
A Datasets

Following [5, 7], we run experiments on five popular datasets for time series forecasting, including
SOLAR [3], ELECTRICITY 1, TRAFFIC 2, TAXI 3, and WIKIPEDIA 4. Table 1 includes more details
about the datasets.

Table 1: Dimension, domain, frequency, total training timesteps and prediction length properties of the training
datasets used in the experiments.

DATASET DIMENSION DOMAIN FREQUENCY TIMESTEPS PREDICTION

SOLAR 137 R+ Hour 7,009 24
ELECTRICITY 370 R+ Hour 5,790 24
TRAFFIC 963 (0, 1) Hour 10,413 24
TAXI 1,214 N 30-Min 1,488 24
WIKIPEDIA 2,000 N Day 792 30

For human motion prediction, we run experiments on two datasets, namely, Human3.6M[2] and
HumanEva-I [8], following [10]. As described in Section 5, Human3.6 is a large-scale dataset
with 11 subjects performing 15 actions, totaling 3.6 million video frames recorded at 50Hz. To be
consistent with previous work [4, 10], we adopt a 17-joint skeleton and train on 5 subjects (S1, S5,
S6, S7, S8) and test on two subjects (S9, S11). For HumanEva-I, we adopt a 15-joint skeleton and
use the same training and test split provided in the dataset. As in [10], we predict future motion for 2
seconds conditioning on observed motion of 0.5 seconds and 1 second conditioning on 0.25 seconds
for Human3.6 and HumanEva-I, respectively.

Based on the descriptions of the datasets from previous work, we assume that they were obtained
and curated appropriately with consent from pertaining people and that they contain no personally
identifiable information or offensive content.

B Additional Experiment Results

B.1 Time Series Forecasting

In addition to CRPSsum reported in Section 5, we also include experiment results for time series
forecasting using two other metrics, namely normalized root mean squared error (NRMSEsum) and
normalized deviation (NDsum), in Table 2. As in [1], we define NRMSEsum as the root mean squared
error normalized by the absolute values of targets summed across all time series. NDsum, is defined
as the mean absolute error between predicted values and targets summed across all time series.

Consistent with the results in Section 5, our models perform significantly better than Transformer-
MAF [5] and TimeGrad [6], two competitive baselines proposed recently.

Table 2: Test set NMSEsum and CRPS of time series forecasting models (lower is better). The means and
standard deviations are computed over five runs using different random seeds.

DATASET SOLAR ELECTRICITY TRAFFIC

Method NRMSEsum NDsum NRMSEsum NDsum NRMSEsum NDsum

Transformer-MAF [5] 0.634 ± 0.034 0.323 ± 0.031 0.039 ± 0.00 0.030 ± 0.00 0.363 ± 0.00 0.301 ± 0.02
TimeGrad [6] 0.715 ± 0.046 0.399 ± 0.023 0.039 ± 0.00 0.026 ± 0.00 0.073 ± 0.00 0.055 ± 0.00
ProTran (Ours) 0.579 ± 0.050 0.317 ± 0.027 0.030 ± 0.00 0.022 ± 0.00 0.046 ± 0.01 0.031 ± 0.00
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Figure 1: Conditioning pose sequences in green and corresponding predictions in red by ProTran. Solid colors
indicate later time-steps and faded ones are older.

B.2 Human Motion Prediction

Figure 1 show that given the same contexts consisting of fixed conditioning pose sequences, our
model is capable of generating diverse yet sensible pose sequences. The variations in predictions
stem from the stochasticity induced by our latent variables at different timesteps.

C Model Architectures

As described in Section 5, our models are based on transformer architectures [9] with extensive use
of attention modules. For all experiments, we use a single linear layer to map inputs into fixed-size
representations in R128 or R256) (see Equation (5)). We use multihead attention with 8 heads in
Equation (6), (7), and (10) to model temporal interactions between latent variables, dependencies on
conditional inputs, and interactions of all inputs in posterior distributions. The MLPs in Equation
(8) and (11) as well as the final MLP that maps latent variables to outputs consist of 2 layers each
with ReLU or Tanh activations. We use fixed positional embeddings as in [9] (see Equation (5) and
(9)). The LayerNorms in Equation (5), (6), (7), (9) all have learnable parameters with ε = 10−5.

For time series forecasting, we also employ a learnable embedding layer, the outputs of which are
concatenated with the lagged inputs as in [5]. Our objective function (see Equation (3)) has an L1

reconstruction loss in most cases, except for the TRAFFIC dataset, in which case we replace it with
binary cross entropy and enforce outputs to be in the [0, 1] domain.

Table 3 and 4 detail the numbers of parameters of our models in time series and human motion ex-
periments, respectively. In all cases, our model sizes are comparable or smaller than other baselines.

Table 3: Number of parameters of Transfomer-MAF [5], TimeGrad [6], and ProTran (our model) used in the
time-series forecasting experiments.

DATASET SOLAR ELECTRICITY TRAFFIC TAXI WIKIPEDIA

Transformer-MAF 290,181 532,734 1,150,047 1,333,706 2,229,500
TimeGrad 116,959 300,216 1,010,691 1,126,974 3,099,501
ProTran 342,418 464,292 844,998 695,612 1,510,496

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://github.com/mbohlkeschneider/gluon-ts/tree/mv release/datasets
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Table 4: Number of parameters of DLow[10], its conditional VAE model, and ProTran (our model) used in the
human-motion prediction experiments.

DATASET HUMAN3.6M HUMANEVA-I

CVAE 725,292 717,174
DLow 2,763,820 2,753,398
ProTran 1,166,704 1,163,626

D Hyperparameters & Training Details

For all experiments, we use a batch size of 64 and train for a maximum of 300 epochs with learning
rate 3 × 10−4. We use Adam optimizer with default parameters from PyTorch and optionally use
exponential moving average with rate 0.99. The constant β described in Section 2 is fixed for most
experiments at 1.0, except for the HumanEva-I in which we use β = 10−2. We train our models on
NVIDIA 2080Ti GPUs. Table 5 shows that our model is comparable to other baselines in terms of
running time and testing time.

Table 5: Average training time per epoch and average testing time (in second) of Transfomer-MAF [5],
TimeGrad [6], and ProTran (our model) on the TRAFFIC dataset.

Method TRAINING TESTING

Transformer-MAF [5] 8.524 ± 0.001 17.835 ± 0.002
TimeGrad [6] 30.128 ± 0.002 44.171 ± 0.003
ProTran (Ours) 25.832 ± 0.001 0.168 ± 0.001
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