
Published as a conference paper at ICLR 2024

NOVEL QUADRATIC CONSTRAINTS FOR EXTENDING
LIPSDP BEYOND SLOPE-RESTRICTED ACTIVATIONS

Patricia Pauli ∗1 Aaron Havens 2 Alexandre Araujo 3 Siddharth Garg 3

Farshad Khorrami 3 Frank Allgöwer 1 Bin Hu 2

1 Institute for Systems Theory and Automatic Control, University of Stuttgart
2 ECE & CSL, University of Illinois Urbana-Champaign
3 ECE, New York University
∗ Corresponding author. E-Mail: patricia.pauli@ist.uni-stuttgart.de

ABSTRACT

Recently, semidefinite programming (SDP) techniques have shown great promise in
providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP
approach (Fazlyab et al., 2019) has received much attention and provides the least
conservative Lipschitz upper bounds that can be computed with polynomial time
guarantees. However, one main restriction of LipSDP is that its formulation requires
the activation functions to be slope-restricted on [0, 1], preventing its further use for
more general activation functions such as GroupSort, MaxMin, and Householder.
One can rewrite MaxMin activations for example as residual ReLU networks.
However, a direct application of LipSDP to the resultant residual ReLU networks
is conservative and even fails in recovering the well-known fact that the MaxMin
activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond
slope-restricted activation functions. To this end, we provide novel quadratic
constraints for GroupSort, MaxMin, and Householder activations via leveraging
their underlying properties such as sum preservation. Our proposed analysis is
general and provides a unified approach for estimating ℓ2 and ℓ∞ Lipschitz bounds
for a rich class of neural network architectures, including non-residual and residual
neural networks and implicit models, with GroupSort, MaxMin, and Householder
activations. Finally, we illustrate the utility of our approach with a variety of
experiments and show that our proposed SDPs generate less conservative Lipschitz
bounds in comparison to existing approaches.

1 INTRODUCTION

For neural network models, the Lipschitz constant is a key sensitivity metric that gives important
implications to properties such as robustness, fairness, and generalization (Hein & Andriushchenko,
2017; Tsuzuku et al., 2018; Salman et al., 2019; Leino et al., 2021; Huang et al., 2021; Lee et al.,
2020; Bartlett et al., 2017; Miyato et al., 2018; Farnia et al., 2019; Li et al., 2019; Trockman & Kolter,
2021; Singla & Feizi, 2021; Xu et al., 2022; Yu et al., 2022; Meunier et al., 2022; Prach & Lampert,
2022). Since the exact calculation of Lipschitz constants for neural networks is NP-hard in general
(Virmaux & Scaman, 2018; Jordan & Dimakis, 2020), relaxation techniques are typically used to
compute related upper bounds (Combettes & Pesquet, 2019; Chen et al., 2020; Latorre et al., 2020;
Fazlyab et al., 2019; Zhang et al., 2019). A naive Lipschitz bound for a neural network is given by the
product of the spectral norm of every layer’s weight (Szegedy et al., 2013), yielding quite conservative
bounds for multi-layer networks. To provide tighter bounds, Fazlyab et al. (2019) introduced LipSDP,
a semidfeinite programming (SDP) based Lipschitz constant estimation technique, that provides
state-of-the-art ℓ2 Lipschitz bounds in polynomial time. Since its introduction, LipSDP has had a
broad impact in many fields, e.g., Lipschitz constant estimation (Hashemi et al., 2021; Shi et al., 2022)
and safe neural network controller design (Brunke et al., 2022; Yin et al., 2021). It inspired many
follow-up works, extending the framework to more general network architectures (Pauli et al., 2023a)
and ℓ∞ bounds (Wang et al., 2022). Beyond Lipschitz constant estimation, many works developed

1

Published as a conference paper at ICLR 2024

training methods for Lipschitz neural networks based on LipSDP (Pauli et al., 2021; 2023b; Araujo
et al., 2023; Revay et al., 2020; Havens et al., 2023; Wang & Manchester, 2023).

One important assumption of the LipSDP formulation is that it requires the activation functions
to be slope-restricted. Recently, new activation functions have been explored that do not have this
property. Especially, the MaxMin activation function (Anil et al., 2019) and its generalizations
GroupSort and the Householder activation function (Singla et al., 2022) have been popularized for
the design of Lipschitz neural networks and have shown great promise as a gradient norm preserving
alternative to ReLU, tanh, or sigmoid (Leino et al., 2021; Huang et al., 2021; Hu et al., 2023b;
Cohen et al., 2019). MaxMin can equivalently be rewritten as a residual ReLU network, enabling a
LipSDP-based analysis based on the slope-restriction property of ReLU. However, as we will discuss
in our paper, this description is too conservative to even recover the well-known fact that MaxMin
is 1-Lipschitz. This creates an incentive for us to develop tighter quadratic constraints to obtain
better Lipschitz bounds beyond slope-restricted activations. Consequently, in this paper, we explore
the characteristic properties of MaxMin, GroupSort, and Householder activations to develop novel
quadratic constraints that are satisfied by these activations.

Based on our new quadratic constraints, our work is the first one to extend LipSDP beyond slope-
restricted activations, providing accurate Lipschitz bounds for neural networks with MaxMin, Group-
Sort, or Householder activations. More specifically, we use that GroupSort is sum-preserving and our
quadratic constraints are also the first ones for sum-preserving elements. Along with our extension of
LipSDP to new classes of activation functions, we present a unified approach for SDP-based Lipschitz
constant estimation that covers a wide range of network architectures and both ℓ2 and ℓ∞ bounds.
Our work complements the existing SDP-based methods in (Fazlyab et al., 2019; Wang et al., 2022;
Araujo et al., 2023; Pauli et al., 2023a; Gramlich et al., 2023b; Revay et al., 2020; Havens et al., 2023;
Wang & Manchester, 2023) and further shows the flexibility and versatility of SDP-based approaches,
involving the Lipschitz analysis of residual and non-residual networks and implicit learning models
with slope-restricted or gradient norm preserving activations.

Notation. We denote the set of real n-dimensional vectors (with non-negative entries) by Rn (Rn
+),

the set of m × n-dimensional matrices by Rm×n, and the set of n-dimensional diagonal matrices
with non-negative entries by Dn

+. We denote the n× n identity matrix by In and the n-dimensional
all ones vector by 1n. Given any vector x ∈ Rn, we write diag(x) for a diagonal matrix whose
(i, i)-th entry is equal to the i-th entry of x. Clearly, 1⊤

n x is just the sum of all the entries of x. We
also use blkdiag(X1, X2, . . . , Xn) to denote a blockdiagonal matrix with blocks X1, X2, . . . , Xn.
Given two matrices A and B, their Kronecker product is denoted by A⊗B. A function φ : R → R is
slope-restricted on [α, β] where 0 ≤ α < β < ∞ if α(y−x) ≤ φ(y)−φ(x) ≤ β(y−x) ∀x, y ∈ R.
A mapping ϕ : Rn → Rn is slope-restricted on [α, β] if each entry of ϕ is slope-restricted on [α, β].

2 PRELIMINARIES

2.1 LIPSCHITZ BOUNDS FOR NEURAL NETWORKS: A BRIEF REVIEW

In this section, we briefly review the original LipSDP framework developed in Fazlyab et al. (2019).
Suppose we are interested in analyzing the ℓ2 → ℓ2 Lipschitz upper bounds for the following standard
l-layer feed-forward neural network which maps an input x to the output fθ(x):

x0 = x, xi = ϕ(Wix
i−1 + bi) i = 1, . . . , l − 1, fθ(x) = Wlx

l−1 + bl. (1)

Here Wi ∈ Rni×ni−1 and bi ∈ Rni denote the weight matrix and the bias vector at the i-th layer,
respectively. Obviously, we have x ∈ Rn0 and fθ(x) ∈ Rnl and we collect all characterizing weight
and bias terms in θ = {Wi, bi}li=1. The goal is to obtain an accurate Lipschitz bound L > 0 such
that ∥fθ(x)− fθ(y)∥2 ≤ L∥x− y∥2 ∀x, y ∈ Rn0 holds.

Spectral norm product bound for ϕ being 1-Lipschitz. If the activation function ϕ is 1-Lipschitz,
then one can use the chain rule to obtain the trivial Lipschitz bound L =

∏l
i=1 ∥Wi∥2 (Szegedy et al.,

2013) . In other words, the product of the spectral norm of every layer’s weight provides a simple
Lipschitz bound. This spectral norm bound can be efficiently computed using the power iteration
method, and the assumption regarding ϕ being 1-Lipschitz is quite mild, i. e., almost all activation
functions used in practice, e.g., ReLU and MaxMin, satisfy this weak assumption. The downside is

2

Published as a conference paper at ICLR 2024

that the spectral norm bound yields conservative results, e.g., ReLU is not only 1-Lipschitz but also
slope-restricted on [0, 1], which is exploited in more advanced SDP-based methods.

LipSDP for ϕ being slope-restricted on [0, 1]. If the activation ϕ is slope-restricted on [0, 1] in an
entry-wise sense, as satisfied, e.g., by ReLU, sigmoid, tanh, one can adopt the quadratic constraint
framework from control theory (Megretski & Rantzer, 1997) to formulate LipSDP for an improved
Lipschitz analysis (Fazlyab et al., 2019). Given {Wi, bi}li=1, define (A,B) as

A =


W1 0 . . . 0 0
0 W2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Wl−1 0

 , B =


0 In1

0 . . . 0
0 0 In2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Inl−1

 .

to write the neural network (1) compactly as Bx = ϕ(Ax + b) with x =
[
x0⊤ . . . xl−1⊤

]⊤
,

b =
[
b⊤1 . . . b⊤l

]⊤
. Based on (Fazlyab et al., 2019, Theorem 2), if there exists a diagonal positive

semidefinite matrix T ∈ Dn
+, where n =

∑l
i=1 ni, such that the following matrix inequality holds1

[
A
B

]⊤ [
0 T
T −2T

] [
A
B

]
+


−ρIn0

0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . W⊤

l Wl

 ⪯ 0, (2)

then the neural network (1) with ϕ being slope-restricted on [0, 1] is
√
ρ-Lipschitz in the ℓ2 → ℓ2

sense, i.e., ∥fθ(x)− fθ(y)∥2 ≤ √
ρ∥x− y∥2 ∀x, y ∈ Rn0 . Minimizing ρ over the decision variables

(ρ, T) subject to the matrix inequality constraint (2), i.e.,
min

ρ,T∈Dn
+

ρ s. t. (2),

is a convex program and exactly the so-called LipSDP, which, in comparison to the spectral norm
bound, leads to improved Lipschitz bounds for networks with slope-restricted activations (e.g. ReLU).

SDPs for ℓ∞ perturbations. Wang et al. (2022) developed an extension of LipSDP to find Lipschitz
bounds for neural networks with slope-restricted activations in the ℓ∞ → ℓ1 sense. Specifically,
suppose fθ is a scalar output, and the SDPs in Wang et al. (2022) can be used to find L such that
|fθ(x)− fθ(y)| ≤ L∥x− y∥∞ ∀x, y ∈ Rn0 . See Wang et al. (2022) for more details.

2.2 GROUPSORT AND HOUSEHOLDER ACTIVATIONS

Recently, there has been a growing interest in using gradient norm preserving activations, particularly
MaxMin, to design expressive Lipschitz neural networks (Tanielian & Biau, 2021) that are used,
e.g., in the fields of robust neural networks and learning-based control, cmp. Appendix A for details.
MaxMin is a special case of the GroupSort activation that we define as follows (Anil et al., 2019).
Suppose ϕ : Rn → Rn is a GroupSort activation. What ϕ does is separating the n preactivations
into N groups each of size ng, i.e., n = Nng, and sorting these groups in ascending order before
combining the outputs to a vector of size n. GroupSort encompasses two important special cases:
MaxMin (ng = 2) and FullSort (ng = n). Another gradient norm preserving activation that also
generalizes MaxMin is the Householder activation ϕ : Rn → Rn that is applied to subgroups
x ∈ Rng (Singla et al., 2022)

ϕ(x) =

{
x v⊤x > 0

(Ing
− 2vv⊤)x v⊤x ≤ 0

for all v : ∥v∥2 = 1. The parameter v can hence be learned during training and the choice
v = [

√
2

2 −
√

2
2]

⊤, ng = 2 recovers MaxMin.

Using that the GroupSort and the Householder activation are 1-Lipschitz (Anil et al., 2019; Singla
et al., 2022), the spectral norm bound can still be utilized. However, GroupSort and Householder are
not slope-restricted on [0, 1]. Therefore, LipSDP cannot directly be applied to this case. Our work
aims at extending LipSDP and its variants beyond slope-restricted activation functions.

1The original work in Fazlyab et al. (2019) uses a more general full-block parameterization of T . However,
as pointed out in Pauli et al. (2021), (Fazlyab et al., 2019, Lemma 1) is actually incorrect, and one has to use
diagonal matrices T instead.

3

Published as a conference paper at ICLR 2024

3 MOTIVATION AND PROBLEM STATEMENT

Motivating Example. One may argue that MaxMin activations can be rewritten as residual ReLU
networks

MaxMin

([
x1

x2

])
=

[
0 1
0 1

] [
x1

x2

]
+

[
1 0
0 −1

]
ReLU

([
1 −1
−1 1

] [
x1

x2

])
= Hx+GReLU (Wx) .

(3)
Using that ReLU is slope-restricted, one can then formulate a SDP condition[

I 0
H G

]⊤ [
ρI 0
0 −I

] [
I 0
H G

]
⪰

[
W 0
0 I

]⊤ [
0 T
T −2T

] [
W 0
0 I

]
, (4)

that implies
√
ρ-Lipschitzness of the MaxMin activation function. The proof of this claim is deferred

to Appendix C.1. Minimizing ρ over (ρ, T) subject to matrix inequality (4) yields ρ = 2. This shows
that applying LipSDP to the residual ReLU network equivalent to MaxMin is too conservative to
recover the well-known fact that MaxMin is 1-Lipschitz. To get improved Lipschitz bounds, we
necessitate more sophisticated qudratic constraints for MaxMin and its generalizations GroupSort
and Householder, which we derive in the next section.

Problem statement. In this paper, we are concerned with Lipschitz constant estimation for neural
networks with MaxMin, GroupSort, and Householder activations. We give a brief preview of our
approach here. Similar to LipSDP, we also follow the quadratic constraint approach from control
theory (Megretski & Rantzer, 1997) to obtain a matrix inequality that implies Lipschitz continuity for
a neural network. We provide more details on the quadratic constraint framework in Appendix B.
Notice that the matrix inequality (2) used in LipSDP is a special case of

[
A
B

]⊤
X

[
A
B

]
+


−ρIn0 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . W⊤

l Wl

 ⪯ 0, (5)

with X =
[
0 T
T −2T

]
for [0, 1]-slope-restricted activations.

Developing a proper choice of X beyond slope-restricted activations is the goal of this paper. In
doing so, we explore the input-output properties of GroupSort and Householder activations to set up
X such that the matrix inequality (5) can be modified to give state-of-the-art Lipschitz bounds for
neural networks with important and popular activations that are not slope-restricted.

4 MAIN RESULTS: SDPS FOR GROUPSORT AND HOUSEHOLDER ACTIVATIONS

In this section, we develop novel SDPs for analyzing Lipschitz bounds of neural networks with
MaxMin, GroupSort, and Householder activations. Our developments are based on non-trivial
constructions of quadratic constraints capturing the input-output properties of the respective activation
function and control-theoretic arguments (Megretski & Rantzer, 1997).

4.1 QUADRATIC CONSTRAINTS FOR GROUPSORT AND HOUSEHOLDER ACTIVATIONS

First, we present quadratic constraints characterizing the key input-output properties, i.e., 1-Lipschitz-
ness and sum preservation, of the GroupSort function. Our results are summarized below.
Lemma 1. Consider a GroupSort activation ϕ : Rn → Rn with group size ng . Let N = n

ng
. Given

any λ ∈ RN
+ and γ, ν, τ ∈ RN , the following inequality holds for all x, y ∈ Rn:[

x− y
ϕ(x)− ϕ(y)

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0, (6)

where (T, S, P) are given as

T := diag(λ)⊗ Ing + diag(γ)⊗ (1ng1
⊤
ng
),

P := diag(ν)⊗ (1ng
1⊤
ng
),

S := diag(τ)⊗ (1ng
1⊤
ng
).

(7)

4

Published as a conference paper at ICLR 2024

All the detailed technical proofs are deferred to Appendix C. To illustrate the technical essence, we
briefly sketch a proof outline here.

Proof sketch. Let ei denote a N -dimensional unit vector whose i-th entry is 1 and all other entries
are 0. Since GroupSort preserves the sum within each subgroup, (e⊤i ⊗ 1⊤

ng
)x = (e⊤i ⊗ 1⊤

ng
)ϕ(x)

holds for all i = 1, . . . , N . This leads to the following key equality:
(x− y)⊤((eie

⊤
i)⊗ (1ng

1⊤
ng
))(x− y) = (ϕ(x)− ϕ(y))⊤((eie

⊤
i)⊗ (1ng

1⊤
ng
))(ϕ(x)− ϕ(y))

= (ϕ(x)− ϕ(y))⊤((eie
⊤
i)⊗ (1ng

1⊤
ng
))(x− y) = (x− y)⊤((eie

⊤
i)⊗ (1ng

1⊤
ng
))(ϕ(x)− ϕ(y)),

which can be used to verify that (6) is equivalent to[
x− y

ϕ(x)− ϕ(y)

]⊤ [
diag(λ)⊗ Ing 0

0 −diag(λ)⊗ Ing

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0.

Finally, the above inequality holds because the sorting behavior in each subgroup is 1-Lipschitz, i.e.,
∥(e⊤i ⊗ Ing

)(x− y)∥22 ≥ ∥(e⊤i ⊗ Ing
)(ϕ(x)− ϕ(y))∥22 for all i = 1, . . . , N .

Based on the above proof outline, we can see that the construction of the quadratic constraint (6)
relies on the key properties that the sorting in every subgroup is 1-Lipschitz and sum-preserving. This
is significantly different from the original sector-bounded quadratic constraint for slope-restricted
nonlinearities in Fazlyab et al. (2019).

In the following, we present quadratic constraints for the group-wise applied Householder activation.
Lemma 2. Consider a Householder activation ϕ : Rn → Rn with group size ng. Let N = n

ng
.

Given any λ ∈ RN
+ and γ, ν, τ ∈ RN , the inequality (6) holds for all x, y ∈ Rn, where (T, S, P) are

given as
T := diag(λ)⊗ Ing + diag(γ)⊗ (Ing − vv⊤),

P := diag(ν)⊗ (Ing
− vv⊤),

S := diag(τ)⊗ (Ing
− vv⊤).

(8)

Using the novel quadratic constraint (6) with (T, S, P) either defined as in (7) or in (8), we can
formulate a SDP subject to (5) with X being set up as X =

[
T−2S P+S
P+S −T−2P

]
to estimate the Lipschitz

constant of a GroupSort/Householder neural network. We will discuss such results next.

4.2 ℓ2 → ℓ2 LIPSCHITZ BOUNDS FOR GROUPSORT/HOUSEHOLDER NEURAL NETWORKS

Based on Lemmas 1 and 2, we develop a new SDP condition to analyze neural networks with
GroupSort and Householder activations. To this end, we establish the following result.
Theorem 1. Consider the l-layer fully-connected neural network (1), where ϕ is GroupSort (House-

holder) with the same group size ng in all layers. Let N =
∑l−1

i=1 ni

ng
be the total number of groups. If

there exist ρ > 0, λ ∈ RN
+ , and γ, ν, τ ∈ RN such that the following matrix inequality holds

M(ρ, P, S, T) :=

[
A
B

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
A
B

]
+


−ρIn0 0 . . . 0

0 0 . . . 0
...

...
. . .

...
0 0 . . . W⊤

l Wl

 ⪯ 0, (9)

where (T, S, P) are defined by (7) (eq. (8)), then (1) is
√
ρ-Lipschitz in the ℓ2 → ℓ2 sense.

The proof of the above result is based on standard quadratic constraint arguments and is included in
Appendix C.4. Based on this result, the solution

√
ρ of the SDP

min
ρ,T,S,P

ρ s. t. M(ρ, T, S, P) ⪯ 0, (10)

gives an accurate Lipschitz bound for neural networks with GroupSort or Householder activations. In
our practical implementation, we set S = P = 0 for improved scalability, i.e., to reduce the number
of decision variables and to exploit the structure of the constraint (9). See Appendix D.1 for details.
Empirical tests indicate that the choice S = P = 0 yields the same results as without this consraint.
In what follows, we discuss several important aspects of SDP-based Lipschitz constant estimation for
GroupSort and Householder activations.

5

Published as a conference paper at ICLR 2024

Simplifications for the single-layer neural network. If the neural network is single-layer, i.e.,
fθ(x) = W2ϕ(W1x + b1) + b2 with ϕ being GroupSort/Householder with group size ng, we can
simplify our SDP condition (9) as[

W⊤
1 TW1 − ρI 0

0 −T +W⊤
2 W2

]
⪯ 0,

setting S = P = 0 as discussed before. One can compare the above result to its LipSDP counterpart
(Fazlyab et al., 2019, Theorem 1) and realize that the only main difference is that Lemma 1 is used to
replace (Fazlyab et al., 2019, Lemma 1) for setting up X .

MaxMin activations. In practice, MaxMin is typically used where ng = 2. In this case, the number
of the decision variables used to parameterize T is exactly

∑l−1
i=1 ni. This is consistent with LipSDP,

which uses the same number of decision variables to address slope-restricted activations.

GroupSort and norm-constrained weights. GroupSort activations are oftentimes used in combina-
tion with gradient norm preserving layers. For this special case the Lipschitz constant 1 is tight and
hence there is no need for Lipschitz constant estimation. However, many MaxMin neural networks are
trained without weight constraints as they have shown to be prohibitive in training (Leino et al., 2021;
Hu et al., 2023b; Huang et al., 2021; Cohen et al., 2019). For such neural networks our approach
provides more accurate Lipschitz bounds than existing approaches.

Adaptions to convolutional neural networks. Theorem 1 can be extended to convolutional neural
networks using ideas from Pauli et al. (2023a); Gramlich et al. (2023b). The key idea in (Pauli
et al., 2023a; Gramlich et al., 2023b) is the formulation of convolutional layers via a state space
representation, which enables the derivation of non-sparse and scalable SDPs for Lipschitz constant
estimation for convolutional neural networks. We briefly streamline the method in Appendix F.2.

4.3 ℓ∞ → ℓ1 LIPSCHITZ BOUNDS FOR GROUPSORT/HOUSEHOLDER NEURAL NETWORKS

In this section, we will combine Lemmas 1 and 2 with the results in Wang et al. (2022) to develop SDPs
for the ℓ∞ → ℓ1 analysis of neural networks with GroupSort/Householder activations. Similar to
Wang et al. (2022), we assume that fθ(x) has a scalar output. Suppose ϕ is a GroupSort/Householder
activation with group size ng. We are interested in calculating L such that |fθ(x) − fθ(y)| ≤
L∥x− y∥∞ ∀x, y ∈ Rn0 . It is well known that the ℓ2 → ℓ2 Lipschitz bounds can be transferred into
ℓ∞ → ℓ1 Lipschitz bounds via some standard scaling argument based on the equivalence of norms.
However, such a naive approach is too conservative in practice (Latorre et al., 2020). In this section,
we develop novel SDPs for more accurate calculations of ℓ∞ → ℓ1 Lipschitz bounds.

Single-layer case. For simplicity, we first discuss the single-layer network case, i. e., fθ(x) =
W2ϕ(W1x + b1) + b2 with ϕ being GroupSort/Householder with group size ng. Since the output
fθ(x) is assumed to be a scalar, we have W2 ∈ R1×n1 . Obviously, the tightest Lipschitz bound is
given by

Lmin = max
x,y

|fθ(x)− fθ(y)|
∥x− y∥∞

. (11)

Then for any L ≥ Lmin, we will naturally have |fθ(x) − fθ(y)| ≤ L∥x − y∥∞ ∀x, y. Based on
Lemma 1, one upper bound for Lmin is provided by the solution of the following problem:

max
∆x,∆v

|W2∆v|
∥∆x∥∞

s. t.
[
W1∆x
∆v

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
W1∆x
∆v

]
≥ 0, (12)

where ∆v = ϕ(W1x + b1) − ϕ(W1y + b1), ∆x = x − y, and (T, S, P) are given by (7) with
some γ, ν, τ ∈ RN , λ ∈ RN

+ . A similar argument has been used in (Wang et al., 2022, Section
5). The difference here is that the constraint in the optimization problem (12) is given by our new
quadratic constraint specialized for GroupSort/Householder activations (Lemma 1/2). We note that
if we scale ∆x and ∆v with some common factor, the constraint in problem (12) is maintained
due to its quadratic form, and the objective ratio remains unchanged. Hence the problem (12) is
scaling-invariant, making it equivalent to the following problem (the absolute value in the objective is
removed since scaling ∆v with −1 does not affect feasibility)

max
∆x,∆v

W2∆v s. t.
[
W1∆x
∆v

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
W1∆x
∆v

]
≥ 0, ∥∆x∥∞ = 1.

6

Published as a conference paper at ICLR 2024

A simple upper bound for the above problem is provided by replacing the equality constraint with
an inequality ∥∆x∥∞ ≤ 1. Therefore, we know Lmin can be upper bounded by the solution of the
following problem:

max
∆x,∆v

W2∆v s. t.
[
∆x
∆v

]⊤ [
W⊤

1 (T − 2S)W1 W⊤
1 (P + S)

(P + S)W1 −T − 2P

] [
∆x
∆v

]
≥ 0, ∥∆x∥∞ ≤ 1. (13)

Finally, we note that ∥∆x∥∞ ≤ 1 can be equivalently rewritten as the following quadratic constraints
(e⊤j ∆x)2 ≤ 1 for j = 1, . . . , n0 (Wang et al., 2022). Now we introduce the dual variable µ ∈ Rn0

+
and obtain the following SDP condition (which can be viewed as the dual program of (13)).
Theorem 2. Consider a single-layer neural network described by fθ(x) = W2ϕ(W1x+ b1) + b2,
where ϕ : Rn1 → Rn1 is GroupSort (Householder) with group size ng. Denote N = n1

ng
. Suppose

there exist ρ > 0, γ, ν, τ ∈ RN , λ ∈ RN
+ , and µ ∈ Rn0

+ such that1⊤
n0
µ− 2ρ 0 W2

0 W⊤
1 (T − 2S)W1 −Q W⊤

1 (P + S)

W2
⊤ (P + S)W1 −T − 2P

 ⪯ 0, (14)

where (T, S, P) are given by (7) (eq. (8)), and Q := diag(µ). Then |fθ(x) − fθ(y)| ≤ ρ∥x −
y∥∞∀x, y ∈ Rn0 .

Multi-layer case. The above analysis can easily be extended to address the multi-layer network
case with GroupSort/Householder activations. Again, we adopt the setting in Wang et al. (2022) and
choose nl = 1. By slightly modifying the above analysis, we then obtain the following result.
Theorem 3. Consider the ℓ-layer feedforward neural network (1), where ϕ is GroupSort (House-

holder) with group size ng in all layers. Let N =
∑l−1

i=1 ni

ng
be the total number of groups. Suppose

there exist ρ > 0, γ, ν, τ ∈ RN , λ ∈ RN
+ , and µ ∈ Rn0

+ such that

M(ρ, T) =

[
0 A
0 B

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
0 A
0 B

]
+


1⊤
n0
µ− 2ρ 0 . . . Wl

0 −Q . . . 0
...

...
. . .

...
Wl

⊤ 0 . . . 0

 ⪯ 0,

(15)

where (T, S, P) are given by (7) (eq. (8)), and Q := diag(µ). Then |fθ(x) − fθ(y)| ≤ ρ∥x −
y∥∞∀x, y ∈ Rn0 .

Minimizing ρ subject to the constraint (15) yields a SDP problem. For large-scale implementations,
we again set S = P = 0 and implement the SDP as specified in Appendix D.2 to solve it more
efficiently. Based on preliminary testing, this implementation does not introduce conservatism over
the original SDP formulation with non-zero (S, P).

4.4 FURTHER GENERALIZATIONS: RESIDUAL NETWORKS AND IMPLICIT MODELS

In this section, we briefly discuss how our new quadratic constraints in Lemmas 1 and 2 can be used
to generalize various existing SDPs to handle residual networks and implicit learning models with
MaxMin, GroupSort, and Householder activations. Due to space limitations, we keep our discussion
brief. More details can be found in Appendix F.

Residual neural networks. We consider a residual neural network

x0 = x, xi = xi−1 +Giϕ(Wix
i−1 + bi) i = 1, . . . , l, fθ(x) = xl, (16)

referring the reader to Appendix F.1 for the single-layer case. Suppose ϕ is GroupSort/Householder
with the same group size ng for all layers. For simplicity, we define the matrices Ã and B̃ as

Ã =


W1 0 . . . 0 0
W2 W2G1 . . . 0 0

...
...

. . .
...

...
Wl WlG1 . . . WlGl−1 0

 , B̃ =


0 In1 0 . . . 0
0 0 In2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Inl



7

Published as a conference paper at ICLR 2024

Table 1: This table presents the results of our LipSDP-NSR method on several feed-forward neural
networks with MaxMin activations trained on MNIST with more than 96% accuracy, using ℓ2
adversarial training. We compare against several metrics which are described in detail in Section 5.
The computation time in seconds is shown in parentheses and included in Appendix D.3 for the naive
bounds. Similar to Wang et al. (2022), we report the ℓ∞ bounds with respect to label 8 to consider
scalar outputs.

Model
(units per layer)

ℓ2 ℓ∞

Sample FGL LipSDP-NSR LipSDP-RR MP Sample FGL LipSDP-NSR LipSDP-RR Norm Eq. MP

2-layer

16 units 20.98 22.02 22.59 (54) 23.92 (18) 23.46 142.42 153.22 202.82 (94) 207.3 (34) 632.52 543
32 units 34.64 37.75 38.55 (86) 40.28 (24) 42.46 307.95 318.91 368.68 (128) 404.8 (44) 1079.4 1140
64 units 63.35 - 73.77 (160) 74.31 (23) 83.98 653.07 - 885.89 (147) 870.8 (38) 2065.6 3572

128 units 55.44 - 70.87 (182) 72.18 (55) 80.02 667.55 - 1058.8 (236) 1033.1 (77) 1984.4 4889

5-layer 32 units 106.35 - 224.53 (53) 388.0 (69) 298.41 932.89 - 2969.5 (96) 4283.1 (137) 6286.8 522712
64 units 232.21 - 386.81 (360) 623.4 (228) 520.73 2187.32 - 6379.8 (190) 8321.3 (416) 10831 1337103

8-layer

32 units 113.34 - 401.03 (58) 1078.5 (178) 780 873.65 - 4303.9 (120) 8131.1 (374) 11229 2.01E+07
64 units 257.63 - 722.34 (116) 1683.7 (1426) 1241 2147.64 - 9632.2 (188) 1.886E+04 (2495) 20226 1.22E+08

128 units 258.85 - 714.14 (219) - 1167 2496.75 - 10164 (318) - 19996 3.35E+08
256 units 207.08 - 642.07 (612) - 934 1845.13 - 9256.3 (769) - 17978 1.13E+09

18-layer
32 units 267.32 - 17432 (64) - 73405 1693.49 - 1.7599E+05 (78) - 4.881E+05 2.23E+13
64 units 523.85 - 22842 (129) - 84384 2037.21 - 1.9367E+05 (150) - 6.3958E+05 1.00E+15

128 units 536.04 - 24271 (300) - 74167 685.88 - 1.9689E+05 (331) - 6.7959E+05 2.79E+16

to compactly describe the model (16) as B̃x = ϕ(Ãx+ b) with b =
[
b⊤1 . . . b⊤l

]⊤
. Then we obtain

the following theorem.

Theorem 4. Consider the multi-layer residual network (16), where ϕ is GroupSort (Householder)
with the same group size ng for all layers. Define N =

∑l
i=1 ni

ng
. Suppose there exist ρ > 0,

γ, ν, τ ∈ RN and λ ∈ RN
+ such that

[
Ã

B̃

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
Ã

B̃

]
+


(1− ρ)In0

G1 . . . Gl

G⊤
1 G⊤

1 G1 . . . G⊤
1 Gl

...
...

. . .
...

G⊤
l G⊤

l G1 . . . G⊤
l Gl

 ⪯ 0, (17)

where (T, S, P) are given by (7) (eq. (8)). Then (16) is
√
ρ-Lipschitz in the ℓ2 → ℓ2 sense.

From empirical studies we know that, when implementing the SDP, we can either set S = 0 or P = 0
(but not both), yielding the same SDP solution as with non-zero (S, P).

Implicit learning models. With our proposed quadratic constraints, we can also formulate SDPs for
the Lipschitz analysis of implicit models with GroupSort/Householder activations. When the activa-
tion function is slope-restricted on [0, 1], SDPs can be formulated for the Lipschitz analysis of both
deep equilibrium models (DEQs) (Bai et al., 2019) and neural ordinary differential equations (Neural
ODEs) (Chen et al., 2018). For example, a variant of LipSDP has been formulated in (Revay et al.,
2020, Theorem 2) to address the Lipschitz bounds of DEQs with [0, 1]-slope-restricted activations
based on the quadratic constraint in (Fazlyab et al., 2019, Lemma 1). When GroupSort/Householder
is used, we can easily modify the result in (Revay et al., 2020, Theorem 2) to obtain a new SPD for
DEQs with GroupSort/Householder activations via replacing the slope-restricted quadratic constraints
with (6) in Lemma 1/2. Similar results can also be obtained for neural ODEs. Due to the space limit,
we defer the detailed discussion of such extensions to Appendices F.3 and F.4.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical results demonstrating the effectiveness of our proposed SDP,
whose solution we denote by LipSDP-NSR. Additional numerical results including experiments on
residual neural networks are included in Appendix E. Code to reproduce all experiments is provided
at https://github.com/ppauli/QCs_MaxMin. Following the same experimental setting
as Wang et al. (2022), we evaluate our approach on several MaxMin neural networks trained on the
MNIST dataset (LeCun & Cortes, 2010) and compare LipSDP-NSR to four other measurements:

• Sample: The sampling approach computes the norm of the gradient (or the Jacobian) on 200k
random samples from the input space. This measurement is easy to compute and provides a lower
bound on the true Lipschitz constant.

8

https://github.com/ppauli/QCs_MaxMin

Published as a conference paper at ICLR 2024

• Formal global Lipschitz (FGL): This metric is computed by iterating over all (including infeasible)
activation patterns. Despite being an upper bound on the true Lipschitz constant, this value is
accurate. However, it can only be computed for small networks as it is an exponential-time search.
We provide computation details for FGL on GroupSort networks below.

• LipSDP-RR We formulate MaxMin activations as residual ReLU networks (3) and solve an SDP
using slope-restriction quadratic constraints.

• Equivalence of Norms (Norm Eq.): This bound on the ℓ∞-Lipschitz bound is obtained using the
equivalence of norms, i. e.,

√
n0 · ℓ2-LipSDP-NSR.

• Matrix-Product (MP): Naive upper bound of the product of the spectral norms of the weights.

Implementation details of FGL. As shown in Virmaux & Scaman (2018), based on Rademacher’s
theorem, if f is Lipschitz continuous, then f is almost everywhere differentiable, and Lf =
supx ∥∇f(x)∥q. From this result and based on the chain rule, we can write the Lipschitz con-
stant of the network f as

Lf = sup
x

∥Wl∇ϕ(fl−1(x))Wl−1 · · · ∇ϕ(f1(x))W1∥q, (18)

where ϕ is the GroupSort activation with group size ng and fi(x) = Wix
i−1 + bi, i = 1, . . . , l − 1.

Given that GroupSort is simply a rearrangement of the values of the activation, the Jacobian ∇ϕ(f(·))
is a permutation matrix. Let Png

be the set of permutation matrices of size ng × ng , N = n
ng

and let
us define the set of GroupSort permutations:

P̃ng
=

{
blkdiag(P1, . . . , PN) | P1 . . . , PN ∈ Png

}
. (19)

Following the same reasoning as Wang et al. (2022) and Virmaux & Scaman (2018), we can upper
bound Lf as follows:

Lf ≤ max
P̃1,...,P̃l−1∈P̃ng

∥∥∥WlP̃l−1Wl−1 · · · P̃1W1

∥∥∥
q

:= FGL. (20)

Implementation details of LipSDP-NSR & discussion of the results. We solve problem (10)
and an SDP that minimizes ρ subject to (15), using YALMIP (Löfberg, 2004) with the solver Mosek
(MOSEK ApS, 2020) in Matlab on a standard i7 note book. Our results and the other bounds are
summarized in Table 1. For all networks, LipSDP-NSR clearly outperforms MP and the equivalence
of norms bound. More detailed discussions are given in Appendices D and E.

Limitations. SDP-based Lipschitz bounds are the best bounds that can be computed in polynomial
time. One limitation is their scalability to large neural networks that has been tackled by structure
exploiting approaches (Newton & Papachristodoulou, 2023; Xue et al., 2022; Pauli et al., 2023a). Our
implementation incorporates such approaches and we provide implementation details in Appendix D.
In addition, we see potential that new SDP solvers or tailored SDP solvers (Parrilo, 2000; Gramlich
et al., 2023a) will mitigate this limitation in the future. Finally, the concurrent work in Wang et al.
(2024) has developed the exact-penalty form of LipSDP for the slope-restricted activation case,
enabling the use of first-order optimization methods for scaling up the computation. We believe that
the argument in Wang et al. (2024) can be modified to improve the scalability of our proposed SDP
conditions.

6 CONCLUSION

We proposed a SDP-based method for computing Lipschitz bounds of neural networks with MaxMin,
GroupSort and Householder activations with respect to ℓ2- and ℓ∞-perturbations. To this end, we
derived novel quadratic constraints for GroupSort and Householder activations and set up SDP
conditions that generalize LipSDP and its variants beyond the original slope-restricted activation
setting. Our analysis method covers a large family of network architectures, including residual,
non-residual, and implicit models, bridging the gap between SDP-based Lipschitz analysis and this
important new class of activation functions. Future research includes finding specific quadratic
constraints for other general activation functions and nonlinear parts in the neural network.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

P. Pauli and F. Allgöwer are funded by Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy - EXC 2075 - 390740016 and under grant
468094890. A. Havens and B. Hu are generously supported by the NSF award CAREER-2048168,
the AFOSR award FA9550-23-1-0732, and the IBM/IIDAI award 110662-01. A. Araujo, S. Garg,
and F. Khorrami are supported in part by the Army Research Office under grant number W911NF-
21-1-0155 and by the New York University Abu Dhabi (NYUAD) Center for Artificial Intelligence
and Robotics, funded by Tamkeen under the NYUAD Research Institute Award CG010. P. Pauli also
acknowledges the support by the Stuttgart Center for Simulation Science (SimTech) and the support
by the International Max Planck Research School for Intelligent Systems (IMPRS-IS).

REFERENCES

Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In
International Conference on Machine Learning, pp. 291–301. PMLR, 2019.

Alexandre Araujo, Aaron J Havens, Blaise Delattre, Alexandre Allauzen, and Bin Hu. A unified
algebraic perspective on Lipschitz neural networks. In International Conference on Learning
Representations, 2023.

Anil Aswani, Humberto Gonzalez, S Shankar Sastry, and Claire Tomlin. Provably safe and robust
learning-based model predictive control. Automatica, 49(5):1216–1226, 2013.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, 2017.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in Neural Information Processing
Systems, pp. 908–918, 2017.

Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5:411–444, 2022.

Joaquin Carrasco, Matthew C Turner, and William P Heath. Zames–falb multipliers for absolute
stability: From o’ shea’ s contribution to convex searches. European Journal of Control, 28:1–19,
2016.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic optimization for
Lipschitz constants of relu networks. Advances in Neural Information Processing Systems, 33:
19189–19200, 2020.

Jeremy EJ Cohen, Todd Huster, and Ra Cohen. Universal Lipschitz approximation in bounded depth
neural networks. arXiv preprint arXiv:1904.04861, 2019.

Patrick L Combettes and Jean-Christophe Pesquet. Lipschitz certificates for neural network structures
driven by averaged activation operators. arXiv, 2019, 2019.

Filippo Fabiani and Paul J Goulart. Neural network controllers for uncertain linear systems. arXiv
preprint arXiv:2204.13209, 2022.

Farzan Farnia, Jesse Zhang, and David Tse. Generalizable adversarial training via spectral normaliza-
tion. In International Conference on Learning Representations, 2019.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of Lipschitz constants for deep neural networks. 2019.

10

Published as a conference paper at ICLR 2024

Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions on
Automatic Control, 2020.

Dennis Gramlich, Tobias Holicki, Carsten W. Scherer, and Christian Ebenbauer. A structure exploiting
sdp solver for robust controller synthesis. IEEE Control Systems Letters, 7:1831–1836, 2023a. doi:
10.1109/LCSYS.2023.3277314.

Dennis Gramlich, Patricia Pauli, Carsten W Scherer, Frank Allgöwer, and Christian Ebenbauer.
Convolutional neural networks as 2-D systems. arXiv preprint arXiv:2303.03042, 2023b.

Navid Hashemi, Justin Ruths, and Mahyar Fazlyab. Certifying incremental quadratic constraints for
neural networks via convex optimization. In Learning for Dynamics and Control, pp. 842–853.
PMLR, 2021.

Aaron J Havens, Alexandre Araujo, Siddharth Garg, Farshad Khorrami, and Bin Hu. Exploiting
connections between Lipschitz structures for certifiably robust deep equilibrium models. In
Advances in Neural Information Processing Systems, 2023.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. Advances in Neural Information Processing Systems, 30, 2017.

Kai Hu, Klas Leino, Zifan Wang, and Matt Fredrikson. A recipe for improved certifiable robustness:
Capacity and data. arXiv preprint arXiv:2310.02513, 2023a.

Kai Hu, Andy Zou, Zifan Wang, Klas Leino, and Matt Fredrikson. Unlocking deterministic robustness
certification on imagenet. In Thirty-seventh Conference on Neural Information Processing Systems,
2023b. URL https://openreview.net/forum?id=SHyVaWGTO4.

Yujia Huang, Huan Zhang, Yuanyuan Shi, J Zico Kolter, and Anima Anandkumar. Training certifiably
robust neural networks with efficient local Lipschitz bounds. Advances in Neural Information
Processing Systems, 34:22745–22757, 2021.

Ming Jin and Javad Lavaei. Stability-certified reinforcement learning: A control-theoretic perspective.
IEEE Access, 8:229086–229100, 2020.

Matt Jordan and Alexandros G Dimakis. Exactly computing the local Lipschitz constant of ReLU
networks. In Advances in Neural Information Processing Systems, pp. 7344–7353, 2020.

Chung-Yao Kao and Anders Rantzer. Stability analysis of systems with uncertain time-varying delays.
Automatica, 43(6):959–970, 2007.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Sungyoon Lee, Jaewook Lee, and Saerom Park. Lipschitz-certifiable training with a tight outer bound.
In Advances in Neural Information Processing Systems, pp. 16891–16902, 2020.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning, 2021.

Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Joern-Henrik Jacobsen.
Preventing gradient attenuation in Lipschitz constrained convolutional networks. In Advances in
Neural Information Processing Systems, 2019.

J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004.

Max Losch, David Stutz, Bernt Schiele, and Mario Fritz. Certified robust models with slack control
and large Lipschitz constants. arXiv preprint arXiv:2309.06166, 2023.

11

https://openreview.net/forum?id=SHyVaWGTO4

Published as a conference paper at ICLR 2024

Alexandre Megretski and Anders Rantzer. System analysis via integral quadratic constraints. IEEE
Transactions on Automatic Control, 42(6):819–830, 1997.

Laurent Meunier, Blaise J Delattre, Alexandre Araujo, and Alexandre Allauzen. A dynamical system
perspective for Lipschitz neural networks. In International Conference on Machine Learning, pp.
15484–15500. PMLR, 2022.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.2.5, 2020.

Matthew Newton and Antonis Papachristodoulou. Exploiting sparsity for neural network verification.
In Learning for Dynamics and Control, pp. 715–727. PMLR, 2021.

Matthew Newton and Antonis Papachristodoulou. Sparse polynomial optimisation for neural network
verification. Automatica, 157:111233, 2023.

Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, California Institute of Technology, 2000.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using Lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

Patricia Pauli, Dennis Gramlich, and Frank Allgöwer. Lipschitz constant estimation for 1d convolu-
tional neural networks. In Learning for Dynamics and Control Conference, pp. 1321–1332. PMLR,
2023a.

Patricia Pauli, Ruigang Wang, Ian R Manchester, and Frank Allgöwer. Lipschitz-bounded 1D
convolutional neural networks using the Cayley transform and the controllability Gramian. arXiv
preprint arXiv:2303.11835, 2023b.

H. Pfifer and P. Seiler. Integral quadratic constraints for delayed nonlinear and parameter-varying
systems. Automatica, 56:36 – 43, 2015.

Bernd Prach and Christoph H Lampert. Almost-orthogonal layers for efficient general-purpose
Lipschitz networks. In Computer Vision–ECCV 2022: 17th European Conference, 2022.

Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv
preprint arXiv:2010.01732, 2020.

Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and
Greg Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In
Advances in Neural Information Processing Systems, 2019.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784–9790. IEEE, 2019.

Zhouxing Shi, Yihan Wang, Huan Zhang, J Zico Kolter, and Cho-Jui Hsieh. Efficiently computing lo-
cal Lipschitz constants of neural networks via bound propagation. Advances in Neural Information
Processing Systems, 35:2350–2364, 2022.

Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. In International Conference on Machine
Learning, 2021.

Sahil Singla, Surbhi Singla, and Soheil Feizi. Improved deterministic l2 robustness on CIFAR-10
and CIFAR-100. In International Conference on Learning Representations, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Ugo Tanielian and Gerard Biau. Approximating Lipschitz continuous functions with groupsort neural
networks. In International Conference on Artificial Intelligence and Statistics, pp. 442–450, 2021.

12

Published as a conference paper at ICLR 2024

Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the cayley transform.
In International Conference on Learning Representations, 2021.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certification
of perturbation invariance for deep neural networks. In Advances in Neural Information Processing
Systems, 2018.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Ruigang Wang and Ian Manchester. Direct parameterization of Lipschitz-bounded deep networks. In
International Conference on Machine Learning, pp. 36093–36110. PMLR, 2023.

Zi Wang, Gautam Prakriya, and Somesh Jha. A quantitative geometric approach to neural-network
smoothness. In Advances in Neural Information Processing Systems, 2022.

Zi Wang, Bin Hu, Aaron J Havens, Alexandre Araujo, Yang Zheng, Yudong Chen, and Somesh
Jha. On the scalability and memory efficiency of semidefinite programs for Lipschitz constant
estimation of neural networks. In International Conference on Learning Representations, 2024.

Xiaojun Xu, Linyi Li, and Bo Li. Lot: Layer-wise orthogonal training on improving l2 certified
robustness. In Advances in Neural Information Processing Systems, 2022.

Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani, George J Pappas, and Rajeev Alur.
Chordal sparsity for Lipschitz constant estimation of deep neural networks. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pp. 3389–3396. IEEE, 2022.

He Yin, Peter Seiler, and Murat Arcak. Stability analysis using quadratic constraints for systems with
neural network controllers. IEEE Transactions on Automatic Control, 67(4):1980–1987, 2021.

Wallace Tan Gian Yion and Zhe Wu. Robust machine learning modeling for predictive control using
Lipschitz-constrained neural networks. Computers & Chemical Engineering, pp. 108466, 2023.

Tan Yu, Jun Li, Yunfeng Cai, and Ping Li. Constructing orthogonal convolutions in an explicit
manner. In International Conference on Learning Representations, 2022.

Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recurjac: An efficient recursive algorithm for
bounding Jacobian matrix of neural networks and its applications. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2019.

13

Published as a conference paper at ICLR 2024

A APPLICATIONS OF MAXMIN NEURAL NETWORKS

GroupSort and Householder activations have been introduced as gradient-norm preserving activa-
tion functions. This convenient property lead to the use of neural networks with GroupSort and
Householder activations to fit Lipschitz functions (Anil et al., 2019; Tanielian & Biau, 2021; Cohen
et al., 2019) and to design robust neural networks (Singla et al., 2022; Huang et al., 2021). Using
MaxMin neural networks, Huang et al. (2021); Leino et al. (2021); Hu et al. (2023b;a); Losch et al.
(2023) provide state-of-the-art verified-robust accuracy, that they compute based on information of
the Lipschitz constant and the prediction margin of the trained networks.

Another application of Lipschitz neural networks is in learning-based control with safety, robustness
and stability guarantees (Aswani et al., 2013; Berkenkamp et al., 2017; Jin & Lavaei, 2020; Shi
et al., 2019; Fabiani & Goulart, 2022; Yion & Wu, 2023), for example using MaxMin activations
(Yion & Wu, 2023). LipSDP for MaxMin can potentially reduce the conservatism in the stability and
robustness analysis of such MaxMin network controllers.

B THE QUADRATIC CONSTRAINT FRAMEWORK

The quadratic constraint framework stems from the control community and was developed starting
in the 1960s (Megretski & Rantzer, 1997). In the control literature, quadratic constraints are used
to abstract elements of a dynamical system that cause trouble in the analysis, e.g., nonlinearities,
uncertainties, or time delays. This abstraction then enables the analysis of systems which include such
troublesome elements. The quadratic constraint framework is generally applicable, as long as the
troublesome element can be abstracted by quadratic constraints. For example, Kao & Rantzer (2007)
introduce quadratic constraints for a so-called "delay-difference" operator to describe varying time
delays, Pfifer & Seiler (2015) use a geometric interpretation to derive quadratic constraints for delayed
nonlinear and parameter-varying systems, and Carrasco et al. (2016) summarizes the development of
Zames-Falb multipliers for slope-restricted nonlinearites based on frequency domain arguments. All
previous papers on LipSDP borrow existing quadratic constraints for slope-restricted nonlinearities
from the control literature that are not satisfied by MaxMin, GroupSort, and Householder activations.
This being said, our paper is the first that successfully derives quadratic constraints for GroupSort
and Householder activations, and further, we are the first to formulate quadratic constraints for
sum-preserving elements. The idea we used to derive these quadratic constraints is creative in the
sense that it is very different from all the existing quadratic constraint derivations in the large body of
control literature. The difficulty in deriving new quadratic constraints lies in identifying properties
and characteristics of the troublesome element, in our case a multivariate nonlinearity GroupSort
or Householder, that can (i) be formulated in a quadratic form and (ii) whose quadratic constraint
formulation is tight and descriptive enough to lead to improvements in the analysis. Please see
Appendices C.3 and C.3 for the technical details of our derivation. We use our novel quadratic
constraints to solve the problem of Lipschitz constant estimation. However, the modularity of the
quadratic constraint framework allows to, as well, address different problems, e.g., safety verification
of a MaxMin neural network similar to (Fazlyab et al., 2020; Newton & Papachristodoulou, 2021) or
the stability of a feedback loop that includes a MaxMin neural network, as done in (Yin et al., 2021)
for slope-restricted activations.

C TECHNICAL PROOFS OF MAIN RESULTS

C.1 PROOF FOR MOTIVATING EXAMPLE

In Section 3, we claim that the matrix inequality (4) implies
√
ρ-Lipschitzness for the residual ReLU

network that we obtained from rewriting MaxMin. In the following, we prove this claim. We left and
right multiply (4) with

[
(x− y)⊤ (ReLU(Wx)− ReLU(Wy))⊤

]
and its transpose, respectively,

and obtain[
x− y

ReLU(Wx)− ReLU(Wy)

]⊤ [
I 0
H G

]⊤ [
ρI 0
0 −I

] [
I 0
H G

] [
x− y

ReLU(Wx)− ReLU(Wy)

]
≥

[
x− y

ReLU(Wx)− ReLU(Wy)

]⊤ [
W 0
0 I

]⊤ [
0 T
T −2T

] [
W 0
0 I

] [
x− y

ReLU(Wx)− ReLU(Wy)

]
.

14

Published as a conference paper at ICLR 2024

This inequality can equivalently be rewritten as

ρ(x− y)⊤(x− y)

− (Hx+GReLU(Wx)︸ ︷︷ ︸
=MaxMin(x)

−Hy −GReLU(Wy))⊤(Hx+GReLU(Wx)−Hy −GReLU(Wy))

≥
[

Wx−Wy
ReLU(Wx)− ReLU(Wy)

]⊤ [
0 T
T −2T

] [
Wx−Wy

ReLU(Wx)− ReLU(Wy)

]
,

which we can in turn equivalently state as

ρ∥x− y∥22 − ∥MaxMin(x)−MaxMin(y)∥22

≥
[

Wx−Wy
ReLU(Wx)− ReLU(Wy)

]⊤ [
0 T
T −2T

] [
Wx−Wy

ReLU(Wx)− ReLU(Wy)

]
≥ 0,

where the last inequality holds due to [0, 1]-slope-restriction of ReLU, cmp. (Fazlyab et al., 2019,
Lemma 1). This yields

√
ρ∥x − y∥2 ≥ ∥MaxMin(x) − MaxMin(y)∥2, which completes the

proof.

C.2 PROOF OF LEMMA 1

Let ei denote a N -dimensional unit vector whose i-th entry is 1 and all other entries are 0. Since
GroupSort preserves the sum within each subgroup, we must have e⊤i ⊗ 1⊤

ng
x = e⊤i ⊗ 1⊤

ng
ϕ(x) for

all i = 1, . . . , N . This leads to the following key equality:

(x− y)⊤((eie
⊤
i)⊗ (1ng1

⊤
ng
))(x− y) = (ϕ(x)− ϕ(y))⊤((eie

⊤
i)⊗ (1ng1

⊤
ng
))(ϕ(x)− ϕ(y))

= (ϕ(x)− ϕ(y))⊤((eie
⊤
i)⊗ (1ng

1⊤
ng
))(x− y) = (x− y)⊤((eie

⊤
i)⊗ (1ng

1⊤
ng
))(ϕ(x)− ϕ(y)).

Therefore, we can introduce conic combinations of the subgroup-wise constraints and obtain the
following quadratic equalities:[

x− y
ϕ(x)− ϕ(y)

]⊤ [
diag(γ)⊗ (1ng1

⊤
ng
) 0

0 −diag(γ)⊗ (1ng
1⊤
ng
)

] [
x− y

ϕ(x)− ϕ(y)

]
= 0,[

x− y
ϕ(x)− ϕ(y)

]⊤ [
0 diag(ν)⊗ (1ng

1⊤
ng
)

diag(ν)⊗ (1ng
1⊤
ng
) −2 diag(ν)⊗ (1ng

1⊤
ng
)

] [
x− y

ϕ(x)− ϕ(y)

]
= 0,[

x− y
ϕ(x)− ϕ(y)

]⊤ [
−2 diag(τ)⊗ (1ng1

⊤
ng
) diag(τ)⊗ (1ng1

⊤
ng
)

diag(τ)⊗ (1ng1
⊤
ng
) 0

] [
x− y

ϕ(x)− ϕ(y)

]
= 0.

By these equalities, (6) is equivalent to[
x− y

ϕ(x)− ϕ(y)

]⊤ [
diag(λ)⊗ Ing

0
0 −diag(λ)⊗ Ing

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0. (C.1)

We can easily see that (C.1) holds because the sorting behavior in each subgroup is 1-Lipschitz, i.e.
∥e⊤i ⊗ Ing

(x− y)∥22 ≥ ∥e⊤i ⊗ Ing
(ϕ(x)− ϕ(y))∥22 for i = 1, . . . , N . Hence, we have verified that

the GroupSort/MaxMin activation satisfies the quadratic constraint (6).

C.3 PROOF OF LEMMA 2

First, we prove that the Householder activation satisfies three key equalities on each subgroup and
then we discuss the 1-Lipschitz of Householder activations. The first key equation is

(ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y)) = (x− y)⊤(Ing

− vv⊤)(x− y).

We distinguish between the cases (i) ϕ(x) = x, ϕ(y) = y, (ii) ϕ(x) = (Ing
− 2vv⊤)x, ϕ(y) =

(Ing
− 2vv⊤)y, and (iii) ϕ(x) = x, ϕ(y) = (I − 2vv⊤)y that without loss of generality corresponds

to ϕ(x) = (Ing − 2vv⊤)x, ϕ(y) = y.

15

Published as a conference paper at ICLR 2024

(i) (ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y)) = (x− y)⊤(Ing

− vv⊤)(x− y) holds trivially.

(ii) (ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing − 2vv⊤)(Ing − vv⊤)(Ing − 2vv⊤)(x− y)

= (x−y)⊤(Ing −vv⊤)(x−y)−4(x−y)⊤vv⊤(Ing −vv⊤)(x−y)+4(x−y)⊤vv⊤(Ing −
vv⊤)vv⊤(x− y) = (x− y)⊤vv⊤(x− y) holds, using that vv⊤(Ing

− vv⊤)vv⊤ = vv⊤ −
vv⊤ = 0.

(iii) (ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(ϕ(x)− ϕ(y))

= (x− (Ing − 2vv⊤)y)⊤(Ing − vv⊤)(x− (Ing − 2vv⊤)y)

= ((x− y) + 2vv⊤y)⊤(Ing
− vv⊤)((x− y) + 2vv⊤y)

= (x−y)⊤(Ing
−vv⊤)(x−y)−4(x−y)⊤(Ing

−vv⊤)vv⊤y+4y⊤vv⊤(Ing
−vv⊤)vv⊤y

holds, again using that (Ing
− vv⊤)vv⊤ = vv⊤ − vv⊤ = 0.

Next we prove that the Householder activation satisfies the equation

(ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(x− y) = (x− y)⊤(Ing − vv⊤)(x− y),

again considering the three cases (i), (ii) and (iii).

(i) (ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(x− y) = (x− y)⊤(Ing

− vv⊤)(x− y) holds trivially.

(ii) (ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(x− y)

= (x− y)⊤(Ing
− 2vv⊤)(Ing

− vv⊤)(x− y)

= (x− y)⊤(Ing
− 3vv⊤ + 2vv⊤vv⊤)(x− y)

= (x− y)⊤(Ing
− vv⊤)(x− y) holds.

(iii) (ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(x− y)

= (x− y⊤(Ing
− 2vv⊤))(Ing

− vv⊤)(x− y)

= (x− y)⊤(Ing
− vv⊤)(x− y)− 2y⊤vv⊤(Ing

− vv⊤)(x− y)

= (x− y)⊤(Ing
− vv⊤)(x− y) using that vv⊤(Ing

− vv⊤) = vv⊤ − vv⊤ = 0.

Accordingly, we show that the Householder activation function satisfies

(ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(ϕ(x)− ϕ(y)) = (x− y)⊤(Ing − vv⊤)(ϕ(x)− ϕ(y))

(i) (ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(ϕ(x)− ϕ(y)) = (ϕ(x)− ϕ(y))⊤(Ing − vv⊤)(x− y) holds
trivially.

(ii) (ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing − 2vv⊤)(Ing − vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing − 3vv⊤ + 2vv⊤vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y)) holds.

(iii) (ϕ(x)− ϕ(y))⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y))

= (x− y⊤(Ing − 2vv⊤))(Ing − vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing − vv⊤)(x− y)− 2y⊤vv⊤(Ing − vv⊤)(ϕ(x)− ϕ(y))

= (x− y)⊤(Ing
− vv⊤)(ϕ(x)− ϕ(y)), using that vv⊤(Ing

− vv⊤) = vv⊤ − vv⊤ = 0.

Therefore, we can introduce conic combinations of the subgroup-wise constraints and obtain the
following quadratic equalities:[

x− y
ϕ(x)− ϕ(y)

]⊤ [
diag(γ)⊗ (1ng

1⊤
ng
) 0

0 −diag(γ)⊗ (1ng
1⊤
ng
)

] [
x− y

ϕ(x)− ϕ(y)

]
= 0,[

x− y
ϕ(x)− ϕ(y)

]⊤ [
0 diag(ν)⊗ (1ng

1⊤
ng
)

diag(ν)⊗ (1ng
1⊤
ng
) −2 diag(ν)⊗ (1ng

1⊤
ng
)

] [
x− y

ϕ(x)− ϕ(y)

]
= 0,[

x− y
ϕ(x)− ϕ(y)

]⊤ [
−2 diag(τ)⊗ (1ng1

⊤
ng
) diag(τ)⊗ (1ng1

⊤
ng
)

diag(τ)⊗ (1ng1
⊤
ng
) 0

] [
x− y

ϕ(x)− ϕ(y)

]
= 0.

16

Published as a conference paper at ICLR 2024

By these equalities, (6) is equivalent to[
x− y

ϕ(x)− ϕ(y)

]⊤ [
diag(λ)⊗ Ing

0
0 −diag(λ)⊗ Ing

] [
x− y

ϕ(x)− ϕ(y)

]
≥ 0. (C.2)

The Householder activation is gradient norm preserving by design as I and I − 2vv⊤ have only
singular values 1. Accordingly, it is 1-Lipschitz, i.e., ∥x−y∥2 ≥ ∥ϕ(x)−ϕ(y)∥2 holds and inequality
(C.2) is a conic combination of the Lipschitz property.

C.4 PROOF OF THEOREM 1

We want to prove that (9) implies ∥fθ(x)− fθ(y)∥22 ≤ ρ∥x− y∥22 for any x, y ∈ Rn0 . To do this, we
set x0 = x, and y0 = y. Then we define

x =


x0

x1

...
xl−1

 , y =


y0

y1

...
yl−1

 (C.3)

where xi = ϕ(Wix
i−1 + bi) and yi = ϕ(Wiy

i−1 + bi). Now we left and right multiply (9) with
(x− y)⊤ and its transpose, respectively. This leads to

(x− y)⊤
[
A
B

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
A
B

]
(x− y)

+(x− y)⊤


−ρIn0

0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . W⊤

l Wl

 (x− y) ≤ 0,

which can be rewritten as
ρ(x0 − y0)⊤(x0 − y0)− (xl−1 − yl−1)⊤W⊤

l Wl(x
l−1 − yl−1)

≥
[

Ax−Ay
ϕ(Ax+ b)− ϕ(Ay + b)

] [
T − 2S P + S
P + S −T − 2P

] [
Ax−Ay

ϕ(Ax+ b)− ϕ(Ay + b)

]
,

(C.4)

where b⊤ =
[
b1

⊤ b2
⊤ . . . bl−1

⊤]. Based on Lemma 1 (Lemma 2), the right side of (C.4) is
guaranteed to be non-negative. Therefore, we have

ρ(x0 − y0)⊤(x0 − y0)− (xl−1 − yl−1)⊤W⊤
l Wl(x

l−1 − yl−1) ≥ 0.

Noting that fθ(x)− fθ(y) = Wlx
l−1 + bl −Wly

l−1 − bl = Wl(x
l−1 − yl−1) and x0 − y0 = x− y,

we finally arrive at
∥fθ(x)− fθ(y)∥22 ≤ ρ∥x− y∥22.

This completes the proof.

C.5 PROOF OF THEOREM 2

This theorem considers a single-layer neural network fθ(x) = W2ϕ(W1x+ b1)+ b2 with fθ(x) ∈ R.
Given x0, y0 ∈ Rn0 , we set x1 = ϕ(W1x

0 + b1), and y1 = ϕ(W1y
0 + b1). We left and right

multiply (14) with
[
1 (x0 − y0)⊤ (x1 − y1)⊤

]
and its transpose, respectively, and obtain 1

x0 − y0

x1 − y1

⊤ 1⊤
n0
µ− 2ρ 0 W2

0 W⊤
1 (T − 2S)W1 −Q W⊤

1 (P + S)

W2
⊤ (P + S)W1 −T − 2P

 1
x0 − y0

x1 − y1

 ≤ 0, (C.5)

which is equivalent to

2ρ− 2W2(x
1 − y1) ≥

n0∑
i=1

µi(1− δ2i)+[
W1(x

0 − y0)
ϕ(W1x0 + b1)− ϕ(W1y0 + b1)

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
W1(x

0 − y0)
ϕ(W1x

0 + b1)− ϕ(W1y
0 + b1)

]
,

(C.6)

17

Published as a conference paper at ICLR 2024

where δi is the i-th entry of the vector (x0 − y0). Given that we aim to find some ρ that solves
problem (13), we consider only pairs of x0, y0, x1, y1 that satisfy the constraints in (13). Based on
these constraints, the right hand side of (C.6) has to be non-negative. This means that we must have
ρ ≥ W2(x

1 − y1). Therefore, ρ provides an upper bound for the objective of problem (13), and we
have ρ ≥ Lmin. This immediately leads to the desired conclusion.

C.6 PROOF OF THEOREM 3

Let (x,y) be defined by (C.3). We left and right multiply (15) with
[
1 (x− y)⊤

]
and its transpose,

respectively, and obtain

(x− y)⊤
[
A
B

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
A
B

]
(x− y)

+

[
1

(x− y)

]⊤ 
1⊤
n0
µ− 2ρ 0 . . . Wl

0 −Q . . . 0
...

...
. . .

...
Wl

⊤ 0 . . . 0


[

1
(x− y)

]
≤ 0,

which is equivalent to

2ρ− 2Wl(x
l−1 − yl−1) ≥

n0∑
i=1

µi(1− δ2i)+[
Ax−Ay

ϕ(Ax+ b)− ϕ(Ay + b)

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
Ax−Ay

ϕ(Ax+ b)− ϕ(Ay + b)

]
,

(C.7)

where b⊤ =
[
b1

⊤ b2
⊤ . . . bl−1

⊤], and δi is the i-th entry of the vector (x0 − y0). Following
the same arguments in Section C.5, we can show ρ ≥ Wl(x

l−1 − yl−1), which leads to the desired
conclusion.

C.7 PROOF OF THEOREM 4

Given x0 ∈ Rn0 , let {xi}li=1 be defined by (16). Similarly, given y0 ∈ Rn0 , we can calculate the
output of the multi-layer residual network based on the recursion yi = yi−1 +Giϕ(Wiy

i−1 + bi).

We define x̃i = ϕ(Wix
i−1 + bi) for i = 1, 2, . . . , l. Then we have xi = xi−1 + Gix̃

i for i =
1, 2, . . . , l. Via setting x̃0 = x0, we can unroll this recursive expression to obtain the following
relationship:

xi = x̃0 +
i∑

k=1

Gkx̃
k.

Therefore, we have x̃i = ϕ(Wi(x̃
0 +

∑i−1
k=1 Gkx̃

k) + bi) for i = 1, . . . , l.

Similarly, we define ỹi = ϕ(Wiy
i−1 + bi). We must have ỹi = ϕ(Wi(ỹ

0 +
∑i−1

k=1 Gkỹ
k) + bi) for

i = 1, . . . , l.

Next, we define

x̃ =


x̃0

x̃1

...
x̃l

 , ỹ =


ỹ0

ỹ1

...
ỹl

 , b =


b1
b2
...
bl

 (C.8)

Then it is straightforward to verify B̃x̃ = ϕ(Ãx̃+ b) and B̃ỹ = ϕ(Ãỹ + b). This leads to

B̃(x̃− ỹ) = ϕ(Ãx̃+ b)− ϕ(Ãỹ + b) (C.9)

18

Published as a conference paper at ICLR 2024

Now we left and right multiply (17) with (x̃− ỹ)⊤ and its transpose, respectively, and obtain

(x̃− ỹ)⊤
[
Ã

B̃

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
Ã

B̃

]
(x̃− ỹ)

+ (x̃− ỹ)⊤


(1− ρ)In0

G1 . . . Gl

G⊤
1 G⊤

1 G1 . . . G⊤
1 Gl

...
...

. . .
...

G⊤
l G⊤

l G1 . . . G⊤
l Gl

 (x̃− ỹ) ≤ 0,

which can be combined with (C.9) to show

ρ∥x̃0 − ỹ0∥22 − ∥x̃0 − ỹ0 +

l∑
k=1

Gk(x̃
k − ỹk)∥22

≥
[

Ãx̃− Ãỹ

ϕ(Ãx̃+ b)− ϕ(Ãỹ + b)

] [
T − 2S P + S
P + S −T − 2P

] [
Ãx̃− Ãỹ

ϕ(Ãx̃+ b)− ϕ(Ãỹ + b)

]
.

(C.10)

Based on Lemma 1/Lemma 2, we know the right side of (C.10) must be non-negative. Therefore, we
have

∥x̃0 − ỹ0 +

l∑
k=1

Gk(x̃
k − ỹk)∥2 ≤ √

ρ∥x̃0 − ỹ0∥2.

Recall that we have x− y = x̃0 − ỹ0 and fθ(x)− fθ(y) = x̃0 − ỹ0 +
∑l

k=1 Gk(x̃
k − ỹk). Hence

we have ∥fθ(x)− fθ(y)∥2 ≤ √
ρ∥x− y∥2, which completes the proof.

D IMPLEMENTATION DETAILS FOR IMPROVED SCALABILITY OF THE SDP

It is well-known that SDPs run into scalability problems for large-scale problems. To improve the
scalability of the proposed SDPs for Lipschitz constant estimation, efforts have been made to exploit
the structure of the matrix that characterizes the SDP condition, using chordal sparsity (Newton &
Papachristodoulou, 2023; Xue et al., 2022) or layer-by-layer interpretations (Pauli et al., 2023a). We
incorporated these tricks in our implementations. In the following, we present details on our practical
implementations of the SDPs based on Theorem 1 and Theorem 3 and address some additional tricks
to trade off efficiency and accuracy of the SDP.

D.1 PRACTICAL IMPLEMENTATION FOR SDP BASED ON THEOREM 1

To enhance computational tractability in large-scale problems, it is desirable to formulate layer-wise
SDP conditions rather than the sparse end-to-end one (Pauli et al., 2023a; Xue et al., 2022). To
make such simplifications, we set ν = 0 and τ = 0, which does not change the final solution of
the above SDP for feedforward neural networks in (1). Therefore, we can just set S = P = 0.
Further, we denote Ti = λiIng

+ γi(1ng
1⊤
ng
), which yields T = blkdiag(T1, . . . , Tl−1). Then, (9)

can equivalently be stated as

blkdiag(W⊤
1 T1W1 − ρI,W⊤

2 T2W2 − T1, . . . ,W
⊤
l Wl − Tl−1) ⪯ 0. (D.1)

Consequently, we can implement a set of l SDP constraints, using the blocks in the matrix in (D.1),
rather than using the large and sparse condition (9). This idea follows along the lines of Newton &
Papachristodoulou (2023); Xue et al. (2022), where the sparsity pattern of the block-tridiagonal LMI
in Fazlyab et al. (2019) is exploited. The decomposition of the matrix in (D.1) is straightforward due
to its even simpler block-diagonal structure. Specifically, setting T0 = ρI , we solve the SDP

min
ρ,T

ρ s. t. W⊤
1 T1W1 − T0 ⪯ 0, W⊤

2 T2W2 − T1 ⪯ 0, . . . , W⊤
l−1Wl−1 − Tl−1 ⪯ 0. (D.2)

D.2 PRACTICAL IMPLEMENTATION FOR SDP BASED ON THEOREM 3

We argue accordingly for ℓ∞ Lipschitz bounds based on Theorem 3. Minimizing ρ subject to (15)
yields a SDP problem. For large-scale implementations, we set S = P = 0, which reduces the

19

Published as a conference paper at ICLR 2024

number of decision variables without affecting the solution. Further, we reorder rows and columns of
the matrix in (15) by a similarity transformation. The rearranged version of the matrix in (15) has a
block-diagonal structure that leads to the following decoupled conditions with T0 = Q:

Ti−1 −W⊤
i TiWi ⪰ 0, i = 1, . . . , l − 1,

[
Tl−1 Wl

⊤

Wl 2ρ−
∑n0

j=1 µj

]
⪰ 0. (D.3)

This yields a set of non-sparse constraints such that the resulting SDP can be solved in a more efficient
way.

D.3 TRADE-OFF BETWEEN ACCURACY AND COMPUTATIONAL EFFICIENCY

In Section 5, we focus on the computation times of the SDP-based methods. For completeness and to
discuss the trade-off between accuracy and computational efficiency, we include computation times
for the naive ℓ2 bounds FGL in this section. This involves the lower bound from sampling and the
matrix product bound for all models analyzed in Table 1.

Table 2: This table presents the computation times in seconds of all naive ℓ2 bounds for the neural
networks used in Table 1: the sample bound evaluated on 200k samples, the FGL bound, and the
matrix product bound. See Section 5 for details on the bounds.

Model
(units per layer)

ℓ2

Sample FGL MP

2-layer

16 units 12.02 4.54 6.16
32 units 13.08 81.92 5.33
64 units 12.84 - 3.95

128 units 12.61 - 3.6

5-layer 32 units 13.18 - 5.43
64 units 14.83 - 5.68

8-layer

32 units 14.14 - 5.57
64 units 14.27 - 5.6

128 units 14.15 - 9.85
256 units 13.74 - 9.3

18-layer
32 units 23.28 - 7.64
64 units 21.09 - 9.22

128 units 19.48 - 4.9

The computation of the matrix product bound (MP), while naive, is quite fast, taking less than 10 s
for all our models. It provides reasonably accurate bounds when the number of layers is small, but
becomes very loose for deep neural networks. LipSDP-NSR is in comparison computationally more
expensive, while providing significantly tighter bounds, cmp. Table 1. The computation of a lower
bound by sampling (Sample) takes between 12 and 23 s on our models, which is also comparably
cheap. This bound is not helpful in further verification steps but it gives us an idea on the range in
which the true Lipschitz constant lies. Finally, it may seem surprising at first that the computation of
FGL can be computed comparably fast to LipSDP-NSR for the small models 2FC-16 and 2FC-32.
However, due to the exponential complexity of this approach it becomes intractable for all larger
models.

D.4 FURTHER TRICKS TO TRADE OFF EFFICIENCY AND ACCURACY OF THE SDP

Considering less decision variables per layer, cmp. the variants LipSDP-Neuron and LipSDP-Layer
in Fazlyab et al. (2019), can be used to trade off efficiency and accuracy of the SDP.

• LipSDP-NSR-Neuron-2: 2 decision variables per group (as implemented in problem (D.2))

• LipSDP-NSR-Neuron-1: 1 decision variable per group (γi = 0, i = 1, . . . , l)

20

Published as a conference paper at ICLR 2024

Table 3: This table presents additional results of our LipSDP-NSR method on several feed-forward
neural networks trained on MNIST with more than 96% accuracy. The first table describe the result
with classic training while the second table describes the results for ℓ∞ adversarial training. We use
the same setting as described in the paper.

Model
(units per layer)

ℓ2 ℓ∞

Sample FGL LipSDP-NSR MP Sample FGL LipSDP-NSR Norm Eq. MP

Classic Training

2-layer

16 units 21.18 21.18 21.39 (76) 22.86 147.63 162.14 203.98 (149) 599.04 488.85
32 units 20.40 20.40 21.09 (152) 23.65 196.21 202.78 244.14 (220) 590.43 782.25
64 units 17.51 - 20.34 (279) 22.67 212.23 - 300.21 (425) 569.58 1164.53

128 units 16.25 - 19.07 (673) 21.94 179.04 - 297.00 (650) 533.86 1339.68

5-layer 32 units 107.46 - 176.69 (130) 240.15 1073.68 - 2471.64 (271) 4947.20 2.96e+05
64 units 101.04 - 132.48 (359) 166.23 570.29 - 1688.85 (581) 3709.43 2.63e+05

8-layer

32 units 118.03 - 414.02 (188) 711.15 1353.52 - 5134.45 (286) 11592.60 1.36e+07
64 units 93.33 - 246.35 (357) 405.13 863.88 - 3620.96 (494) 6897.82 3.60e+07

128 units 81.99 - 203.65 (595) 306.68 701.12 - 2516.24 (912) 5702.34 1.01e+08
256 units 54.83 - 149.90 (1337) 225.18 425.83 - 2133.17 (2256) 4197.23 4.22e+08

18-layer
32 units 288.22 - 1.45e+04 (270) 7.70e+04 2335.92 - 1.52e+05 (285) 4.06e+05 2.88e+13
64 units 361.36 - 4.77e+04 (496) 2.05e+05 1677.43 - 7.13e+05 (559) 1.34e+06 4.03e+15

128 units 150.60 - 5.56e+05 (1047) 8.73e+06 1457.68 - 5.70e+06 (1331) 1.56e+07 9.35e+17

ℓ∞ Adversarial training

2-layer

16 units 13.30 14.79 15.04 (76) 17.47 57.61 65.69 92.90 (179) 421.12 258.70
32 units 14.51 15.73 15.88 (120) 17.86 98.30 106.28 148.03 (242) 444.64 453.64
64 units 20.31 - 25.32 (255) 28.95 141.66 - 229.96 (423) 708.96 900.19

128 units 31.90 - 44.48 (559) 52.19 307.72 - 485.39 (802) 1245.44 2287.62

5-layer 32 units 24.02 - 62.62 (138) 93.75 162.47 - 632.41 (294) 1753.36 82751.08
64 units 68.40 - 64.06 (138) 221.65 591.78 - 737.41 (291) 1793.68 596213.27

8-layer

32 units 23.55 - 134.44 (155) 260.87 178.88 - 1294.9 (310) 3764.32 9148849
64 units 67.43 - 284.41 (333) 531.62 546.66 - 3209.0 (621) 7963.48 7.48E+07

128 units 123.39 - 461.46 (624) 814.95 1073.40 - 5309.5 (1096) 12920.88 3.60E+08
256 units 176.81 - 694.33 (1835) 1132.61 1743.15 - 9415.6 (3578) 19441.24 1.66E+09

18-layer
32 units 244.79 - 9392.8 (182) 37785.55 1508.21 - 80042 (300) 262998 1.54E+13
64 units 210.53 - 10618 (428) 45570.58 1396.26 - 87044 (565) 297304 5.20E+14

128 units 380.77 - 15440 (922) 66761.66 2194.38 - 1.6205E+05 (1117) 432320 3.63E+16

• LipSDP-NSR-Layer-2: 2 decision variables per layer (λ1 = λ2 = · · · = λl, γ1 = γ2 =
· · · = γN)

• LipSDP-NSR-Layer-1: 1 decision variable per layer (λ1 = λ2 = · · · = λl, γ1 = γ2 =
· · · = γN = 0, equivalent to norm of weights)

Another trick is to split a deep neural network in subnetworks. The product of the Lipschitz constants
of the subnetworks yields a Lipschitz bound for the entire neural network.

E ADDITIONAL NUMERICAL RESULTS AND DISCUSSIONS

In Table 3, we present additional results on neural networks with the same architectures as in 1 that
were also trained on the MNIST dataset. The upper half of Table 3 states results from classic training
and the lower half from ℓ∞ adversarial training.

E.1 MORE DISCUSSIONS ON THE NUMERICAL RESULTS IN THE MAIN PAPER

For all the models in Tables 1 and 3, we observe that LipSDP-NSR provides tighter Lipschitz bounds
than the norm product of the weight matrices. For small neural networks, e.g., the 2-layer network
with 16 units, the deviation of LipSDP-NSR to the true Lipschitz constant under the ℓ2 perturbation is
especially small. We note that the computation time increases in polynomial time with the number of
units and decision variables. Due to the convenient block-wise implementation of the SDP conditions,
we observe good scalability of LipSDP-NSR to neural networks with an increasing number of layers,
being able to handle 18-layer neural networks. In comparison to LipSDP-RR, LipSDP-NSR shows
tighter bounds especially for larger neural networks and its computational advantages also become
apparent for larger neural networks. Table 1 shows that for small neural networks LipSDP-RR
provides comparable bounds to LipSDP-NSR and is even evaluated faster. But for larger neural
networks, the bounds of LipSDP-RR are much looser and the computation time blows up. For all
models, the computation time required to solve the SDP for the ℓ2 bounds is slightly faster than the
ℓ∞ case. This is expected as the constraints in (D.3) include a larger SDP condition for the last layer

21

Published as a conference paper at ICLR 2024

than problem (D.2) and additional decision variables µ. We note that our ℓ∞ bounds are not only
significantly smaller than the ℓ∞ bounds of the matrix norm product but also notably smaller (roughly
by factor 2) than the bounds computed via ℓ2 Lipschitz bounds and the equivalence of norms.

E.2 EXTRA NUMERICAL RESULTS ON RESIDUAL NEURAL NETWORKS

In this section, we present numerical results of LipSDP-NSR on residual neural networks as introduced
in Section 4.4. The first and the last layer of our l-layer residual neural networks are linear layers and
the fully residual part consists of the remaining l − 2 layers. In our examples, we choose Gi = I in
all residual layers. We compare our bounds to a sampling-based lower bound, and the matrix product,
where for the i-th residual layer the Lipschitz constant is bounded by 1 + ∥Gi∥2∥Wi∥2. To compute
LipSDP-NSR, we analyze the fully residual part of the neural network using an SDP based on (4).
Then we multiply the result with ∥W1∥∥Wl∥ to obtain a bound for the entire network. We state the
results for the choice P ̸= 0 and S = 0, as well as for P = S = 0 in (17).

Our results are summarized in Table 4. We observe that LipSDP-NSR provides more accurate
Lipschitz bounds than the matrix product. The SDP condition (17) is non-sparse and in this case, it is
non-trivial to break down the constraint (17) into multiple smaller constraints. This is reflected in
the computation time of the SDP solution. The computation times for small residual networks are
lower than for small feed-forward networks, but they increase more drastically for larger residual
neural networks. Comparing the results for P ̸= 0, S = 0 and the ones for P = S = 0, respectively,
in (17), we notice that the computation times are lower for the reduced number of decision variables
(P = S = 0), yet the accuracy of the Lipschitz bound is worse for P = S = 0.

Table 4: This table presents the results of our LipSDP-NSR method on several residual neural
networks trained on MNIST with more than 90% accuracy. We compare against several metrics
which are described in detail in Section 5. For LipSDP-NSR, we state results choosing P ̸= 0 and
S = 0 as well as choosing P = S = 0 in (17).

Model
(units per layer)

ℓ2

Sample LipSDP-NSR MP
P ̸= 0, S = 0 P = S = 0

5-layer 32 units 15.33 29.75 (2) 33.04 (1) 55.64
64 units 14.28 31.40 (21) 34.64 (11) 53.25

8-layer
32 units 8.99 21.34 (18) 22.98 (7) 46.60
64 units 8.34 17.88 (371) 18.52 (115) 35.76

128 units 7.82 17.68 (4629) 18.14 (2112) 34.90

F ADDITIONAL NETWORK ARCHITECTURES

F.1 SINGLE-LAYER RESIDUAL NETWORK WITH GROUPSORT/HOUSEHOLDER ACTIVATIONS

For completeness, we address the special case of a single-layer residual neural network. Consider a
single-layer residual network model

fθ(x) = H1x+G1ϕ(W1x+ b1). (F.1)

If ϕ is 1-Lipschitz, one will typically use a triangle inequality to obtain the Lipschitz bound ∥H1∥2 +
∥G1∥2∥W1∥2. However, this bound can be quite loose. If ϕ is slope-restricted on [0, 1], a variant
of LipSDP (Araujo et al., 2023, Theorem 4) provides improved Lipschitz bounds. Similarly, if ϕ is
GroupSort/Householder, we can apply Lemma 1 to generalize (Araujo et al., 2023, Theorem 4) as
follows.

Theorem F.1. Consider a single-layer generalized residual network (F.1), where ϕ : Rn1 → Rn1

is GroupSort (Householder) with group size ng. Denote N = n1

ng
. Suppose there exist ρ > 0,

22

Published as a conference paper at ICLR 2024

γ, ν, τ ∈ RN , λ ∈ RN
+ , such that[

I 0
H1 G1

]⊤ [
ρI 0
0 −I

] [
I 0
H1 G1

]
⪰

[
W⊤

1 (T − 2S)W1 W⊤
1 (P + S)

(P + S)W1 −T − 2P

]
, (F.2)

where (T, S, P) are given by equation (7) (equation (8)). Then fθ is
√
ρ-Lipschitz in the ℓ2 → ℓ2

sense.

Proof. Given x0, y0 ∈ Rn0 , we set x1 = ϕ(W1x
0 + b1), and y1 = ϕ(W1y

0 + b1). We left and right
multiply (F.2) by

[
(x0 − y0)⊤ (x1 − y1)⊤

]
and its transpose respectively, and obtain

ρ∥x0 − y0∥22 − ∥H1(x
0 − y0) +G1(x

1 − y1)∥22

≥
[

W1(x
0 − y0)

ϕ(W1x
0 + b1)− ϕ(W1y

0 + b1)

]⊤ [
T − 2S P + S
P + S −T − 2P

] [
W1(x

0 − y0)
ϕ(W1x

0 + b1)− ϕ(W1y
0 + b1)

]
.

(F.3)

Based on Lemma 1, we know the left side of (F.3) is non-negative. Therefore, the left side of (F.3) is
also non-negative. This immediately leads to the desired input-output bound.

F.2 CONVOLUTIONAL NEURAL NETWORKS WITH GROUPSORT/HOUSEHOLDER ACTIVATIONS

All results for fully connected neural networks in Section 4 can also be applied to convolutional neural
networks, unrolling the convolutional layers as fully connected matrices based on Toeplitz matrices.
For efficiency and scalability, SDP-based Lipschitz constant estimation has been extended to exploit
the structure in convolutional neural networks (CNNs) (Pauli et al., 2023a; Gramlich et al., 2023b).
In particular, they use a state space representation for convolutions that enables the formulation of
compact SDP conditions. Combining those results with our newly derived quadratic constraint (6),
we can extend our Lipschitz analysis to address larger-scale convolutional neural networks with
GroupSort/Householder activation functions. In this section, we briefly streamline this extension and
refer the interested reader to Gramlich et al. (2023b) for details.

Similar to the previous case where we modify the choice of the matrix X in the original LipSDP
constraint (10) to derive LipSDP-NSR, cmp. Section 3, we can adapt the SDP condition in Gramlich
et al. (2023b) to address CNNs with GroupSort/Householder activation functions via modifying a
corresponding matrix using Lemma 1 or Lemma 2. Specifically, setting (Qw, Sw, Rw) in (Gramlich
et al., 2023b, Theorem 5) as Qw = T − 2S, Sw = P + S, and Rw = −T − 2P with (T, S, P)
given by (7)/(8) immediately leads to the modified SDP condition for Lipschitz constant estimation
of CNNs with GroupSort/Householder activation functions.

F.3 DEEP EQUILIBRIUM MODELS WITH GROUPSORT/HOUSEHOLDER ACTIVATIONS

In contrast to explicit feed-forward networks, we may also consider implicit learning models. In this
section, we consider the so-called deep-equilibrium models (DEQ) (Bai et al., 2019). Given an input
x ∈ Rn, the DEQ output is obtained by solving a nonlinear equation for the hidden variable z ∈ Rd:

z = ϕ(Wz + Ux+ bz), y = Woz + by, (F.4)

where W ∈ Rd×d, U ∈ Rd×n, Wo ∈ Rm×d, bz ∈ Rd, and by ∈ Rm are the model parameters to be
trained. Previously, SDP-based Lipschitz bounds for DEQs have been obtained for the case where ϕ
is slope-restricted on [0, 1] (Revay et al., 2020). Here we will extend these results to the case where ϕ
is a GroupSort/Householder activation function.

The DEQ model (F.4) is well-posed if for each input x ∈ Rm, there exists a unique solution z ∈ Rd

satisfying (F.4). First, we leverage the incremental quadratic constraint in Lemma 1 to derive a
sufficient condition that ensures the DEQ (F.4) to be well-posed.
Theorem F.2. Consider the DEQ (F.4), where ϕ : Rd → Rd is GroupSort (Householder) with group
size ng . Denote N = d

ng
. If there exist λ ∈ RN

+ , γ, ν, τ ∈ RN and Π ≻ 0 such that[
−2Π Π
Π 0

]
+

[
W⊤(T − 2S)W W⊤(P + S)

(P + S)W −T − 2P

]
≺ 0, (F.5)

where (T, S, P) are defined by equation (7) (equation (8)), then the DEQ (F.4) is well-posed.

23

Published as a conference paper at ICLR 2024

Proof. If we can show that the following ODE with any fixed x ∈ Rn has a unique equilibrium point

d

dt
z(t) = −z(t) + ϕ(Wz(t) + Ux+ bz), (F.6)

then (F.4) is guaranteed to be well-posed. We will show that the condition F.5 guarantees that the ODE
(F.6) converges globally to a unique equilibrium point via standard contraction arguments. Obviously,
the GroupSort/Householder activation function ϕ is a continuous piecewise linear mapping by nature,
and hence the solutions of (F.6) are well defined. Then we define the difference of two arbitrary trajec-
tories of DEQ (F.6) as ∆z(t) := z(t)− z′(t) ∈ Rd. In general, we allow z(t) and z′(t) are generated
by ODE (F.6) with different initial conditions. Next, we define V (∆z(t)) := ∆z(t)⊤Π∆z(t). Here,
V can be viewed as a weighted ℓ2 norm, i.e., V (∆z(t)) = ⟨∆z(t),∆z(t)⟩Π where ⟨·, ·⟩Π denotes
the Π-weighted inner product. For simplicity, we also denote vz(t) := ϕ(Wz(t) + Ux+ b). If (F.5)
holds, then there exists a sufficiently small positive number ϵ such that the following non-strict matrix
inequality also holds:[

−2(1− ϵ)Π Π
Π 0

]
+

[
W⊤(T − 2S)W W⊤(P + S)

(P + S)W −T − 2P

]
⪯ 0. (F.7)

Based on the above matrix inequality, we immediately have[
z(t)− z′(t)
vz(t)− vz′(t)

]⊤ [
−2(1− ϵ)Π Π

Π 0

] [
z(t)− z′(t)
vz(t)− vz′(t)

]
+

[
z(t)− z′(t)
vz(t)− vz′(t)

]⊤ [
W⊤(T − 2S)W W⊤(P + S)

(P + S)W −T − 2P

] [
z(t)− z′(t)
vz(t)− vz′(t)

]
≤ 0.

(F.8)

It is easy to verify that the first term on the left side of (F.8) is equal to d
dtV (∆z(t)) + 2ϵV (∆z(t)).

In addition, by Lemma 1/Lemma 2, the second term on the left side of (F.8) is guaranteed to be
non-negative due to the properties of ϕ. Therefore, we must have

d

dt
V (∆z(t)) + 2ϵV (∆z(t)) ≤ 0.

Now we can easily see that (F.6) is a contraction mapping with respect to the Π-weighted ℓ2 norm.
The contraction rate is actually exponential and characterized by ϵ. Since the flow map of our ODE is
continuous and time-invariant, we can directly apply the contraction mapping theorem to prove the
existence and uniqueness of the equilibrium point for (F.6). This immediately leads to the desired
conclusion.

Similar to Revay et al. (2020), it is possible to simplify the matrix inequality condition in Theorem F.2
via the KYP lemma and frequency-domain inequalities. Such developments are straightforward and
omitted here. Given that the DEQ (F.4) is well-posed, we can combine the arguments in Revay et al.
(2020) with Lemma 1 to obtain the following SDP conditions for analyzing the Lipschitz bounds of
DEQ with GroupSort/MaxMin activations.
Theorem F.3. Consider the DEQ (F.4) with ϕ being GroupSort with group size ng . Suppose (F.4) is
well-posed, and denote N = d

ng
. If there exist λ ∈ RN

+ , γ ∈ RN , ν ∈ RN and τ ∈ RN such that[
W⊤

o Wo 0
0 −ρI

]
+

[
W⊤ I
U⊤ 0

] [
T − 2S P + S
P + S −T − 2P

] [
W U
I 0

]
⪯ 0. (F.9)

where (T, S, P) are defined by equation (7) (equation (8)), then (F.4) is
√
ρ-Lipschitz from x to y in

the ℓ2 → ℓ2 sense.

Proof. Given x and x′, denote the corresponding hidden DEQ variables as z and z′, respectively.
Based on (F.9), we immediately have[

z − z′

x− x′

]⊤ [
W⊤

o Wo 0
0 −ρI

] [
z − z′

x− x′

]
+

[
z − z′

x− x′

]⊤ [
W⊤ I
U⊤ 0

] [
(T − 2S) (P + S)
(P + S) −T − 2P

] [
W U
I 0

] [
z − z′

x− x′

]
≤ 0.

(F.10)

24

Published as a conference paper at ICLR 2024

Based on (F.4) and Lemma 1/Lemma 2, the second term on the left side of (F.10) has to be non-
negative. Therefore, the first term on the the left side of (F.10) has to be non-positive. Then we must
have

∥Woz + by − (Woz
′ + by)∥2 ≤ √

ρ∥x− x′∥2,
which directly leads to the desired conclusion.

In Revay et al. (2020), SDPs that certify Lipschitz continuity have been used to derive parameteriza-
tions for DEQs with prescribed Lipschitz bounds. In a similar manner, our proposed SDP conditions
can be used for network design. Further investigation is needed to address such research directions in
the future.

F.4 NEURAL ODE WITH GROUPSORT/HOUSEHOLDER ACTIVATIONS

In this section, we extend our approach to address another family of implicit learning models, namely
neural ODEs (Chen et al., 2018). The neural ODE architecture can be viewed as a continuous-time
analogue of explicit residual networks. Consider the following neural ODE:

d

dt
z(t) = fθ(z(t), t) = Gϕ (W0z(t) +W1t+ b0) + b1, z(0) = x ∈ Rn, (F.11)

where fθ : Rn × R → Rn is a non-autonomous vector field parameterized as a neural network with
trainable parameters θ = (G,W0,W1, b0, b1) and GroupSort/Householder activation ϕ. The input x
to the neural ODE is used as the initial condition, and the output is just the solution of the resultant
initial value problem at some final time tf > 0.

Since fθ is globally Lipschitz continuous in z and t, we get a well-defined flow map Φt
0 : Rn → Rn

which yields the following formula

Φt
0(x) = z(t) = x+

∫ t

0

fθ(z(s), s)ds.

For simplicity, we fix tf = 1 and consider the neural ODE to be the map Φ1
0 that takes the input

z(0) = x to the final output z(1) = Φ1
0(x). We can use Lemma 1/Lemma 2 to calculate Lipschitz

bounds for the neural ODE flow map Φ1
0 as follows.

Theorem F.4. Consider the neural ODE according to (F.11), where ϕ : Rn → Rn is GroupSort
(Householder) with group size ng. Denote N = n

ng
. Suppose there exist ρ > 0, λ ∈ RN

+ , γ, ν, τ ∈
RN such that [

−ρI G
G⊤ 0

]
+

[
W⊤

0 (T − 2S)W0 W⊤
0 (P + S)

(P + S)W0 −T − 2P

]
⪯ 0, (F.12)

where (T, S, P) are given by equation (7) (equation (8)), then the neural ODE flow map Φ1
0 is

exp(ρ/2)-Lipschitz in the ℓ2 → ℓ2 sense.

Proof. Given two inputs x and x′, we denote the corresponding trajectories as z(t) and z′(t),
respectively. Then we define the difference of these two trajectories as ∆z(t) := z(t)− z′(t) ∈ Rn.
In addition, we define V (∆z(t)) := ||∆z(t)||22 and vz(t) := ϕ(W0z(t) + W1t + b0). Based on
condition (F.12), we immediately have[

z(t)− z′(t)
vz(t)− vz′(t)

]⊤ [
−ρI G
G⊤ 0

] [
z(t)− z′(t)
vz(t)− vz′(t)

]
+

[
z(t)− z′(t)
vz(t)− vz′(t)

]⊤ [
W⊤

0 (T − 2S)W0 W⊤
0 (P + S)

(P + S)W0 −T − 2P

] [
z(t)− z′(t)
vz(t)− vz′(t)

]
≤ 0.

(F.13)

It is easy to verify that the first term on the left side of (F.13) is equal to d
dtV (∆z(t))− ρV (∆z(t)).

In addition, by Lemma 1 (Lemma 2), the second term on the left side of (F.13) is guaranteed to be
non-negative for any t. Therefore, the following inequality holds for all t ≥ 0:

d

dt
V (∆z(t)) ≤ ρV (∆z(t)) .

25

Published as a conference paper at ICLR 2024

Finally, integrating V up to time t = 1 yields

∥Φ1
0(x)− Φ1

0(x
′)∥2 = ∥z(1)− z′(1)∥2 ≤ exp(ρ/2)∥x− x′∥2,

which completes our proof.

26

	Introduction
	Preliminaries
	Lipschitz bounds for neural networks: A brief review
	GroupSort and Householder activations

	Motivation and Problem Statement
	Main Results: SDPs for GroupSort and Householder activations
	Quadratic constraints for GroupSort and Householder activations
	22 Lipschitz bounds for GroupSort/Householder neural networks
	1 Lipschitz bounds for GroupSort/Householder neural networks
	Further generalizations: Residual networks and implicit models
	Numerical Experiments
	Conclusion
	Applications of MaxMin neural networks
	The quadratic constraint framework
	Technical Proofs of Main Results
	Proof for motivating example
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Implementation details for improved scalability of the SDP
	Practical implementation for SDP based on Theorem 1
	Practical implementation for SDP based on Theorem 3
	Trade-off between accuracy and computational efficiency
	Further tricks to trade off efficiency and accuracy of the SDP
	Additional numerical results and discussions
	More discussions on the numerical results in the main paper
	Extra numerical results on residual neural networks

	Additional network architectures
	Single-layer residual network with GroupSort/Householder activations
	Convolutional neural networks with GroupSort/Householder activations
	Deep equilibrium models with GroupSort/Householder activations
	Neural ODE with GroupSort/Householder activations

