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A APPENDIX

In this supplementary material, we provide additional experimental quantitative results, model size
comparison, as well as bounding boxes visualization to further support the effectiveness of our
proposed Consistent-Teacher . In addition, we delineate more experimental details, imple-
mentation information, and hyper-parameter settings of our method. Our code is also attached for
your reference.

A MORE DETAILS IN CONSISTENT-TEACHER

A.1 INCONSISTENCY MEASUREMENT.

Inconsistency refers to the fact that the pseudo boxes may be highly inaccurate and vary greatly
at different stages of training. Therefore, we measure the pseudo-bboxes variation across different
training steps. Specifically, we store the checkpoints every 4000 training steps. We then run infer-
ence using these checkpoints on a subset with 5000 images from the unlabeled set. The prediction
output from the previous checkpoint is then set as GT and we evaluate the mAP of the current check-
point with the previous predictions. Therefore, a higher mAP implies a more consistent pseudo tar-
gets. Then the inconsistency is measured by accumulating 1 — m A P for these checkpoints to reflect
the accumulated effect of noisy targets.

B VERIFY THE INCONSISTENCY IN SSOD

Assignment Inconsistency under Noisy Pseudo Labels. To illustrate that the conventional IOU-
based or heuristic label assignment is problematic in SSOD, we intentionally inject random noise to
the ground-truth bounding boxes and testify the assignment consistency by quantifying the assign-
ment IOU (A-IOU) of clean and noisy assignments. Suppose a bounding box b = (z1,y1, T2, y2)
is assigned to a set of k anchors A = {ay,...,ar}. We add Gaussian noise to its coordinate with
a noise ratio p, so that b’ = (1 + €5, X w, Y1 + €y, X h,Ta + €5, X W, Y2 + €y, X h), in which
w and h are width and height of the box. €, , €y, , €,, €y, are sampled from a normal distribution
N (0, p). The perturbed box b’ is matched to a new set of [ anchors A’ = {a, ..., a;}. The A-IOU
is computed as the intersection-of-union between A and A’. The higher A-IOU score suggests the
assignment is more robust to label noise.

We testify the assignment consistency under two scenario. First, we calculate the assignment IOU
with different degrees of noise ratio p € {0.1,0.2,...,0.5} using the final model. Second, we
would like to investigate how the assignment consistency change through training. We report the
A-IOU at different time of training with a constant p = 0.1. We compare our ASA with IOU-based
assigner|Ren et al.|(2015); Lin et al.|(2017b)); |Liu et al.|(2016) and ATSS assigner|Zhang et al.|(2020)
with Mean Teacher RetinaNet baseline on COCO 10%. All modules except for the assignment are
kept the same to provide a fair comparison. For both evaluations, we randomly select 1000 images
from val2017 to compute the A-IOU. Figure [9] visualize the mean+std A-IOU between clean
and noisy label at different training time and different noise ratio p. In Figure [O[a), both ATSS
and our ASA provides higher A-IOU compared with the broadly applied IOU-based assignment.
However, ATSS is still based on heuristic matching rule between label and anchor boxes. ASA,
instead, steadily improves itself as the detector becomes more accurate. In Figure[9[b), we see that
IOU-based assignment fails to maintain the initial assignment when the large magnitude of noise is
introduced in the labels. Given the noisy nature of pseudo label in SSOD, our experiment suggests
that IOU-based assignment is incapable of maintaining the assignment consistency in SSOD. In
contrast, our ASA strategy still performs well under server noise scenario. This experiment supports
our argument that the proposed consistent assignment strategy is robust to label noise in SSOD.

Classification and Regression Inconsistency. We unveil the regression and classification mis-
match problem in SSOD by identifying the mismatch between the high-score and high-IOU pre-
dictions. We obtain the confidence-IOU pairs on val2017 using Consistent-Teacher and
Mean Teacher RetinaNet when trained on COCO 10% data, and analyze the correlation between the
two variables. We apply linear regression and measures the standard error to reflect the correlation
between confidences and IOUs. Smaller error indicates higher correlation.
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Figure 9: Assignment IOU score between ground-truth and the noisy bounding boxes (a) at different
time of training and (b) using different noise ratio.

Table 6: Classification and Regression inconsistency analysis using IOU-Confidence linear regres-
sion (LR) error. We also provide the Mean Teacher IOU-Confidence plot on the right.

LR Standard Error

Mean Teacher 0.109

Consistent-Teacher 0.080

Table [6] provides the LR standard error for Consistent-Teacher and Mean Teacher Reti-
naNet. The right scatter figure displays the confidence-IOU of Mean Teacher. We observe clear
cls-reg misalignment on semi-supervised detectors: numerous low-confident predictions possess
high IOU score. It indicates that classification confidence does not provides a strong enough clue
for an accurate regression result, which give rise to erroneous pseudo-label noise during training.
The high LR error of 0.109 with Mean teacher also demonstrates this point. On the contrary, our
Consistent-Teacher largely elinimates the mismatch between the two tasks with a lower LR
error of 0.080. It supports our arguments that Consistent—-Teacher can align the classification
and regression sub-tasks and reduce the mismatch in SSOD.

C SEMI-SUPERVISED DETECTION RESULTS VISUALIZATION

C.0.1 QUALITATIVE COMPARISON WITH BASELINE.

We further compare the baseline Mean Teacher RetinaNet with our Consistent-Teacher by
visualizing the predicted bounding boxes on val12017 under the COCO 10% protocol. In Fig-
ure we plot the predicted and ground-truth bounding boxes in Violet and Orange respectively,
alongside with the false positive bboxes highlighted in Red.

There are 3 general properties that we could observed in our demonstration.

1. First, Consistent-Teacher fits the situation of crowded object localization bet-
ter, whereas Mean Teacher often mistakes the intersection of two overlapped objects
as a new instance. For example, in the scenes of zebras or sheep, Mean Teacher
often gives a false positive output in the overlapping area of the two objects, while
Consistent-Teacher largely resolves the inaccurate positioning problem through the
adaptive anchor selection mechanism.

2. Secondly, we see that under the semi-supervised setting, the Mean Teacher RetinaNet
would either predict the wrong class for the correct location or regress an inaccurate
bounding box despite its high classification confidence. For example, birds are sometimes
misidentified as airplanes even when the localization is accurate. It is mainly attributed
to the inconsistency of classification and regression tasks, i.e. the features required for
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Figure 10: Qualitative comparison on the COCO%10 evaluation. The bounding boxes in Orange is
the ground-truth, and Violet refers to the prediction. Red highlights the false positive predictions.

regression may not be optimal for classification. Consistent-Teacher effectively
discriminates similar categories using the FAM-3D to select the features dynamically.

3. Third, Consistent-Teacher embraces higher recall since it is capable of detect-
ing small or crowded instances which Mean Teacher fails to point out. For example,
Consistent-Teacher discovers most of the hot dogs on the grill while Mean Teacher
neglects most of them.
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Figure 11: Good detection results for the COCO%10 evaluation. The bounding boxes in Orange is
the ground-truth, and Violet refers to the prediction.

C.0.2 GOOD CASES AND FAILURE CASES.

We provides more examples to showcase the good and failure examples produced by
Consistent-Teacher on COCO val2017 in Figure[IT|and Figure[T2] Although our proposed
method achieved gratifying performance on a series of SSOD benchmarks, we can still point out its
deficiencies in Figure@ First, the trained detector lacks robustness to some out-of-distribution sam-
ples, for example, cartoon characters on street signs are recognized as real people, and reflections in
mirrors are recognized as objects. Second, our detection performance is poor for some classes with
small sizes, such as toothbrushes, hair dryers, etc. Third, Consistent-Teacher also tends to
treat parts of the object as a whole, such as the head of the giant panda as a separate animal (in the
lower left corner), and the dial of a clock as the entire clock (on the right of the panda).

D EXPERIMENT AND HYPER-PARAMETER SETTINGS

D.1 DATASETS AND DATA PREPOSSESSING.
D.1.1 MS-COCO 2017.

The Microsoft Common Objects in Context (MS-COCO) is a large-scale object detection, segmenta-
tion, key-point detection, and captioning dataset. We use COCO2017 in our experiments for SSOD,
which includes 118K training and 5K validation images along with bounding boxes of 80 object
categories.

D.1.2 PASCAL VOC 2007-2012.

The PASCAL Visual Object Classes (VOC) dataset contains 20 object categories alongside with
pixel-level segmentation annotations, bounding box annotations, and object class annotations. The
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Figure 12: Failure detection results for the COCO%10 evaluation. The bounding boxes in Orange
is the ground-truth, and Violet refers to the prediction.
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official VOC 2007 trainval set is adopted as the labeled set with 5011 images and the 11540
images from VOC 2012 trainval set is used as unlabeled data in this study. We evaluate on the
VOC 2007 test set.

D.1.3 DATA AUGMENTATIONS.

We use the same data augmentations as described in Soft Teacher |Xu et al.|(2021), including a la-
beled data augmentation in Table[7] a weak unlabeled augmentation in Table([8|and a strong unlabeled
augmentation in Table[9]

D.2 IMPLEMENTATION DETAILS

We implement our Consistent-Teacher based on MMdetection| framework with the data
prepossessing code from the open-sourced Soft-Teacher E] and google ssl-detection ﬂ We train our
detectors on 8 NVIDIA Tesla V100 GPUs. It takes approximately 3 days for an 180K training. Each
GPU contains 1 labeled image a and 4 unlabeled images. The source code is attached in a separate
zip file.

*https://github.com/open-mmlab/mmdetection
Shttps://github.com/microsoft/SoftTeacher
Shttps://github.com/google-research/ssl_detection/
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Table 7: Data augmentation for labeled image training.

Transformation | Description Parameter Setting
hnm'n' = 400, hmaz =
RandomResize Resize the image to a the height of h randomly sampled from h ~ ]11209 m ILAS—Z;)()C ?z 7
U(hmin, hmaz), whih? kee.ping the height—wid.lh ratio unchanged. 86?)117;1 PA_SCAL—{logaI -
RandomFlip Randomly horizontally flip a image with probability of p. p=0.5
OneOf Select one of the transformation in a transformation set 7". T = TransAppearance
Table 8: Weak data augmentation for unlabeled image.
Transformation | Description Parameter Setting
}LWLin‘ = 400, hmax =
RandomResize Resize the image to a the height of h randomly sampled from h ~ }1L20_0 m I\_/[S_igoc Oh _
A U(hmin, h,,%aw ), whil(?, kegping theA height—wiAdAth rat‘io unchanged. 8(7)'6117:1 PATSCAL—{/OEM -
RandomFlip Randomly horizontally flip a image with probability of p. p=0.5
Table 9: Strong data augmentation for unlabeled image.
Transformation | Description Parameter Setting
hm,mn' = 4001 hmaz =
RandomResize Resize the image to a the height of A randomly sampled from h ~ }ILQO_O mn ]\_/[S"igé:% _
U(hmins Rmaaz), While keeping the height-width ratio unchanged. 800 in PASCAL-VOC
RandomFlip Randomly horizontally flip a image with probability of p. p=0.5
OneOf Select one of the transformation in a transformation set 7". T = TransAppearance
OneOf Select one of the transformation in a transformation set 7" T = TransGeo
RandErase Randomly selects K rectangle region of size Ah X Aw in an image and erases f 6615](81 ’05)2)
its pixels with random values, where (h, w) are height and width of the origi- P
nal image.
Table 10: Appearance transformations, called TransAppearance.
Transformation Description Parameter Setting
Identity Returns the original image.
Autocontrast Maximizes the image contrast by setting the darkest (lightest) pixel to black
(white).
Equalize Equalizes the image histogram.
RandSolarize Invert all pixels above a threshold value 7' T c U(0,1)
RandColor Adjust the color balance of image. C' = O returns a black&white image, C € U(0.05,0.95)
C' = 1 returns the original image.
RandContrast Adjust the contrast of image. C' = 0 returns a solid grey image, C' = 1 C € U(0.05,0.95)
returns the original image.
RandBrightness | Adjust the brightness of image. C' = 0 returns a black image, C' = 1returns | C € U(0.05,0.95)
the original image.
RandSharpness Adjust the sharpness of image. C' = 0 returns a blurred image, C' = 1returns | C' € U(0.05,0.95)
the original image.
RandPolarize Reduce each pixel to C' bits. C e U(4,8)

Table 11: Geometric transformations, called TransGeo.

Transformation Description Parameter Setting
RandTranslate X | Translate the image horizontally by A\ xXimage width. A€ U(-0.1,0.1)
RandTranslate Y | Translate the image vertically by A X image height. A€ U(-0.1,0.1)
RandRotate Y Rotates the image by 0 degrees. 0 € U(—30°,30°)
RanShear X Shears the image along the horizontal axis with rate R. R € U(—0.480, 0.480)
RanShear Y Shears the image along the vertically axis with rate R. R € U(—0.480, 0.480)
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