T M~ (RB)) M 38)

For T to serve as a valid example for our theorem, it remains to check that for every ¢, there exists a
choice of a such that T := RT, where R := M~! (R(ZT”)) 71M , is a valid stochastic matrix. That
is, T  has 1) columns and rows each summing up to 1, and 2) entries bounded in [0, 1]. Let’s first

2 0 2
show that the columns and rows each sum up to 1. Noting that M~ = % -1 —V/3 V2|, the
-1 V3 V2
column sums are
- i 1
17T = 1" M RO MT L 1TTMIR(0) M = v2e] R(O)M = V2e] M = ﬂﬁl =1,
(39)
where step (i) uses equation[37] Similarly, the row sums are
- 3 3
T1=M"'R(O)"'M1=M RO —=es=M"' —=e3=1. 40
() (0) 75¢3 Nk (40)

To show that there exists a choice of 7" such that entries of 7" are non-negative, we provide a concrete

example where 7 is defined with @ = 1. It can be checked that T .= M~ (R(%3))™' M has

non-negative entries for ¢ € {2,3,4,...,10}. For larger ¢, let § = 27“, then we have by the Taylor
expansion of R(2%):

cos® —sinf 0 1—02/2+c 0% —0 + c26? 0
R(0) = lsin& cosf 0| = 6 + co0? 1—-60%/2+c10* 0
0 0 1 0 0 1
41)
0 ~1 0 —1/2 + 16 e 0
=I+6[1 0 0|+6° 2 —1/24¢16% 0
0 0 O 0 0 0
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for some constants ¢; € [—+;, 5], ¢2 € [ 1, 1]. Substituting this into 7' := M ' R(0) "' M gives
i a—%(lga) 7(91—2@) —&—%a
T=|1-a+za a—=(1-a) f(lan)

%(lan) 17a+%a af%(lfa)

1 —1 + 2¢1 602 5—0192 V3es %—01924-\/502 a 0 1—a
+§ %—6192—\/562 —1—|—2019 +f62 %—6192 - |1—a a 0
% —c10% + V3c2 570192 —142¢10% — V3ca 0 1-a a
. 1—% 09 1+% 02 —%+C102—\/§02 1—2¢,6° —%4—61924-\/502
=5 I+5 1-35 0 Jrg 1+ a6’ 14+ a0 +V3c: 1—2c10° —V3e2
i 0 1—|—% 1—%_ 1—26192+\/§C2 _%+6102—\/§C2 —%+6192
oy [P % 0 1+ e J[-025 —016 —0.25
3 14 73 1-— 7 0 +60°1-0.09 -0.25 0.01
0 1+ % 1— % 0.01  -0.25 -0.09

(42)

Where the inequality (%) is taken entry-wise. It can be checked that all entries are non-negative for
0 <35

Proof of equation[37] Let’s conclude the proof by proving the commutativity in equation[37} Denote
~ |cos(8) —sin(@) Ry(8) O =120 —1)2
Ry(0) := |:Sin(9) cos(8) ie. R(O) = 0 1|- Denote U := 0 —v3/2 V32|

U .
M = [1T/ﬁ] We can write

T T Re(0)T 0 U T T 117
M'RO)'M=[UT 1/v2] { 2% ) J LT/\@] =UTR()TU+ =~ 4
Let R2(6) denote a clockwise rotation of angle 6, then
27 4dr 4dm 27 2m 4dm
U = [v1, Ro(=-)v1, Ro (- )v1] = [Ra (- )va, va, Ra (5 ) v2] = [Ra (=) vs, Ro (- )vs, vs),
3 3 3 3 3 3
(44)
where v; = {(1)} [ _\1[//22] {&%ﬁ] Denote «;; == v, Ry v; fori,j € [3]. Noting
0 0 1
T=al+(1-a)|1l 0 0| :=al+ (1—a)P, wehave
0 1 0
MTRO)"MT =TM"R(0)" M
T (T 17 T 117
S U ' R:(0) ' U(al + (1 —a)P) + TT = (al + (1 —a)P)U"Ry(9)"U + T—
Y UTRy(0)TUP = PUTRo(6)TU (3)
Q31 Q32 Q33 Q12 Q13 011
) ]
< |11 Q12 Q13 Qg2 Qo3 021
Qo1 Q2 (i3 Q32 Q33 Q31
where step (i) uses 1177 = 711" = 117 The equality (*) is true due to equation [44] O

D Simulation

We empirically verify the identifiability results for HMM (Theorem [5)) and G-HMM (Theorem 3) on
simulation data, by checking whether matching the optimal predictor implies matching the parameters
of the data generative model.
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loss O distance T distance
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Figure 1: HMM: left: objective; middle: ||O — O*||p; right: ||T — T*|| .

loss M distance T distance
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Figure 2: G-HMM: left: objective; middle: ||M — M*||p; right: | T — T r.

In particular, we aim to recover O € R4*F T € R*** for HMM, and M € R%** T € RF*F for

G-HMM, with d = 10 and k € {2,4}. Given a batch of samples B := {x(li)}ie‘m, the objective to
minimize for HMM is

(o, Z 1755 (1) — f55 ()1, (46)

JEB

where f(z)’ipl (x1) := Eo,r[re ® x3|21]; the objective for the task of predicting z1 ® x3 given x5 is

defined analogously. Note that though equatlonn 6| differs from equation |1} I by a constant, ﬂlt suffices
for verifying parameter identifiability since both losses are minimized at fo,r = fo« 7«. We choose
to use the form in equation 46| since it is more stable to optimize for and that its minimal loss value is
0, making it easy to check for optimality. Similarly, the objective to minimizer for G-HMM is

ouM Z I Far e (21) = fapr ()13, (47)

mlGB
where ff/‘ﬁT = En rlze|z].

For both HMM and G-HMM, we optimize for O (or M) and T alternatingly in different epochs.
We found that it is usually helpful to use a larger learning rate for 7" than for O (or M), and that
normalized gradient descent helps speed up trainingﬂ

Figure[T] and [2] show the results for HMM and G-HMM. It can be seen that as the objective value
approaches the optimum, the parameter distances indeed go to zero, corroborating Theorem [5|and 3]

¥In equatlonl 1} the population loss is defined as E., IExQ,xs oy ||z2 @ 23 — f(21)||%, Whereas for equatlon@

the population 10ss is Ex, ||Esy 42, [22 ® 23] — f(21)||%, i-e. the expectation over z2, z3 is moved to within
the Frobenius norm. The two losses differ by a constant that is independent of the parameters of f.

That is, we normalize each gradient to have Frobenius norm 1. The gradients are otherwise too small which
will result in slow convergence.
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