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A.1 Derivation of the Labeled Source Objective9

Given a labeled source sample (xs,ys0), our goal is to inference the latent data representation zs and10

a sequence of latent class representations ys1:T , which controls the generation process of data points11

and predictions, respectively. The log-likelihood of the labeled source data can thus be expressed by:12

log p (xs,ys0) = log

∫
p (xs,ys0:T , z

s) dys1:T dz
s. (1)

Since Eq. (1) is intractable to compute in practice, we then leverage variational inference to ap-13

proximate the posterior distribution of unknown variables (zs,ys1:T ) and solve it by optimizing the14

following ELBO:15

log

∫
p (xs,ys0:T , z

s) dys1:T dz
s ≥ Eq(ys1:T ,zs|xs,ys0)

[
log

p (ys0:T ,x
s, zs)

q (ys1:T , z
s | xs,ys0)

]
, (2)

where q(zs,ys1:T | xs,ys0) is the approximation of the ground-truth joint posterior p(zs,ys
1:T |16

xs,ys0), which can be further factorized as:17

q(zs,ys1:T | xs,ys0) = qρ(z
s | xs,ys0)q(ys1:T | y0, z

s,xs). (3)

With Eq. (3) and the generative process assumed in Eq. (??), we have the following derivation:18

log p (xs,ys0) = log

∫
p (xs,ys0:T , z

s) dys1:T dz
s

≥ Eq(ys1:T ,zs|xs,ys0)

[
log

p (ys0:T ,x
s, zs)

q (ys1:T , z
s | xs,ys0)

]
= Eq(ys1:T ,zs|xs,ys0)

[
log

p(zs)pφ(xs | zs)pθ (ys0:T | xs, zs)
qρ(zs | xs,ys0)q(ys1:T | y0, zs,xs)

]
= Eq(ys1:T ,zs|xs,ys0)

[
log

p(zs)

qρ(zs | y0,x)
+ log pφ(xs | zs) + log

pθ (ys0:T | xs, zs)
q(ys1:T | ys0, zs,xs)

]
= Eqρ(zs|xs,ys0)

[
log

p(zs)

qρ(zs | ys0,xs)
+ log pφ(xs | zs)

]
+

Eq(ys1:T ,zs|xs,ys0)

[
log

pθ (ys0:T | xs, zs)
q(ys1:T | ys0, zs,xs)

]
= Eqρ(zs|xs,ys0) [log pφ(xs | zs)]−DKL (qρ (zs | xs,ys0) ‖p(zs)) +

Ezs∼qρ(zs|xs,ys0) Eq(ys1:T |xs,zs,ys0)

[
pθ (ys0:T | xs, zs)
q (ys1:T | ys0, zs,xs)

]
.︸ ︷︷ ︸

À

(4)
In À, the forward diffusion process q (ys1:T | xs, zs,ys0) and the reverse diffusion process19

pθ (ys0:T | xs, zs) are still based on the original input xs. In this work, we make a simplifica-20

tion design to assume that the observed class variable ys0 and latent ones ys1:T are only conditioned21
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on the latent variable zs. We demonstrate the reasonability of this simplification in Appendix A.3.22

Consequently, we have23

À = Eq(ys1:T |zs,ys0)

[
pθ (ys0:T | zs)
q (ys1:T | ys0, zs)

]
, (5)

which has the same form of ELBO as the diffusion classifier in Eq. (??).24

A.2 Expression of the Labeled Target Objective25

For the labeled target data (xt,yt0), the unknown latent variables are the same as the labeled source26

data, and therefore the ELBO is analogous to that of the labeled source data. The only difference is27

that we use the target-specific decoder pψ(xt | zt). We give the full expression as follows:28

log p
(
xt,yt0

)
= log

∫
p
(
xt,yt0:T , z

t
)
dyt1:T dz

t

≥ Eq(yt1:T ,zt|xt,yt0)

[
log

p (yt0:T ,x
t, zt)

q (yt1:T , z
t | xt,yt0)

]
= Eq(yt1:T ,zt|xt,yt0)

[
log

p(zt)pψ(xt | zt)pθ (yt0:T | xt, zt)
qρ(zt | xt,yt0)q(yt1:T | y0, zt,xt)

]
= Eq(yt1:T ,zt|xt,yt0)

[
log

p(zt)

qρ(zt | y0,x)
+ log pψ(xt | zt) + log

pθ (yt0:T | xt, zt)
q(yt1:T | yt0, zt,xt)

]
= Eqρ(zt|xt,yt0)

[
log

p(zt)

qρ(zt | yt0,xt)
+ log pψ(xt | zt)

]
+

Eq(yt1:T ,zt|xt,yt0)

[
log

pθ (yt0:T | xt, zt)
q(yt1:T | yt0, zt,xt)

]
= Eqρ(zt|xt,yt0)

[
log pψ(xt | zt)

]
−DKL

(
qρ
(
zt | xt,yt0

)
‖p(zt)

)
+

Ezt∼qrho(zt|xt,yt0)
Eq(yt1:T |zt,yt0)

[
pθ (yt0:T | zt)
q (yt1:T | yt0, zt)

]
:= LlELBO.

(6)
Analogously, we additionally impose the classifier pω(yt0 | zt) in the latent space to jointly train the29

source and target labeled data. The final training objective Llt for labeled target data is therefore:30

Llt = −LlELBO + E(xt,yt0)∼TlEqρ(zt|xt)[− log pω(yt0 | zt)]. (7)

A.3 Derivation of the Unlabeled Target Objective31

For the unlabeled target data xt, our goal is to inference the low-dimensional latent embedding zt that32

induces a domain-invariant latent space Z and the class label yt0 based on zt. Besides, we assume a33

meanfield distribution on q(zt,yt0 | xt), which can then be factorized as:34

q(zt,yt0 | xt) = q(zt | xt)q(yt0 | xt). (8)
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Therefore, we optimize the following ELBO by regarding zt and yt0 as unknowns:35

log p
(
xt
)

= log

∫
p
(
xt,yt0, z

t
)
dyt0dz

t

≥ Eq(yt0,zt|xt)

[
log

p (xt,yt0, z
t)

q (yt0, z
t | xt)

]
= Eq(yt0,zt|xt)

[
log

p(zt)pψ(xt | zt)pω(yt0 | xt, zt)
qρ (zt | xt) q (yt0 | xt)

]
= Eq(yt0,zt|xt)

[
log

p(zt)

qρ(zt | xt)
+ log pψ(xt | zt) + log

pω(yt0 | xt, zt)
q(yt0 | xt)

]
= Eqρ(zt|xt)[log pψ(xt | zt)]−DKL

(
qρ(z

t | xt)‖p(zt)
)

+

Ezt∼qρ(zt|xt)Eq(yt0|xt)

[
log

pω(yt0 | xt, zt)
q(yt0 | xt)

]
= Eqρ(zt|xt)[log pψ(xt | zt)]−DKL

(
qρ(z

t | xt)‖p(zt)
)
−

Ezt∼q(zt|xt)
[
DKL(q(yt0 | xt)‖pω(yt0 | xt, zt)

]︸ ︷︷ ︸
Á

:= LuELBO.

(9)

Since our deterministic classifier encodes the covariate-dependence between yt0 and zt, therefore, yt036

is not depended on xt in our formulation, i.e., pω(yt0 | xt, zt) = pω(yt0 | zt). Á demonstrates that,37

to maximize LuELBO, DKL(q(yt0 | xt)‖pω(yt0 | zt) ≡ 0 should always be satisfied. On the other38

hand, we empirically find that pω(yt0 | zt) can be a good approximation of q(yt0 | xt) even when it39

is solely based on latent zt. Therefore, we assume that the model output yt0 is only depended on the40

latent embedding zt, which supports the derivation in Eq. (4).41

B Algorithm42

B.1 Algorithm of DAPM-TT for Conventional Active Domain Adaptation43

The overall trianing and section procedure of DAPM-TT for ADA is summarized in Algorithm 1.44

Algorithm 1 Pseudo code of DAPM-TT for ADA

Require: Labeled source dataset S, whole target dataset T , unlabeled target dataset Tu, labeled
target dataset Tl, total training rounds R, total annotation budget B, per round annotation budget
b, step number per adaptation stage Na, step number per diffusion stage Nd.

Ensure: Optimal model parameters {θ, ρ, φ, ψ, ω, τ}.
1: Initialize student model parameters {ρ, ω} and other parameters {θ, φ, ψ, τ},T l = ∅, T u = T
2: Initialize teacher model parameters Ω′ = {ρ, ω}
3: for t = 1 to R do
4: for i = 1 to Na do
5: Update parameters {ρ, φ, ψ, ω, τ} via optimizing Eq. (??). % Adaptation Stage
6: Update teacher model parameters Ω′ with updated {ρ, ω} based on EMA.
7: end for
8: for j = 1 to Nd do
9: Update diffusion classifier parameters θ via optimizing Eq. (??). % Diffusion Stage

10: end for
11: if t ≤ B

b then
12: For each xt ∈ Tu, generate N predictions {ỹtn}Nn=1 % Selection Stage
13: Identify the two most predicted classes a, b for each xt.
14: Conduct t-test between {ỹtn[a]}Nn=1 and {ỹtn[b]}Nn=1 and obtain the p-value for each xt.
15: Selected← Select samples with top-b p-values from Tu.
16: Tu = Tu\Selected, Tl = Tl ∪ Selected.
17: end if
18: end for
19: return Final model parameters {θ, ρ, φ, ψ, ω, τ}.
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B.2 Algorithm of DAPM-TT for Source-Free Active Domain Adaptation45

In SFADA, We do not use the domain classifier since the source domain data and target domain data46

cannot co-exist. In addition, we also use confident unlabeled target samples that are pseudo-labeled47

by the teacher model to substitute the source-labeled samples in Ls in the diffusion stage. We denote48

the corresponding training loss by Lpt .49

The overall trianing and section procedure of DAPM-TT for SFADA is summarized in Algorithm 2.50

Algorithm 2 Pseudo code of DAPM-TT for SFADA

Require: Labeled source dataset S for pre-training, whole target dataset T , unlabeled target dataset
Tu, labeled target dataset Tl, total training rounds R, total annotation budget B, per round
annotation budget b, step number per adaptation stage Na, step number per diffusion stage Nd,
step number of source pre-training Ns.

Ensure: Optimal model parameters {θ, ρ, φ, ψ, ω}.
1: Initialize model parameters {ρ, ω} and other parameters {θ, φ, ψ},T l = ∅, T u = T
2: for i = 1 to Ns do
3: Update source model parameters ρ, φ, ω via optimizing Ls. % Source Pre-training
4: end for
5: Initialize teacher model parameters Ω′ = {ρ, ω}
6: for t = 1 to R do
7: for j = 1 to Na do
8: Update parameters {ρ, ψ, ω} via optimizing Lut + Llt. % Adaptation Stage
9: Update teacher model parameters Ω′ with updated {ρ, ω} based on EMA.

10: end for
11: for k = 1 to Nd do
12: Update diffusion classifier parameters θ via optimizing Lpt + Llt. % Diffusion Stage
13: end for
14: if t ≤ B

b then
15: For each xt ∈ Tu, generate N predictions {ỹtn}Nn=1 % Selection Stage
16: Identify the two most predicted classes a, b for each xt.
17: Conduct t-test between {ỹtn[a]}Nn=1 and {ỹtn[b]}Nn=1 and obtain the p-value for each xt.
18: Selected← Select samples with top-b p-values from Tu.
19: Tu = Tu\Selected, Tl = Tl ∪ Selected.
20: end if
21: end for
22: return Final model parameters {θ, ρ, φ, ψ, ω}.

C More Implementation Details51

C.1 Network Architecture52

Variational Autoencoder The architecture of the VAE and the deterministic classifier is presented in53

detail in Fig. 1. The encoder comprises a pre-trained ResNet-50 backbone and three initialized linear54

layers with a ReLU activation following the first linear layer. We assume a Gaussian distribution for55

the latent embedding, and its mean and covariance are estimated by two separate linear layers based56

on the first linear layer. The decoder is a two-layer MLP that has the same output dimension as the57

backbone’s output. This encourages the decoder to reconstruct the feature generated by the backbone.58

Deterministic Classifier The deterministic is simply a single layer linear classifier. We adopt the59

weight normalization technique on the classifier to stablize the training.60

Diffusion Classifier The diffusion classifier is conditioned on the latent embedding z, the ground-61

truth y, the guided information fΩ and the time step t. We adopt the same architecture as [1] for class62

variable diffusion, except for the dimension of the input variable. For clarity, we describe the detailed63

model structure in Fig. 2 (a).64
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Figure 1: Architecture of the variational autoencoder and the deterministic classifier used in this work.
The numbers on the data flow indicate the dimensions of the model output.
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Figure 2: Architecture of (a) the diffusion classifier and (b) the domain discriminator.

Domain Discriminator. As shown in Fig. 2 (b). The domain discriminator we used is a three-layer65

MLP with a Dropout layer after the first and the second layers. And the output is a one-dimensional66

value with Sigmoid activation, which indicates the domainness of the sample.67

C.2 Training Details68

Conventional Active Domain Adaptation. In the adaptation stage, we utilize the SGD optimizer69

with a learning rate of 0.01, momentum of 0.9, and weight decay of 0.001. We set the EMA rate70

for the teacher model to 0.99. In the VAE objective, we assume a standard Gaussian distribution,71

N (0, I ), for the prior distribution of the latent variable zs(zt). For Office-31 and VisDA, we use72

the features generated by a pre-trained ResNet-50 and freeze the backbone parameters to accelerate73

training and conserve memory. However, for Office-Home, which has more diverse categories, we74

jointly train the backbone with other modules to learn more specific category knowledge, and we75

set the learning rate to 0.001, which is 10 times lower than that of other models. For Office-31 and76

Office-Home, we conduct adaptation for 5 epochs and train the diffusion classifier for 10 epochs in77

each training round. The total number of training rounds is 20. For VisDA, we set the epoch number78

in each stage to 1, and the total number of training rounds is 10. To train the diffusion classifier, we79

use the Adam optimizer with a learning rate of 0.001 and epsilon of 1e-8. The batch size is the same80

as that in the adaptation stage, and we use an EMA strategy with a rate of 0.9999 to update the model81

parameters. All experiments are conducted on a single RTX 3090 GPU.82

Source-Free Active Domain Adaptation. In SFADA, we use the SGD optimizer without momentum83

and weight decay for adaptation. The learning rate is set to 0.01 for Office-31 and Office-Home, and84

0.001 for VisDA. As with ADA, we freeze the backbone for Office-31 and VisDA and open it for85
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Office-Home. We pre-train the source model for 10 epochs for VisDA and 30 epochs for the other86

datasets. In each active learning round, we set the epoch numbers for the adaptation stage and the87

diffusion stage to 5 and 10, respectively, for Office-31 and Office-Home, and both to one for VisDA.88

The training details for the VAE, teacher model, and diffusion classifier are the same as in ADA.89

C.3 Hyperparameter Choices of the Diffusion Classifier90

Following [1], the hyperparameters of the diffusion classifier are set in a standard DDPM [2] manner.91

Specifically, the number of diffusion timesteps T is set to 1000, and a linear noise schedule with92

β1 = 0.0001 and β = 0.02 is adopted for the forward diffusion process.93

C.4 Implementation of Compared Baseline Methods94

Note that for conventional ADA, we cite the results of previous AL methods and ADA methods95

reproduced in [3] if the experimental settings are the same. For DUC [4] that does not report the96

result on Office-31 dataset, we report the resuls by our own runs based on the code from the official97

repository at https://github.com/BIT-DA/DUC. We have tuned some hyperparameters to ensure98

the best resuls we can achieve.99

For SFADA, we implement compared baseline algorithms on our DAPM baseline with following100

details:101

Random. We abondon the use of any selection strategy and randomly select samples from the102

unlabeled target dataset Tu for annotation.103

BvSB. We compute the best-versus-second-best score based on the output of the deterministic104

classifier for each unlabeled sample and select b samples with the lowest scores for annotation.105

Entropy. We use the conditional entropy based on the output of the deterministic classifier to measure106

the prediction confidence. And samples with highest entropy values are selected for annotation.107

CoreSet. We regard the sample selection in each round as a core-set cover problem and solve it with108

the code at https://github.com/ozansener/active_learning_coreset.109

BADGE. We obtain the gradient vectors based on the pseudo labels generated by the deterministic110

classifier and utilize K-Means++ on the gradient vectors for diverse sampling. The algorithm is111

implemented based on the repository at https://github.com/JordanAsh/badge.112

ELPT. We cite the resuls on Office-31 and Office-Home dataset from the original paper [5]. For113

VisDA, we run this method and report the resuls on ResNet-50 backbone based on the official code at114

https://github.com/TL-UESTC/ELPT.115

D Additional Experimental Results116

D.1 Accuracies of Confident Predictions under Different Thresholds117

Fig. 3 illustrates the accuracies of the teacher model’s predictions for confident samples across118

different threshold settings. At each training step, the teacher model is updated with the student119

model, and we have computed the accuracy of the current batch and presented it as a curve. As120

expected, increasing the threshold leads to an increase in the teacher model’s accuracy. However,121

when the threshold is relatively high, only a small number of samples are considered confident at122

the beginning, leading to a higher accuracy initially and a subsequent drop. It is worth noting that123

the teacher model provided relatively reliable predictions at a threshold value of 0.9. Raising the124

threshold further would result in too few confident samples, making 0.9 a more appropriate choice.125
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Figure 3: Accuracies of confident predictions made by the teacher model under different threshold
values on VisDA dataset.

D.2 Prediction Visualization of Different Classifiers126

To investigate the contrasting behaviors of deterministic and diffusive classifiers, we randomly select127

two samples on task Ar→ Cl, and visualize the predictions made by the deterministic classifier and128

the diffusion classifier (N = 100). As shown in Fig. 4a, the deterministic classifier exhibits high129

confidence in predicting a refrigerator as a mug. This verifies the overconfident issue in traditional130

softmax-based deterministic model, making it challenging for the active learning methods to detect131

the error and select such hard samples. In contrast, the diffusion classifier produces an uncertain132

prediction, indicating confusion in its output with a p-value of 0.873. As depicted in Fig. 3b, the133

deterministic classifier displays high uncertainty and misclassified the sample, whereas the diffusion134

classifier correctly classifies the sample with a p-value of 0.024, which saves budget and resources135

that would have been wasted on correcting the misclassification.136
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Figure 3: Visualization of predictions made by different classifiers for 2 randomly picked samples
from refrigerator and drill, respectively. Red histograms represent the prediction of the determin-
istic classifier and green boxes denote the predictions of the diffusion classifier.

D.3 Effect of the Modeling of the Latent Feature Distribution137

In comparison to CARD [1] which utilizes a deterministic feature extraction network and a diffusion138

classifier to evaluate uncertainty based on the original image, our method employs an additional VAE139

to model data uncertainty in a low-dimensional latent space, and the diffusion classifier is based140

on latent variables. To investigate the benefits of this improvement for ADA tasks, we implement141

CARD in the ADA task and report the results of it on Office-31 and VisDA. Specifically, we use a142

deterministic ResNet-50 network as the feature extractor and train a deterministic classifier on top of143

it to guide the diffusion classifier. The diffusion classifier takes the original image x as one of the144

inputs and uses the same independent two-sample t-test-based criterion for sample selection. We145

denote this implementation by CARD-TT. As shown in Table 1, DAPM-TT significantly outperforms146

CARD-TT on both datasets. It is exciting to see that although VAE is mainly designed for modeling147

the uncertainty of the data generation process, it results in a significant improvement with respect to148

accuracy. We conjecture that the reason for this improvement is two-fold: firstly, domain shift leads149

to a significant distribution shift in the image space, and in such case, CARD fails to work as intended150

[1]. This effect is mitigated to a certain extent in the low-dimensional and less noisy latent space.151

Secondly, in VAE training, we use the same prior distribution, i.e., the standard Gaussian distribution,152

for the latent variables of data in both the source and target domains. This design draws the samples in153

both domains closer to the standard Gaussian distribution, thereby achieving an indirect distribution154

alignment.155

D.4 Qualitative Analysis on Selected Samples156

We present in Fig. 3 a list of all the selected samples by our approach to gain insight into which157

samples are chosen. Intuitively, our method tends to select samples that are challenging for the model,158

such as those with complex backgrounds or different styles from the other images in the dataset.159

Labeling these samples can help reduce the ambiguity in the model and enable it to better capture160

the semantic aspects of the category. Interestingly, we observe that our approach naturally selects161

a diverse range of sample classes, even though we did not explicitly impose a diversity constraint.162

Furthermore, we observe that the p-values of the selected samples gradually decrease with each163
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Table 1: Comparasion between probablistic and deterministic feature extractors, and between different
t-test strategies on ADA task (ResNet-50). w/o and w/ are short for without and with, respectively.

Category Method Office-Home VisDA

A→D A→W D→A D→W W→A W→D Avg Synthetic→ Real

w/o adaptaion stage CARD-TT 95.1 94.2 78.5 98.7 78.2 99.1 90.6 84.6
DAPM-TT 96.1 95.9 79.5 98.7 79.2 99.1 91.4 86.3

w/ adaptaion stage DAPM-TT* 96.8 97.8 83.3 99.8 81.7 100 93.2 88.6
DAPM-TT 96.8 98.6 82.3 99.8 83.3 100 93.5 89.1

training round, and by the 5th round, the lowest p-value is 0.518. This indicates that selecting164

approximately 5% of the samples is sufficient to mitigate much of the ambiguity in the model.165

D.5 Comparison between Different T-test Strategies166

Based on the scores of the two most probable classes predicted by the diffusion classifier, we can167

use either paired two-sample t-test or independent two-sample t-test for selection, which correspond168

to different assumptions for the generation of predictions. The former assumes that the scores of169

different classes are generated in pairs, while the latter assumes that they are generated independently.170

For a paired t-test, the t-value of a target sample xt is calculated as follows:171

t = (d̄− µd)/(sd/
√
N), (10)

where d̄ = 1
N

∑
di is the mean of sample differences di = ỹti [a]− ỹti [b], µd is the difference of the172

null hypothesis (usually set as 0), and sd =
√∑

(di − d̄)2/N − 1 is the standard deviation of the173

sample difference.174

We denote our method with paired t-test-based criterion by DAPM-TT*, and report the resuls on175

Office-31 and VisDA in Table 1. Empirically, we find that independent two-sample t-test yields176

superior performance on both datasets. We conjecture the reason might be that the independent two-177

sample t-test considers the internal variance of each group of samples. Therefore, when evaluating178

uncertainty, it considers an additional dimension compared to the paired t-test. In this work, we adopt179

independent two-sample t-test for all experiments.180

D.6 T-SNE Visualization of Latent Representations181

We visualize the latent representations of unlabeled target data and selected target data in Fig. 4182

using t-SNE [6]. In this visualization experiment, we compared our DAPM-TT with BvSB [7] that183

is based on the deterministic classifier. It can be observed that BvSB tends to select samples from184

relatively ambiguous regions (the center region) since these samples often have ambiguity between185

different classes. However, many samples selected by BvSB are in areas where the model is able to186

make predictions accurately. Therefore, it will not help to correct the samples with wrong predictions,187

resulting in modest improvement on performance. Our DAMP-TT, on the other hand, can select188

samples from both the regions where there is ambiguity between classes and the regions where a large189

number of samples are misclassified, which are exaclty the ones we want to select for annotation.190

E Discussion on Related Uncertainty Estimation Works191

In machine learning, there are primarily two kinds of uncertainties that are studied, i.e., epistemic192

uncertainty which arises due to a lack of knowledge or data and can be reduced with more data or193

improved models, and aleatoric uncertainty that stems from the inherent randomness in the data [8].194

To model these uncertainties, the community has proposed many Bayesian deep learning methods.195

From a Bayesian perspective, these two uncertainties can be modeled by the posterior of model196

parameters W and outputs y, respectively, using the following formulation:197

P (y | x,D) =

∫
P (y | x,W )︸ ︷︷ ︸

aleatoric uncertainty

P(W | D)︸ ︷︷ ︸
epistemic uncertainty

dW. (11)
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The family of Bayesian neural networks (BNNs) [9, 10, 11] is specifically designed to capture198

epistemic uncertainty by assuming a probability distribution over the network parameters. This199

involves estimating the posterior distribution over the parameters of the neural network given the200

observed data. However, due to the intractable form of the posterior, BNNs are often trained using201

appropriate approximations like Markov Chain Monte Carlo (MCMC) or Variational Inference202

(VI). Another approximation for BNNs is Monte Carlo Dropout [12], which assumes a Bernoulli203

distribution over network parameters. During inference, the output of the network is averaged204

over multiple stochastic forward passes with dropout enabled, resulting in a distribution over the205

predictions.206

Evidential deep learning (EDL) [13, 4] is another Bayesian method that models uncertainty associated207

with the output of the model based on evidential theory. In EDL, this is typically achieved by using a208

distributional output, such as a Dirichlet distribution over class probabilities for classification tasks,209

instead of a point estimate.210

For non-Bayesian methods, ensemble-based methods [14, 15] have been proposed to model predictive211

uncertainty by combining multiple deterministic neural networks with different initializations. How-212

ever, all these methods are designed to capture either epistemic uncertainty or aleatoric uncertainty213

alone by modeling probability distributions over the model parameters and outputs, respectively.214

Moreover, they still impose a restricted form of distributions, such as Gaussian or Dirichlet, which215

limits their applicability in practice.216

To capture both sources of uncertainties in a single model, Kendall et al. [8] propose modeling217

aleatoric uncertainty in the model outputs beyond model parameters by predicting the noise term for218

the output variable of each sample as part of the model output. However, the form of the noise is still219

assumed to be Gaussian.220

Recently, Han [1] proposed modeling the implicit output distribution by leveraging the generative221

capability of the diffusion model. However, they only model aleatoric uncertainty in their formulation222

since the model they use is still a deterministic neural network, and the proposed method, CARD,223

only enables in-distribution generalization.224

In addition to modeling aleatoric uncertainty with the diffusion classifier, we also incorporate a VAE225

to model the underlying data generation process. The VAE learns a probabilistic distribution over the226

latent space, which represents the model’s uncertainty about the true underlying distribution of the227

data, given the limited amount of training data. As more data is provided during training, the learned228

distribution should converge to the true underlying distribution, reducing epistemic uncertainty.229

Therefore, our DAPM also offers a way to measure epistemic uncertainty. Furthermore, our diffusion230

classifier is conditioned on the latent variables in Z rather than the ones in the original image space231

X . We argue that the latent space contains less noise and is more suitable for cross-domain tasks.232

F Limitations and Broader Impacts233

Limitations. Our work presents a way to recover the predictive distribution of deep models by234

combining the power of diffusion models and variational autoencoders. However, like any research,235

our study may have some limitations that should be acknowledged. Firstly, the task we focus on is236

limited to image classification in this work. In our future study, we may extend the scope of research237

to other areas like image segmentation and object detection, etc. Secondly, probabilistic models are238

often more difficult to interpret compared to deterministic models. It is important to study insights in239

future research to help interpret probabilistic models.240

Broader Impacts. Indeed, the impact of active domain adaptation is significant, especially in241

scenarios where labeled data is scarce in the target domain. The ability to adapt to new domains with242

limited labeled data can potentially reduce the time and cost required to gather labeled data for each243

specific task, thus making the deployment of machine learning models more accessible and cost-244

effective. This can also facilitate the development of more robust and generalizable machine learning245

models that can be used across multiple domains, which is particularly important for applications that246

operate in dynamic and diverse environments. Overall, our work contributes to advancing the field of247

machine learning and promoting the development of more efficient and adaptive technologies.248

10



References249

[1] Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. Card: Classification and regression250

diffusion models. In NIPS, volume 35, pages 18100–18115, 2022.251

[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NIPS,252

volume 33, pages 6840–6851, 2020.253

[3] Binhui Xie, Longhui Yuan, Shuang Li, Chi Harold Liu, Xinjing Cheng, and Guoren Wang.254

Active learning for domain adaptation: An energy-based approach. In AAAI, volume 36, pages255

8708–8716, 2022.256

[4] Mixue Xie, Shuang Li, Rui Zhang, and Chi Harold Liu. Dirichlet-based uncertainty calibration257

for active domain adaptation. In ICLR, 2023.258

[5] Xinyao Li, Zhekai Du, Jingjing Li, Lei Zhu, and Ke Lu. Source-free active domain adaptation259

via energy-based locality preserving transfer. In MM, pages 5802–5810, 2022.260

[6] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. JMLR, 9(11), 2008.261

[7] Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for262

image classification. In CVPR, pages 2372–2379. IEEE, 2009.263

[8] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for264

computer vision? volume 30, 2017.265

[9] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty266

in neural network. In ICML, pages 1613–1622. PMLR, 2015.267

[10] José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable268

learning of bayesian neural networks. In ICML, pages 1861–1869. PMLR, 2015.269

[11] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-270

terization trick. Advances in neural information processing systems, 28, 2015.271

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model272

uncertainty in deep learning. In ICML, pages 1050–1059. PMLR, 2016.273

[13] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify274

classification uncertainty. In NIPS, volume 31, 2018.275

[14] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable276

predictive uncertainty estimation using deep ensembles. In NIPS, volume 30, 2017.277

[15] Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu,278

Mykola Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling279

with no overhead for either training or testing: The all-round blessings of dynamic sparsity.280

arXiv preprint arXiv:2106.14568, 2021.281

11



(a) Round 1

(b) Round 2

(c) Round 3

(d) Round 4
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(e) Round 5

Figure 3: All selected samples on task Cl → Ar (ADA). For samples in each round, the priority
(p-value) gradually decreases from top left to bottom right.

(a) BvSB (Ar→Cl) (b) DAPM-TT (Ar→Cl)

(c) BvSB (Rw→Pr) (d) DAPM-TT (Rw→Pr)

Figure 4: Visualization of latent representations using t-SNE [6] on task Ar→Cl (a to b) and Rw→Pr
(c to d) of ADA. Darkblue points are unlabeled target samples correctly classified by our model.
Lightblue points represent unlabeled target samples misclassified by our model. Red stars are the
selected target samples.
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