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A BATCH SIZE ANALYSIS

In this section, we prove Lemma 4.1 and Corollary 4.2. We first present the following simplifying
assumption that states that for any two vertices v, vy the intersection of their neighborhoods has
weak correlation.

Assumption A.1 Let S C V be a random set drawn such that each v € V is picked to S with
probability p > log n/dmin. There exist constants c1,cy € R such that
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We start by stating a straightforward lemma from probability theory, whose proof is a direct appli-
cation of Chernoff bounds.

Lemma A.1 Let U be a finite set, and consider a random set S C U drawn such that each element
in U is picked to S with probability p independently. Then, with probability at least 1 —o(1/poly(n))

S € [plU| = V/plUTlog n, plU| + /plUTlog ]

For a fixed vertex u, we let z,, = Wx,, so that our estimator
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We start with the proof of Proposition 4.1. Note that we considered the more general case where Sy
is picked according to probability p = m1/n and S, is picked according to probability ¢ = ms/n.

Proof of Proposition 4.1: We start with computing the mean of our estimator.
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where for an event Z we let 15 denote the indicator random variable for Z.

Note that by the fact that each vertex is picked to S; (respectively S) independently w.p p we can
apply Lemma A.1 and conclude that with very high probability |S;| = pn + /pnlogn = ©(pn)

By the independence of S; and So, and an application of Jensen’s inequality, we can establish the
following bound:
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where we used the fact that, Pr[1y(,)ns,0] = v, leading to mean of 2 ( D (vu)eE {JZ,EL;;T)
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Next, we compute the second moment of our estimator.
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Similarly to before, we inspect the above expectation. In here, there are four cases corresponding to
the following sets.

1. ¢ = {(vi,u1),(v2,u2) € E | v1 # v2,u; # usg}: in a similar way to before, by
Lemma A.1, we obtain
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where we used the fact that for v;, Pr[1y(y,)ns,20] = ;-

In order to analyze the above expectation, we use our assumption that neighborhoods are
uncorrelated to get
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2. Co = {(v1,u1), (va,u2) € E | v1 # va,u; = us}: similarly to the previous case,
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3. C3 = {(v1,u1), (v2,us) € E | v1 = va,uy # us}. This case requires extra care, since in
this case, the neighborhoods of v; and vs are correlated (actually the same).
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By Lemma A.1, with very high probability

[N (v) N S2| € [qIN(v)] = /a|N(v)[logn, g| N (v)| + v/¢|N(v)|log ],

and by our constraint that ¢ = Q(logn/dmin) = Q(logn/|N(v)|), we have that with high
probability
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4. Cy = {(v1,u1), (va,us) € E | v1 = v9,u; = us}. Similarly to the previous case,
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Combining the above and subtracting the expectation squared yields,
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After rearranging we get
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If we let p = my /n and ¢ = ma/n so that Eg, [|S1|] = m; and Eg, [|S2|] = ma2, we get that
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Note that the variance decreases as mi, mo increase. Therefore, if we assume for simplicity that
m1 = me = m the variance is bounded by
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Let’s consider the pseudo precision of our estimator. Note that the cost generatmg the estimator &
is approximately 2m - d, where d is the average degree of the graph. This is since we have roughly
2m vertices to generate and for each vertex sampled we need to aggregate its neighbors information
(which is approximately d).
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Let
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and note that as m increase, the efficiency converges to ¢.

If we define ¢ as
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we get that p(&) > m, as claimed. |

Now we show that if we assume that the graph is d-regular, we can get a clean relation between the
efficiency of our estimator and the size of the batch.

Proof of Corollary 4.2: Fix any § > 0. By Equation (12),
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so that the pseudo precision is at least
p(€) = (@(1+8(m))) ™.

By assuming that the graph is d-regular, and using the fact that forallv € V,1 — e7 % < o, < qd
and qd > 1,
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Remark on graph-wise sampling: Note that the case where S; = S, is equivalent to subgraph
sampling. The same analysis can be adapted to subgraph sampling, and yields the same proposed
minibatch size.
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