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ABSTRACT

In this work, we consider the optimization process of minibatch stochastic gradient
descent (SGD) on a 2-layer neural network with data separated by a quadratic
ground truth function. We prove that with data drawn from the d-dimensional
Boolean hypercube labeled by the quadratic “XOR” function y = −xixj , it is
possible to train to a population error o(1) with dpolylog(d) samples. Our result
considers simultaneously training both layers of the two-layer-neural network
with ReLU activations via standard minibatch SGD on the logistic loss. To our
knowledge, this work is the first to give a sample complexity of Õ(d) for efficiently
learning the XOR function on isotropic data on a standard neural network with
standard training. Our main technique is showing that the network evolves in
two phases: a signal-finding phase where the network is small and many of the
neurons evolve independently to find features, and a signal-heavy phase, where
SGD maintains and balances the features. We leverage the simultaneous training
of the layers to show that it is sufficient for only a small fraction of the neurons to
learn features, since those neurons will be amplified by the simultaneous growth of
their second layer weights.

1 INTRODUCTION

Stochastic gradient descent (SGD) is the primary method of training neural networks in modern
machine learning. Despite the empirical success of SGD, there are still many questions about why
SGD is often able to efficiently find good local minima in the non-convex optimization landscape
characteristic of training neural networks.

A growing body of work aims to theoretically understand the optimization dynamics and sample
complexity of learning natural classes of functions via SGD on neural networks. A particularly
well-understood regime in this regard is the neural tangent kernel (NTK)(Jacot et al., 2021a), where
the network only moves a small distance from its initialization. However, in many cases, the NTK
provably requires a poor sample complexity to generalize (Abbe et al., 2022).

More recent work aims to prove convergence guarantees for SGD on neural networks with tight
sample complexity guarantees. A natural test-bed for this, which has garnered a lot of attention, is
learning target functions that are inherently low-dimensional, depending only on a constant number
of dimensions of the data (Chen & Meka, 2020; Chen et al., 2020; Nichani et al., 2022; Barak
et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2022; Refinetti et al., 2021; Abbe et al.,
2021a; 2022; 2023). Such functions, often called sparse or multi-index functions, can be written
as f(x) := g(Ux), where U ∈ Rk×d has orthogonal rows, and g is a function on Rk. Many works
have shown that learning such target functions via SGD on neural networks is possible in much
fewer samples than achievable by kernel methods (Chen et al., 2020; Bai & Lee, 2019; Damian et al.,
2022; Abbe et al., 2021a; 2022; 2023). The results in these papers apply to a large class of ground
truth functions, and have greatly enhanced our understanding of the sample complexity necessary for
learning via SGD on neural networks.

The limitation of the aforementioned works is that they typically modify the SGD algorithm in ways
that don’t reflect standard training practices, for example using layer-wise training, changing learning
rates, or clipping. While providing strong guarantees on certain subclasses of multi-index functions,

1



Under review as a conference paper at ICLR 2024

such modifications may limit the ability of SGD to learn broader classes of multi-index functions
with good sample complexity. We discuss this more in the context of related work in Section 1.1.

The goal of this paper is to show that for a simple but commonly-studied problem, standard minibatch
SGD on a two-layer neural network can learn the ground truth function in near-optimal sample
complexity. In particular, we prove in Theorem 3.1 that a polynomial-width ReLU network trained
via online minibatch SGD on the logistic loss will classify the boolean XOR function f(x) := −xixj

with a sample complexity of Õ(d).1 We study the XOR function because it one of the simplest
test-beds for a function which exhibits some of the core challenges of analyzing SGD on neural
networks: a random initialization is near a saddle point, and the sample complexity attainable by
kernel methods is suboptimal (see further discussion in Section 1.1).

Despite its simplicity, the prior theoretical understanding of learning the XOR function via SGD on
standard networks is lacking. It is well-known that the NTK requires Θ(d2) samples to learn this
function (Wei et al., 2019; Ghorbani et al., 2021; Abbe et al., 2023). Wei et al. (Wei et al., 2019)
showed that Õ(d) samples statistically suffice, either by finding the global optimum of a two-layer
network, or by training an infinite-width network, both of which are computationally intractable.
Similar guarantees of Õ(d) are given by Bai et al. (Bai & Lee, 2019) and Chen et al. (Chen et al.,
2020); however, such approaches rely on drastically modifying the network architecture and training
algorithm to achieve a quadratic neural tangent kernel. Abbe et al. (Abbe et al., 2023) proves a sample
complexity of Õ(d) for the XOR problem, but uses an algorithm which assumes knowledge of the
coordinate system under which the data is structured, and is thus not rotationally invariant. It is also
worth noting that several works have studied the XOR problem with non-isotropic data, where the
cluster separation grows to infinity (Frei et al., 2022; Ben Arous et al., 2022), in some cases yielding
better sample complexities.

The main approach in our work is showing that while running SGD, the network naturally evolves
in two phases. In the first phase, which we call the signal-finding phase, the network is small, and
thus we can show that a sufficient fraction of the neurons evolve independently, similarly to how
they would evolve if the output of the network was zero. Phase 1 is challenging because it requires
moving away from the saddle near where the network is initialized, which requires super-constant
time (here we use “time” to mean the number of iterations times step size). This rules out using the
mean field model approach as in Mei et al. (Mei et al., 2018b; 2019), or showing convergence to a
lower-dimensional SDE as in Ben Arous et al. (Ben Arous et al., 2022), which both break down after
constant time when directly applied to our setting. 2

After the signal components in the network have become large enough to dominate the remaining
components, the network evolves in what we call the signal-heavy phase. In this phase, we show
inductively that throughout training, the signal components stay significantly larger than their counter-
parts. This inductive hypothesis allows us to approximate the output of the network on a sample x by
its clean approximation, given by a network where all the non-signal components have been removed.
Under this approximation, the dynamics of the network are easier to compute, and we can show that
the signal components will grow and rebalance until all four of the clusters in the XOR problem have
sufficiently small loss. The division into signal-finding and signal-heavy phases is similar to the two
phases of learning in e.g. Arous et al. (2021).

Our Phase 2 analysis leverages the simultaneous training of both layers to show that the dominance of
the signal components will be maintained throughout training. In particular, we show once individual
neurons become signal heavy, their second layer weights become large, and thus a positive feedback
cycle between the first and second layer weights of that neuron causes it to grow faster than non-
signal-heavy neurons. This allows us to maintain the signal-heavy inductive hypothesis. If we only
trained the first layer, and all second layer weights had equal absolute value, then unless we have
strong control over the balance of the clusters, it would be possible for the non-signal components to
grow at a rate which is on the same order as the rate of the signal components (see Remark 4.3).

1We consider this near-optimal in the sense that for algorithms that are rotationally invariant Θ̃(d) samples
are required. See Section G for details.

2Ben Arous et al. (2022) considers a setting of high-dimensional SGD where a constant number of summary
statistics sufficient to track the key features of the SGD dynamics and the loss, which can only be applied to
constant-width 2-layer neural networks. Their coupling between high-dimensional SGD and a low-dimension
SDE holds for Θ(1) time, which is not enough time to learn the XOR function, which requires Θ(log(d)) time.
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1.1 RELATED WORK

Learning Multi-Index Functions via Neural Networks Most related to our work is a body of
work aiming to understand the sample complexity of learning multi-index functions via SGD on
neural networks Bietti et al. (2022); Refinetti et al. (2021); Chen et al. (2020); Abbe et al. (2021a;
2022; 2023); Damian et al. (2022); Barak et al. (2022); Daniely & Malach (2020); Mousavi-Hosseini
et al. (2022); Nichani et al. (2022); Ge et al. (2017); Mahankali et al. (2023); Ba et al. (2022);
Dandi et al. (2023). Such functions are typically studied in either the Gaussian data setting where
x ∼ N (0, Id), or in the Boolean hypercube setting, where x ∼ Uniform({±1}d). In both cases, we
have f(x) := g(Ux), where U projects x onto a lower dimensional space of dimension k, and g is
an arbitrary function on k variables. In the Boolean setting, U projects onto a subset of k coordinates
of x, so in the case of the XOR function we study, k = 2 and g is a quadratic function.

Chen and Meka (Chen & Meka, 2020) showed when k is constant, and g is a degree-D polynomial
for constant D, there exists a polynomial-time algorithm which learns such multi-index functions on
Gaussian covariates in Õ(d) samples. Such algorithms can also be emulated in the same sample com-
plexity via SGD on neural networks designed to emulate arbitrary Statistical Query algorithms (Abbe
& Sandon, 2020; Abbe et al., 2021b), though these networks bear little similarity to standard neural
networks used in practice.

The sample complexity of learning multi-index functions via SGD on standard neural networks is an
open and active area of research. It is known that the neural tangent kernel (and more generally, kernel
methods) require Ω(dD) samples (Hsu, 2021). A line of work by Abbe et al. (Abbe et al., 2021a;
2022; 2023) has conjectured that the sample complexity required for SGD is Θ̃(dmax(L−1,1)), where
L denotes the “leap complexity”, a measure of hierarchical structure upper bounded by D, and which
equals 2 for the XOR function. If true, this conjecture would place the sample complexity of SGD on
standard neural networks squarely between that of kernel methods and arbitrary polynomial-time
algorithms. When L = 1, Abbe et al. (2022) showed via a mean-field analysis that is possible to
learn with Θ(d) samples via layer-wise training, where the first layer is trained until it learns the
subspace U , and then the second layer is trained as a linear model. For L > 1, Abbe et al. (2023)
provided a layer-wise SGD algorithm achieving the conjectured complexity, but which assumes
knowledge of the coordinate system under which the data is structured. This means the algorithm
is not-rotationally invariant, barring the network from learning more general multi-index functions.
Other works have also used layer-wise training to give similar results for subclasses of multi-index
functions (Damian et al., 2022; Mousavi-Hosseini et al., 2022; Barak et al., 2022); Mousavi-Hosseini
et al. (2022) studies a setting where k = 1 and L = 1, while Damian et al. (2022); Barak et al. (2022)
study settings where L ≥ 2, and use just a single gradient step on on the first layer, which requires
Ω(dL) samples. Numerous other works (Tan & Vershynin, 2019; Bietti et al., 2022; Wu et al., 2023;
Arous et al., 2021) have made progress in the setting of single-index functions (k = 1) when L > 1.
In some cases, the result achieve tight guarantees that depend on a quantity called the “information
exponent” of g, which is equivalent to the leap complexity when k = 1, though these methods require
training only a single neuron in Rd. The recent work Mahankali et al. (2023) considers training a
single-index target function with k = 2 and degree 4 on a 2-layer neural network via vanilla gradient
descent, and shows a sample complexity of O(d3+ϵ), which improves over kernel methods.

The above discussion highlights a gap in our understanding when k ≥ 2 and L ≥ 2. Indeed, such
a setting is challenging because it requires learning multiple neurons, and escaping one (or more)
saddles (Abbe et al., 2023). For this reason, we believe the XOR function (with k, L = 2) is a good
stepping stone for understanding the behaviour of SGD on neural networks for more general functions
with k ≥ 2, L ≥ 2. Note that other works (Bai & Lee, 2019; Chen et al., 2020) have achieved a
near-optimal sample complexity of Õ(d) for the XOR problems; these works use a non-standard
architecture and training algorithm which puts SGD into a quadratic NTK regime. While such a
regime can often attain sample complexities beating the standard (linear) NTK, in general this method
yields complexities of Õ(dD−1), which is larger than the rate achieved by Abbe et al. (2022) whenever
L = 1 and D ≥ 3. We emphasize that our work achieves the near-optimal sample complexity Õ(d)
with a standard two-layer neural network, trained with standard minibatch SGD.

We note that many more works have explored both empirically (eg. (Woodworth et al., 2020; Chizat
et al., 2019)) and theoretically (eg.(Li et al., 2020; Allen-Zhu & Li, 2020; Suzuki & Akiyama, 2020;
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Telgarsky, 2022; Jacot et al., 2021b)) the sample-complexity advantages of “rich” SGD training over
the “lazy” NTK regime.

Simultaneous Training of Layers. While many of the works mentioned above use layer-wise
training algorithms, the standard empirical practice is to train all layers simultaneously. Several
theoretical works explore this setting, uncovering implicit biases of ReLU (or other homogeneous)
networks trained simultaneously (Wei et al., 2019; Chizat & Bach, 2020; Lyu & Li, 2019; Lyu
et al., 2021; Maennel et al., 2018). Under a variety of assumptions, these works have related the
solutions found via gradient descent to margin-maximizing solutions. A much finer understanding
of the implicit bias of simultaneous training is provided for a line of work on diagonal neural
networks (Pesme & Flammarion, 2023; Even et al., 2023).

1.2 ORGANIZATION OF PAPER

In Section 2, we describe the data and training model. In Section 3 we state our result. In Section 4,
we overview the proof techniques. We conclude in Section 5. All proofs are in the Appendix.

1.3 NOTATION

For a vector v, we use ∥v∥ to denote the ℓ2 norm, and ∥v∥1 to denote the ℓ1 norm. We use ∥M∥2 to
denote the spectral norm of a matrix M . All big-O notation is with respect to d → ∞, and we use Õ
to suppress log factors in big-O notation. ω(1) denotes growing to infinity with d. We use Sd−1(r) to
denote the sphere of radius r in d dimensions, and 1(·) to denote the indicator variable of an event.

2 MODEL AND SETTING

2.1 DATA.
We study the setting where the data comes from the Boolean hypercube x ∼ Uniform({−1, 1}d),
and the label y is given by y(x) = XOR(x1, x2) := −x1x2.

Note that with µ1 := e1 − e2, and µ2 := e1 + e2, we can model the distribution as

(x, y) =

{
(µ1 + ξ, 1) w.p. 1/4 (−µ1 + ξ, 1) w.p. 1/4

(µ2 + ξ,−1) w.p. 1/4 (−µ2 + ξ,−1) w.p. 1/4
,

where ξ ∼ Uniform(02 × {−1, 1}d−2) so that ξ ⊥ {µ1, µ2}. We will often write
x = z + ξ,

where z is the projection of x onto the space spanned by e1 and e2, and ξ is the projection of x
orthogonal to e1 and e2. We denote this distribution by Pd, and throughout, it is implicitly assumed
that all probabilities and expectations over x are for x ∼ Pd.
Remark 2.1. While for simplicity, we state our results for the setting where the data comes from an
axis-aligned Boolean hypercube, and where ground truth depends on the first two dimensions, the
minibatch SGD algorithm and the initialization of the network will be rotationally invariant. Thus all
our results hold for a Boolean hypercube with any basis.

2.2 TRAINING.
Model. We train both layers of a two-layer ReLU network with width p:

1

p

p∑
j=1

ajσ(w
T
j x),

where σ(α) = max(0, α) is the ReLU function. We will use the variable ρ := 1
p

∑p
j=1 1(wj ,aj) to

denote the empirical distribution of the neurons and their second layer weights. Thus we denote
fρ(x) := Ew,a∼ρa · σ(wTx),

We will often abuse notation and write probabilities and expectations using w ∼ ρ, and use aw to
denote its associated second layer weight. We note that it is not necessarily the case the second layer
weight aw is a function of w; we do this for the convenience of not indexing each pair as (wj , aj).
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Initialization. We initialize the network with wj ∼ Uniform(Sd−1(θ)) for a scale parameter θ,
such that ∥wj∥ = θ. We initialize the second layer as aj = ϵj∥wj∥, where ϵj ∼ Uniform(±1).

Minibatch SGD. We train using minibatch SGD on the logistic loss function

ℓρ(x) := −2 log

(
1

1 + exp(−y(x)fρ(x))

)
,

and define the population loss Lρ := Ex∼P ℓρ(x). We will use the shorthand ℓ′ρ(x) to denote the
derivative of ℓρ(x) with respect to fρ(x):

ℓ′ρ(x) := −2y(x) exp(−y(x)fρ(x))

1 + exp(−y(x)fρ(x))
.

We use ρt to denote the empirical distribution of the p neurons (w(t), a
(t)
w ) at iteration t. At each step,

we perform the minibatch SGD update

w(t+1) := w(t) − η∇L̂ρ(w
(t)) a(t+1)

w := a(t)w − η∇L̂ρ(a
(t)
w ).

Here L̂ρ = 1
m

∑
x(i)∈Mt

ℓρ(x
(i)) denotes the empirical loss with respect to a minibatch Mt of m

random samples chosen i.i.d. from Pd at step t, and for a loss function L and a parameter u in the
network, ∇uL := p∂L

∂u denotes the scaled partial derivative of the loss with respect to u, defined in
particular for a neuron (w, aw), as follows: 34

∇wL̂ρ =
1

m

∑
x(i)∈Mt

∂

∂w
pℓρ(x

(i)) =
1

m

∑
x(i)∈Mt

awℓ
′
ρt
(x(i))σ′(wTx(i))x(i);

∇aw L̂ρ =
1

m

∑
x(i)∈Mt

∂

∂aw
pℓρ(x

(i)) =
1

m

∑
x(i)∈Mt

ℓ′ρt
(x(i))σ(xT

i w).

3 MAIN RESULT

The following theorem is our main result.
Theorem 3.1. There exists a constant C > 0 such that the following holds for any d large enough.
Let θ := 1/ logC(d). Suppose we train a 2-layer neural network with minibatch SGD as in Section 2.2
with a minibatch size of m ≥ d/θ, width 1/θ ≤ p ≤ dC , step size d−C ≤ η ≤ θ, and initialization
scale θ. Then for some t ≤ C log(d)/η, with probability 1− d−ω(1), we have

Ex∼Pd
[ℓρt

(x)] ≤ (log(d))−Θ(1).

By setting η = θ and m = d/θ, Theorem 3.1 states that we can learn the XOR function up to ϵ
population loss in Θ(dpolylog(d)) samples and iterations on a polynomial-width network.

4 PROOF OVERVIEW

Throughout the following section, and in our proofs, we will use the following shorthand to refer to
the components of a neurons w. We decompose w = w1:2 +w⊥, where w1:2 is the projection of w in
the direction spanned e1 and e2 (and equivalently by µ1 = e1 − e2 and µ2 = e1 + e2), and w⊥ is the
component of w in the orthogonal subspace. We further decompose w1:2 = wsig + wopp as follows:

wsig =

{
1
2µ1µ

T
1 w aw ≥ 0;

1
2µ2µ

T
2 w aw < 0.

wopp =

{
1
2µ2µ

T
2 w aw ≥ 0;

1
2µ1µ

T
1 w aw < 0.

Intuitively, we want the neurons to grow in the wsig direction, but not the wopp direction; in a network
achieving the maximum normalized margin, we will have w = wsig exactly, and wopp = w⊥ = 0. We
summarize this notation in Table 1, along with future shorthand we will introduce in this section.

3Since the ReLU function is non-differentiable at zero, we define σ′(0) = 0.
4For convenience, we scale this derivative up by a factor of p to correspond to the conventional mean-field

scaling. If we didn’t perform this scaling, we could achieve the same result by scaling the learning rate η.
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Table 1: Summary of Notation used in Proof Overview and Proofs

wsig =

{
1
2µ1µ

T
1 w aw ≥ 0

1
2µ2µ

T
2 w aw < 0

wopp =

{
1
2µ2µ

T
2 w aw ≥ 0

1
2µ1µ

T
1 w aw < 0

{
w1:2 = wsig + wopp

w⊥ = w − w1:2

γµ = fρ(µ)y(µ) γmin = minµ∈{±µ1,±µ2} γµ γmax = maxµ∈{±µ1,±µ2} γµ

gµ = |ℓ′ρ(µ)| gmin = minµ∈{±µ1,±µ2} |ℓ′ρ(µ)| gmax = maxµ∈{±µ1,±µ2} |ℓ′ρ(µ)|

The main idea of our proof is to break up the analysis of SGD into two main phases. In the first phase,
the network is small, and thus we have (for most x) that the loss ℓρ(x) is well approximated by a first
order approximation of the loss at fρ = 0, namely

ℓ0(x; ρ) := −2 log(1/2)− y(x)fρ(x).

As long as this approximation holds, the neurons of the network evolve (approximately) independently,
since ℓ′0(x) :=

∂ℓ0(x;ρ)
∂fρ(x)

= −y(x) does not depend on the full network ρ. We will show under this
approximation that for many neurons, ∥wsig∥ grows exponentially fast. Thus we will run this first
phase for Θ(log(d)/η) iterations until for all four clusters µ ∈ {±µ1,±µ2}, there exists a large set
of neurons Sµ on which wT

sigµ > 0, and the “margin” from this set of neurons is large, i.e.

γ̃µ := Eρ[1(w ∈ Sµ)awσ(w
Tµ)] ≫ Eρ∥w⊥ + wopp∥2. (4.1)

In the Phase 2, we assume that Eq. 4.1 holds, and we leverage the dominance of the signal to show
that (1) The signal components wsig grow faster that wopp + w⊥, and thus Eq. 4.1 continues to hold;
and (2) SGD balances the signal components in the 4 cluster directions such that the margins γ̃µ
balance, and become sufficiently large to guarantee o(1) loss.

We proceed to describe the analysis in the two phases in more detail. Full proofs are in the Appendix.

4.1 PHASE 1

In Phase 1, we approximate the evolution of the network at each gradient step by the gradient step
that would occur for a network with output 0. The main building blocks of our analysis are estimates
of the L0 := Exℓ0(x; ρ) population gradients, and bounds on the difference ∇L0 −∇Lρ.

L0 population gradients. Since the primary objective of this phase is to grow the neurons in the
signal direction, we sketch here the computation of the gradient ∇w1:2L0 in the subspace spanned by
µ1, µ2. The remaining estimates of ∇L0 are simpler, and their main objective is to show that ∇w⊥L0

and ∇awL0 are sufficiently small, such that ∥w⊥∥ doesn’t change much throughout Phase 1, and
|aw| stays approximately the same as ∥w∥. For convenience, the reader may assume that |aw| = ∥w∥
exactly, which would hold if we took η to 0 as in gradient flow.

For a data sample x ∼ Radd, we denote x = z + ξ, where z ∈ Span({±µ1,±µ2}), and ξ ⊥
Span({±µ1,±µ2}). By leveraging the symmetry of the data distribution and the fact that y(z) =
y(−z), we can compute

∇w1:2
L0 = −awEx=z+ξy(x)σ

′(wTx)z

= −awEξ
1

2
Ezy(z)

(
σ′(wT ξ + wT z)− σ′(wT ξ − wT z)

)
z

= −awEξ
1

2
Ezy(z)1(|wT z| ≥ |wT ξ|) sign(wT z)z

= −1

2
awEzy(z) sign(w

T z)zPξ[|wT z| ≥ |wT ξ|]

≈ −1

2
awEzy(z) sign(w

T z)zPG∼N (0,∥w⊥∥2)[G ≤ |wT z|]

≈ −1

2
awEzy(z) sign(w

T z)z

√
2

π

|wT z|
∥w∥

.

(4.2)
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Here the two approximations come from the fact that ξ has boolean coordinates and not Gaussian,
and from an approximation of the Gaussian distribution, which holds whenever |wT z|

∥w⊥∥ is small. By
taking the expectation over z ∈ {±µ1,±µ2}, the last line of Eq 4.2 can be shown to evaluate to

− |aw|
∥w∥

√
2π

wsig +
|aw|

∥w∥
√
2π

wopp. (4.3)

Observe that near initialization, this gradient is quite small, since ∥wsig∥
∥w∥ is approximately 1√

d
for a

random initialization. Nevertheless, this gradient suggests that wsig will grow exponentially fast.

Bounding the difference ∇L0 −∇Lρ. To bound ∥∇wLρ −∇wL0∥2, first recall that

∇wL0 −∇wLρ = Exaw(ℓ
′
ρ(x)− ℓ′0(x))σ

′(wTx)x.

Defining ∆x := (ℓ′ρ(x)− ℓ′0(x))σ
′(wTx), we can show using routine arguments (see Lemma D.2

for the details) that:

∥∇wLρ −∇wL0∥2 = |aw|∥Ex∆xx∥ ≤ |aw|
√
Ex∆2

x (4.4)

≈ |aw|
√

Exfρ(x)2

⪅ |aw|Eρ[∥aww∥] ≈
|aw|

polylog(d)
.

While this deviation bound is useful for showing that w⊥ doesn’t move too much, this bound far
exceeds the scale of the gradient in the wsig, which is on the scale |aw|√

d
near initialization. Fortunately,

we can show in Lemma D.3 that the deviation is much smaller on the first two coordinates, namely,

∥∇w1:2
Lρ −∇w1:2

L0∥2 ≤ |aw|O(log2(d))

(
Eρ[∥aww1:2∥] + Eρ[∥aww∥]

∥w1:2∥
∥w∥

)
(4.5)

Note that since near initialization ∥w1:2∥ ≪ ∥w∥ for all neurons, this guarantee is much stronger than
Eq. 4.4. In fact, since throughout this phase we can show that aw and ∥w∥ change relatively little,
staying at the scale 1/polylog(d), the approximation error in Eq. 4.5 is smaller than the gradient in
the wsig direction (Eq. 4.3) whenever say ∥wsig∥ ≥ 100Eρ[∥aww1:2∥], which occurs on a substantial
fraction of the neurons.

Lemma D.3 is the most important lemma in our Phase 1 analysis. At a high level, it shows that
the approximation error ∥∇w1:2

Lρ − ∇w1:2
L0∥2 can be coupled with the growth of the signal,

−(∇wL0)
T wsig

∥wsig∥ . This is because we use a symmetrization trick with the pairs z + ξ and −z + ξ

to show that both the error and the signal gradient only grow from samples x = z + ξ where
|zTw| ≥ |ξTw|.
In more detail, to prove Eq. 4.5, we also need to leverage the fact that for any ξ ∈ {µ1, µ2}⊥ and
z ∈ {±µ1,±µ2}, we have |ℓ′ρ(ξ + z)− ℓ′ρ(ξ − z′)| ≤ 4pEρ[∥aww1:2∥], much smaller than we can
expect |ℓ′ρ(x) − ℓ′0(x)| to be. Thus |∆ξ+z −∆ξ−z| ≤ 4pEρ[∥aww1:2∥] whenever |ξTw| ≥ |zTw|
(such that σ′(wT (ξ + z)) = σ′(wT (ξ − z))). Following the symmetrization trick in Eq. 4.2, we have∥∥∥∥ 1

aw
(∇w1:2Lρ −∇w1:2L0)

∥∥∥∥ = ∥Ex∆xz∥

= ∥EξEz∆ξ+zz∥

=
1

2
∥EξEz(∆ξ+z −∆ξ−z)z∥

≤ 2
√
2Eρ[∥aww1:2∥] +

√
2EξEz1(|ξTw| ≤ |zTw|)|∆x|.

A careful computation comparing wT ξ to a Gaussian distribution then shows that

Ez1(|ξTw| ≤ |zTw|)|∆x| ≈
(
Px[|ξTw| ≤ |zTw|]

)
(Ex|∆x|) ⪅

∥w1:2∥
∥w∥

Eρ[∥aww∥].
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Putting Phase 1 Together The building blocks above, combined with standard concentration
bounds on ∇L̂ρ, suffice to show that a substantial mass of neurons will evolve according to Eq 4.3,
leading to exponential growth in wsig. After Θ(log(d)/η) iterations, for these neurons, we can achieve
∥wsig∥ ≫ ∥w⊥ + wopp∥. Formally, we show the following for some ζ = 1/polylog(d):
Lemma 4.1 (Output of Phase 1: Informal; See Lemma D.1 for formal version). With high probability,
for η ≤ Õ(1) and some ζ = 1/polylog(d), after some T = Θ(log(d)/η) iterations of minibatch
SGD, with m = Θ̃(d) samples in each minibatch, the network ρT satisfies:

1. EρT
[∥w⊥ + wopp∥2] ≤ θ.

2. For each µ ∈ {±µ1,±µ2}, on at least a 0.1 fraction of all the neurons, we have wT
sigµ > 0,

and ∥wsig∥2 ≥ ζ−1θ.

We remark that the analysis to prove Lemma 4.1 is somewhat subtle, since the tight approximation in
Eq 4.2 breaks down when ∥wsig∥ approaches ∥w⊥∥. The details are given in Appendix D.

4.1.1 PHASE 2

The conclusion of Lemma 4.1 is a sufficient condition of the network to begin the second phase. In
the second phase, we have that (for most x)

ℓ′ρ(x) ≈ ℓ′ρ(z), (4.6)

where we recall that z is the component of x in the space spanned by µ1 and µ2. We refer to this as
the clean loss derivative, and our main tool will be analyzing the evolution of SGD under this clean
surrogate for the loss derivative. Namely, we define:

∇cl
wLρ := awExℓ

′
ρ(z)σ

′(wTx)x and ∇cl
aw

Lρ := Exℓ
′
ρ(z)σ(w

Tx). (4.7)

Before proceeding, we introduce the following definitions, which will be useful in Phase 2 (summa-
rized in Table 1):

γmin := min
µ∈{±µ1,±µ2}

γµ gmin := min
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmax)

1 + exp(−γmax)

γmax := max
µ∈{±µ1,±µ2}

γµ gmax := max
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmin)

1 + exp(−γmin)

To ensure the approximation in Eq. 4.6 holds throughout the entire the second phase, we will maintain
a certain inductive hypothesis, which ensures the the scale of the signal-direction components of
the network continue to dominate the scale of the non-signal-direction components of the network.
Formally, we consider the following condition.
Definition 4.2 (Signal-Heavy Inductive Hypothesis). For parameters ζ = o(1) and H > 1 with
ζ ≤ exp(−10H), we say a network is (ζ,H)-signal-heavy if there exists some set of heavy neurons
S on which exp(6H)∥w⊥∥+ ∥wopp∥ ≤ ζ∥wsig∥, and

Eρ1(w /∈ S)∥w∥2 ≤ ζγ̃min.

Here we have defined γ̃µ := E[1(w ∈ S,wT
sigµ > 0)awσ(w

Tµ)] and γ̃min := minµ∈{±µ1,±µ2} γ̃µ.
Further,

Eρ[∥w∥2] ≤ Eρ[|aw|2] + ζH ≤ 2H,

and for all neurons, we have |aw| ≤ ∥w∥.

We show via a straightforward argument in Lemma E.4 that if the conclusion of Lemma 4.1 (from
Phase 1) holds for some ζ, then the network is (Θ(ζ1/3), H)-signal-heavy, for H = Θ(log log(d)).

Assuming that the network is (ζ,H)-signal-heavy, using a similar approach to Eq. 4.4, we can show
(see Lemma E.5 for the precise statement) that for any neuron (w, aw),

1

|aw|
∥∇wLρ −∇cl

wLρ∥2 ⪅
√
Ex(fρ(x)− fρ(z))2 ⪅ Eρ[∥aww⊥∥] ≤ ζγmax,

8
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and similarly ∥∇aw
Lρ −∇cl

aw
Lρ∥2 ⪅ ∥w∥ζγmax.

By working with the clean gradients, it is possible to approximately track (or bound) the evolution
of wsig, w⊥, and wopp on neurons in S, the set of neurons for which ∥wsig∥ ≫ ∥w⊥ + wopp∥. In
Lemmas E.6, E.7, and E.8 we show the following for any w ∈ S (let µ be the direction of wsig):

1. The signal component wsig grows quickly. We have −wT
sig∇cl

wLρ ≈ |awℓ′ρ(µ)|τ , where

τ :=
√
2
4 . Also aw grows at a similar rate. This growth is due to the fact that points with

z = −µ will almost never activate the ReLU, while points with z = µ almost always will.
2. A linear combination of ∥w⊥∥2 and ∥wopp∥2 decreases. The argument here is more subtle,

but the key idea is to argue that if |wT
⊥ξ| ≥ |wT

oppz| frequently, then ∥w⊥∥2 will decrease.
Meanwhile, if |wT

⊥ξ| ≤ |wT
oppz| frequently, then wopp will decrease (and there is a sizeable

event on which they both decrease).

Since most of the mass of the network is in S, this shows that the signal will grow at the exponential
rate τ |ℓ′ρ(µ)| — or for the “weakest” cluster, that is, in the direction µ that maximizes γ̃µ, we will

have γ̃
(t+1)
min ⪆ (1 + 2ητgmax) γ̃

(t)
min.

On neurons outside of S, we show in Lemma E.11 that they grow at most as fast as the rate of the
weakest clusters, meaning we can essentially ignore these neurons.
Remark 4.3. If we did not train the second layer weights (and for instance they all had norm 1),
then our tools would not suffice to maintain the signal-heavy hypothesis in Definition 4.2. Indeed, the
neurons in S would grow at a linear rate of τ |ℓ′ρ(µ)|, and at (up to) an equal linear rate outside of S.
Thus the neurons outside of S might eventually attain a non-negligible mass. However, because the
layers are trained simultaneously, this leads to positive feedback between the growth of ∥wsig∥ and
|aw|, leading to exponential growth, maintaining the mass ratios between the neurons in and out of S.

Combining the ideas above, we prove the following lemma, which shows that after one SGD step, the
network stays signal-heavy (with a slightly worse parameter), the behavior of the weakest margin
improves, and the network (measured by the size of the largest margin γmax) doesn’t become too big.
Lemma 4.4 (Phase 2 Inductive Step: Informal; See Lemma E.3 for formal version). If a network
ρt is (ζ,H)-signal heavy with heavy set S, then after one minibatch gradient step, with probability
1− d−ω(1),

1. ρt+1 is (ζ(1 + 10ηζH), H)-signal heavy.

2. γ̃
(t+1)
min ≥ (1 + 2ητ(1− o(1))gmax) γ̃

(t)
min

3. γ̃
(t+1)
max ≤ (1 + 2ητ(1 + o(1))gmin) γ̃

(t)
max, where γ̃

(t)
max := maxµ∈{±µ1,±µ2} γ̃

(t)
µ .

Theorem 3.1 is proved by iterating this lemma Θ(log log(d)/η) times, yielding γmin ≈ γ̃min = ω(1).

5 CONCLUSION

In this work, we showed that in Õ(d) samples, it is possible to learn the XOR function on Boolean
data on a 2-layer neural network. Our results shows that by a careful analysis that compares that
dynamics to the dyamincs under the surrogate L0 loss, we can show that SGD find the signal features,
and escape the region of the saddle where it was initialized. Then, after learning the feature direction,
we show that SGD will enlarge and balance the signal components to learn well-classify points from
all 4 clusters. We discuss some of the limits and possible extensions of our techniques in Section A.
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A DISCUSSION

We now discuss some of the limits and possible extensions of our techniques.

Minibatch SGD vs SGD vs GD. In this work, we study minibatch SGD, with a batch size
of m ≥ dpolylog(d). This affords us enough samples at each iteration to have strong enough
convergence to the population loss. Extending our results to SGD with a batch size of 1 is an
interesting open question, and it is possible that this could be achieved using the drift-martingale
techniques in Tan & Vershynin (2019); Arous et al. (2021); Abbe et al. (2023). Such methods allow
larger fluctuations from the population loss at each step, but show that the fluctuations concentrate
over time, even when SGD is run for T = ω(1/η) steps, enough time to escape a saddle.
We remark that in this problem, using minibatch SGD with fresh samples can achieve stronger
sample complexities than that required to show uniform convergence of the empirical gradient to
the population gradient (as in Ge et al. (2017); Mei et al. (2018a)), which in our setting, is Ω(d2)
samples. This means proving the convergence of GD on the empirical loss would require tools
beyond uniform convergence.

Boolean Data vs Gaussian Data. One limitation of this work is that our results only hold for
boolean data, and not gaussian data x ∼ N (0, Id). As a matter of convenience, it is easier to
compute the population gradients ∇wL0 and ∇cl

wLρ with Boolean data, and the gradient does not
depend on interactions between wsig and wopp. With some willingness to perform various Gaussian
integrals, we believe the analysis in Phase 1 could be extended to the Gaussian setting. This would
require changing Lemma D.17 to reflect the population gradients, and modifying the definition
of “strong” neurons (Def. D.13) to be a more restrictive set that only includes neurons where
∥wopp∥ ≪ ∥wsig∥, such that wsig grows at the maximum possible rate. We do not know of any way
to directly extend Phase 2 to the Gaussian case. This is because if the cluster margins γu become
very imbalanced, it is possible wsig could grow in the wrong direction.

Classification vs Regression. In our classification setting, it suffices to show that the margin on
each cluster grows large. We accomplish this in our Phase 2 analysis by showing that there is a large
mass of neurons primarily in the µ-direction for each µ ∈ {±µ1,±µ2}. Adapting this strategy may
be possible for XOR regression on Boolean data, but on Gaussian data, representing the ground truth
function would require more specialization among the neurons. To see this, consider the following
simpler example: to represent the single-index function f∗(x) = (eT1 x)

2 on Gaussian data on a
ReLU network without biases, the neurons cannot all be oriented in the ±e1 direction, otherwise
the output would be aσ(x1) + bσ(−x1) for scalars a, b. Studying the power of SGD to perform
this specialization is an exciting open direction. We believe that our Phase 1 analysis may be a
useful first step in this regard to show that the network can become signal-heavy. More powerful
techniques would need to be developed to show specialization once the network contains sufficient
signal.
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B NOTATION AND ORGANIZATION

We use Radℓ to denote the uniform distribution on {±1}ℓ. Any expectations or probabilities over x
are over the distribution x ∼ Radd. Whenever the variable x is used, we use z = z(x) to denote the
projection of x onto its first two coordinates (the space spanned by µ1 and µ2), and we use ξ = ξ(x)
to denote the projection of x orthogonal to z. We use expectations over z and ξ to mean expectation
over z(x) and ξ(x), where x ∼ Radℓ. For a vector v ∈ Rd, we use the notation v\i to denote the
vector v − eivi, which sets the ith coordinate of v to 0.
Throughout, we often remove the superscript (t) and use w to denote w(t). Sometimes for emphasis,
or when we are comparing w(t+1) and w(t), we will include the superscripts. However, the reader
should not be alarmed if we use w(t) and w interchangeably, even in such calculations. The same
holds for all other neural network parameters.
Throughout the appendix, will use the notation x ∈ a± b to mean that |x− a| ≤ b.
We recall that much helpful notation used throughout the appendix is summarized in Table 1 in the
main body.
In Section C, we derive several auxiliary lemmas which will be used throughout the appendix. In
Section D, we prove our results for Phase 1. In Section E, we prove our results for Phase 2. In
Section F, we prove the main theorem. In Section G, we sketch why Θ̃(d) samples are needed for
learning the XOR function with a rotationally invariant algorithm.

C AUXILIARY LEMMAS

C.1 FROM BOOLEANS TO GAUSSIANS

The following section provides some lemmas to handle the fact that our data is drawn from the
Boolean hypercube, and not Gaussian. At a high level, our goal is to show that for all neurons w,
for any a > 0 we have that

Pξ∼Radd [|ξTw| ≤ a] ≈ PX∼N (0,Id)[|X
Tw| ≤ a].

Of course, this is not true for all vectors w (eg. if w is sparse, these two probabilities may differ
significantly.) Fortunately, the neurons w we care about will be equal to their initialization (which is
a random vector on the sphere) plus a small arbitrary perturbation. Thus we will define a notion of a
“well-spread vector”, claim that at initialization with high probability all neurons are well-spread
(Lemma C.2), and then use Lemmas C.3 and C.4 to relate the Boolean probabilities to Gaussian
probabilities, for all neurons w that are near well-spread vectors. Later on in training, the neurons
may not be close to their initialization, but we will be able to bound their ℓ∞ norm, and thus use the
well known Berry-Esseen Lemma to relate the Boolean and Gaussian probabilities.
Definition C.1 (Well-Spread Vector). We say a vector v ∈ Rd is c-well-spread if:

1. ∥v∥33 ≤ 20∥v∥32d−1/2 and ∥v∥∞ ≤ log(d)√
d

∥v∥2.

2. Let S index the set of d/c2 coordinates of v with smallest absolute value (break ties arbitrarily).

Then
∑

i∈S |vi| ≥ ∥v∥
√
d

c5 , and maxi∈S |vi| ≤ ∥v∥
c
√
d

.

Lemma C.2. For any constant c large enough, the following holds. For any r > 0, if w ∼ Sd−1(r),
then with probability 1− d−ω(1), w is c-well-spread.

Proof. Without loss of generality we may assume r = 1. We can write w = u/X , where
u ∼ N (0, 1

dId), and X = ∥u∥. With probability 1− d−ω(1), the following events hold:
1. We have X ∈ [0.9, 1.1]. This holds by Bernstein’s concentration inequality for sub-exponential

random variables.
2. ∥u∥∞ ≤ log(d)

2
√
d

. This holds by a union bound over all d coordinates, and using the Gaussian
CDF.

3. ∥u∥33 ≤ 10d−1/2. This holds by applying Lipshitz concentration of Gaussians to the function
f(u) := ∥u∥3. Indeed, this function is 1-Lipshitz since ∥u∥3 ≤ ∥u∥2. We have E[∥u∥3] =

E[(
∑

i |u3
i |)1/3] ≤

(∑
i E[
∑

|u3
i |]
)1/3 ≤

(∑
i

√
E[
∑

u6
i ]
)1/3

=
(
d
√
d−315

)1/3
≤

2d−1/6, so Lipshitz concentration yields that ∥u∥3 ≤ 2.1d−1/6 with probability 1− d−ω(1),
and such, that ∥u∥33 ≤ 10d−1/2.
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4. For c large enough, there are at least d/c2 indices i for which |ui| ≤ 1
2c

√
d

. This holds by a

Chernoff bound for Bernoulli random variables, since for any i, P
[
|ui| ≤ 1

2c
√
d

]
≥ 1

4c .

5. There are no more than d/(2c2) coordinates i for which |ui| ≤ 10
c3

√
d

. This again holds by a

Chernoff bound for Bernoulli random variables, since for any i, P
[
|ui| ≤ 10

c3
√
d

]
≤ 20

c3 .

Combining the first, second, and third items above yields the first property of a well-spread vector
for w. Combining the first, fourth, and fifth items above yields the second property of a well-spread
vector for w.

Lemma C.3. There exists a universal constant C0 such that the following holds for any C-well-
spread vector v for C ≥ C0. For any ∆ ∈ Rd with ∥∆∥2 ≤ ζ∥v∥2 if ζ ≤ 1

C10000 , we have for d
large enough:

Pξ

[
|ξT (v +∆)| ≤ ∥v∥√

d

]
≥ 1

2
exp(−100C8)

1√
d
.

Lemma C.4. There exists a universal constant C0 such that the following holds for any C-well-
spread vector v for C ≥ C0. For any ∆ ∈ Rd with ∥∆∥2 ≤ ζ∥v∥2 if ζ ≤ 1

C10000 , we have for d
large enough,∣∣∣Pξ∼Radd [ξT (v +∆) ∈ [a∥v∥, b∥v∥]]− P |b−a|

2

∣∣∣ ≤ 2P |b−a|
2

(
√

ζ +max(|a|, |b|)2) + 200CBEd
−1/2,

where

Pc := PG∼N (0,1)[|G| ≤ c] = PX∼N (0,Id)[|X
T v| ≤ c∥v∥],

and CBE is the constant from Theorem C.5.

Our main tool in proving these two lemmas is the Berry-Esseen Inequality.
Theorem C.5 (Berry-Esseen Inequality). There exists a universal constant CBE such that for
independent mean 0 random variables X1, · · ·Xn, with E[X2] = σ2

i , and E[|Xi|3] = ρi, we have

sup
x

|Φ(x)− Fn(x)| ≤ CBE

∑
ρi

(
∑

σ2
i )

3/2
,

where Φ is the CDF of N (0, 1), and Fn is the CDF of
∑

Xi√∑
σ2
i

. Thus if u ∈ Rℓ, then

sup
x

∣∣Pξ∼Radℓ [uT ξ ≥ x]− PG∼N (0,1)[G ≥ x/∥u∥]
∣∣ ≤ CBE

∥u∥3

∥u∥32
.

We will use the following lemma which follows from Chebychev’s inequality and Berry-Esseen.
Lemma C.6. The following holds for any constant C large enough. Suppose u ∈ Rℓ satisfies
∥u∥∞ ≤ 1. Then for ξ ∼ Radℓ, we have

P[|ξTu| ≤ C] ≥ 1

C
√
ℓ
.

Proof. We need to do casework on the size of ∥u∥. Applying Berry-Esseen, if C ≥ 8
√
πCBE and

∥u∥2 ≥ 8
√
πCBE, we have

Pξ[|ξTu| ≤ C] ≥ PG∼N (0,1)[|G| ≤ C/∥u∥2]− 2CBE
∥u∥33
∥u∥32

≥ PG∼N (0,1)[|G| ≤ C/∥u∥2]− 2CBE
∥u∥22∥u∥∞

∥u∥32

≥ PG∼N (0,1)[|G| ≤ C/∥u∥2]−
2CBE

∥u∥2

≥
√

1

π

C

C + ∥u∥2
− 2CBE

∥u∥2

≥ 1

C
√
ℓ
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Here in the second inequality we used Holder’s inequality (with p = 1, q = ∞), and in the final
inequality we used the bounds 8

√
πCBE ≤ ∥u∥2 ≤

√
ℓ∥u∥∞ ≤

√
ℓ and C ≥ 8

√
πCBE.

If ∥u∥ ≤ 4
√
πCBE, then by Chebychev’s inequality, we have for C large enough:

Pξ[|ξTu| ≥ C] ≤ E(ξTu)2

C2
=

∥u∥22
C2

≤ 1− 1

C
√
ℓ
.

Proof of Lemma C.3. Let w := v + ∆. Let B be the set of “bad” coordinates on which |∆i| ≥
∥v∥

3C3
√
d

. Thus since ∥∆∥ ≤ ζ∥v∥, we have |B| ≤ (3C3)2dζ2 ≤ d
3C4 for C large enough. Let S be

the set of d/C2 coordinates of v with smallest absolute value (as in the definition of well-spread).
Thus letting S′ := S \B, we have:
D1 ∑

i∈S′

|wi| ≥
∑
i∈S

|vi| − |S′|max
i/∈B

|∆i| − |B|max
i∈S

|vi|

≥ ∥v∥
√
d

C5
− d

C2

(
∥v∥

3C3
√
d

)
− d

3C4

(
∥v∥
C
√
d

)
≥ ∥v∥

√
d

3C5
.

D2 maxi∈S′ |wi| ≤ ∥v∥2

C
√
d
+ ∥v∥

3C3
√
d
≤ 2∥v∥2

C
√
d

.

Without loss of generality, assume the coordinates of w are ordered with the with the indices not in
S′ first, followed by the indices in S′.
Let Xt for t = 1 . . . d be the random walk Xt =

∑t
i=1 ξiwi. Let τ be the first time at which the

random walk crosses zero after step d− |S′|, such that |Xτ | ≤ |wτ |. If it never crosses zero after
this time, let τ := d+ 1.

Let A be the event that τ ̸= d+ 1, and let Bt be the event that
∣∣∣∑d

i=t+1 ξiwi

∣∣∣ ≤ ∥v∥
2
√
d

. We proceed
with a sequence of claims.

Claim C.7. If A and Bτ occur, then
∣∣∣∑d

i=1 ξiwi

∣∣∣ ≤ ∥v∥√
d

.

Proof. If A and Bτ occur, then∣∣∣∣∣
d∑

i=1

ξiwi

∣∣∣∣∣ ≤ |Xτ |+

∣∣∣∣∣
d∑

i=τ+1

ξiwi

∣∣∣∣∣
≤ |wτ |+

∥v∥
2
√
d

≤ max
i∈S′

|wi|+
∥v∥
2
√
d
≤ ∥v∥√

d
,

for C large enough.

Claim C.8.

Pξ [A and Bτ ] ≥ Pξ [A] min
t∈[d−|S′|,d]

Pξ [Bt]

16
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Proof.

Pξ [A and Bτ ] =

d∑
t=d−|S′|

Pξ[τ = t]Pξ[Bt|τ = t]

=

d∑
t=d−|S′|

Pξ[τ = t]Pξ[Bt]

≥

 d∑
t=d−|S′|

Pξ[τ = t]

 min
t∈[d−|S′|,d]

Pξ [Bt]

= Pξ[A] min
t∈[d−|S′|,d]

Pξ [Bt] .

Claim C.9. For any t ∈ [d− |S′|, d], Pξ [Bt] ≥ 1√
d

.

Proof. We will apply Lemma C.6. Fix t and let u′ ∈ Rd−t be the vector with u′
i = wi+t. Then

∥u′∥∞ ≤ 2∥v∥2

C
√
d

by D2. Let u := u′

∥u′∥∞
. Applying Lemma C.6 to u yields (so long as C ≥ 4CC.6,

where CC.6 is the constant in Lemma C.6):

P
[
|ξTu′| ≤ ∥v∥

2
√
d

]
= P

[
|ξTu| ≤ ∥v∥

2
√
d∥u∥∞

]
≥ P

[
|ξTu| ≤ C

4

]
≥ 1

CC.6

√
d− t

≥ 1

CC.6

√
|S′|

≥ 1

CC.6

√
d/C2

≥ 1√
d
.

Here the first inequality in the last line follows from the fact that |S′| ≤ |S| = d
C2 .

Claim C.10.

Pξ[τ ≥ d− |S′|] ≥ 1

2
exp(−100C8).

Proof. Because for any scalar b and any set of coordinates P we have Pξ

[∑
i∈P ξiwi = b

]
=

Pξ

[∑
i∈P ξiwi = −b

]
, we have

Pξ[τ ≥ d− |S′|] ≥ Pξ

[
|Xd−|S′|| ≤ 2∥v∥

]
P

 d∑
i=d−|S′|+1

ξTi wi ≥ 2∥v∥

 . (C.1)

We will show that these two probabilities are sufficiently large via Berry-Esseen. For the second
probability, let u ∈ Rd−|S′| be the vector with ui = wi+d−|S′|. Then we have by D1,

∥u∥2 ≥ 1√
|S′|

∥u∥1 ≥ ∥v∥
√
d

3C5
√
|S′|

≥ ∥v∥
√
d

3C5
√
|S|

=
∥v∥
3C4

,

while by Holder’s inequality and D2, we have

∥u∥33 ≤ ∥u∥22∥u∥∞ ≤ ∥u∥22
2∥v∥
C
√
d
.
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Thus by Berry-Esseen, we have

P

 d∑
i=d−|S′|+1

ξTi wi ≥ 2∥v∥

 ≥ PG∼N (0,1)[G ≥ 2∥v∥/∥u∥]− CBE
2∥v∥

C
√
d∥u∥

(C.2)

≥ PG∼N (0,1)[G ≥ 6C4]− CBE
6C3

√
d

≥ exp(−100C8),

for a constant C large enough (and d sufficiently large).
Now consider the probability Pξ

[
|Xd−|S′|| ≤ 2∥v∥

]
. By Chebychev’s inequality, we have

Pξ

[
|Xd−|S′|| ≥ 2∥v∥

]
≤

E[X2
d−|S′|]

4∥v∥2

=
E[
∑d−|S′|

i=1 w2
i ]

4∥v∥2

≤ ∥w∥2

4∥v∥2
≤ 1

2
.

Combining this with Eq C.2 and Eq C.1 yields the claim.

Combining Claims C.7-C.10 yields

Pξ

[
|ξTw| ≤ ∥v∥√

d

]
≥ 1

2
exp(−100C8)

1√
d
,

which proves the lemma.

Proof of Lemma C.4. We can without loss of generality assume b ≥ |a|, since the variable ξ is
symmetric. Define B := {i : |∆i| ≥

√
ζ ∥v∥√

d
}. Observe that since ∥∆∥2 ≤ ζ∥v∥, we have |B| ≤ ζd.

Let w = v +∆. We can write

Pξ

[
ξTw ∈ [a, b]∥v∥

]
=

∫ ∞

x=−∞
Pξ

[∑
i∈B

ξiwi = x∥v∥

]
Pξ

 ∑
i∈[d]\B

ξiwi ∈ [a− x, b− x]∥v∥


(C.3)

We use the following claim to bound this integral.

Claim C.11.∣∣∣∣∣∣Pξ

 ∑
i∈[d]\B

ξiwi ∈ [a− x, b− x]∥v∥

− P b−a
2

∣∣∣∣∣∣ ≤ P b−a
2

(√
ζ + (|x|+ b)2/2

)
+ 200CBEd

−1/2.

Proof. We use Berry-Esseen. Let u ∈ Rd−|B| with coordinates equal to the set {wi}i∈[d]\S . Then

|∥u∥2 − ∥v∥2| ≤ |B|max
i∈B

|vi|2 + ∥∆∥2 + 2∥v∥∥∆∥

≤ ζ log(d)2∥v∥2 + 3ζ∥v∥2

≤
√

ζ∥v∥2,

where the last line follows because ζ ≤ 1/ log5(d). Further

∥u∥33 ≤
∑
i/∈B

w3
i ≤

∑
i/∈B

4
(
v3i +∆3

i

)
≤≤ 4∥v∥33 + 4∥∆∥2 sup

i/∈B

|∆i| ≤ 4∥v∥33 + 4ζ3/2∥v∥32d−1/2 ≤ 100∥v∥32d−1/2.

In both these computations we have used the fact that v is well-spread to bound ∥v∥∞ and ∥v∥33.
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By Berry-Esseen (Theorem C.5), we have

Pξ

 ∑
i∈[d]\B

ξiwi ∈ [a− x, b− x]∥v∥

 ∈ PG∼N (0,1)

[
G ∈ [a− x, b− x]

∥v∥
∥u∥

]
± 2CBE

∥u∥33
∥u∥32

(C.4)

Now we have

PG∼N (0,1)

[
G ∈ [a− x, b− x]

∥v∥
∥u∥

]
∈ PG∼N (0,1) [G ∈ [a− x, b− x]]

[
1−

√
ζ, 1 +

√
ζ
]

∈ PG∼N (0,1)

[
G ∈

[
−b− a

2
,
b− a

2

]] [
ϕ(b+ |x|)

ϕ(0)
−
√
ζ, 1 +

√
ζ

]
.

where we have used the fact that ∥v∥
∥u∥ ∈

[
1√

1−
√
ζ
, 1√

1+
√
ζ

]
∈ [1−

√
ζ, 1 +

√
ζ], and that a ≤ |b|.

Now
ϕ(b+ |x|)

ϕ(0)
= exp(−(b+ |x|)2/2) ≥ 1− (b+ |x|)2/2,

so

PG∼N (0,1)

[
G ∈ [a− x, b− x]

∥v∥
∥u∥

]
∈ P b−a

2

[
1−

√
ζ − (b+ |x|)2/2, 1 +

√
ζ
]

Thus returning to Eq C.4, we have

Pξ

 ∑
i∈[d]\B

ξiwi ∈ [a− x, b− x]∥v∥

 ∈ P b−a
2

[(
1− (|x|+ b)2/2−

√
ζ
)
, 1 +

√
ζ
]
± 200CBEd

−1/2,

which yields the desired result.

Returning to Eq C.3, we have∣∣∣Pξ

[
ξTw ∈ [a∥v∥, b∥v∥]

]
− P b−a

2

∣∣∣ ≤ P b−a
2

√
ζ + 200CBEd

−1/2 +
1

2
P b−a

2

∫ ∞

x=−∞
Pξ

[∑
i∈B

ξiwi = x∥v∥

]
(|x|+ b)2

≤ Pa(
√

ζ + b2) + 200CBEd
−1/2 + P b−a

2

∫ ∞

x=−∞
Pξ

[∑
i∈B

ξiwi = x∥v∥

]
x2

= Pa(
√

ζ + b2) + 200CBEd
−1/2 + P b−a

2

1

∥v∥2
Eξ

(∑
i∈B

ξiwi

)2


= Pa(
√

ζ + b2) + 200CBEd
−1/2 + P b−a

2

1

∥v∥2

(∑
i∈B

w2
i

)
.

Now ∑
i∈B

w2
i ≤

∑
i∈B

2(∆2
i + v2i ) ≤ 2∥∆∥2 + 2|B|max

i
v2i ≤

√
ζ∥v∥2.

Thus we have∣∣∣Pξ

[
|ξTw| ∈ [a∥v∥, b∥v∥]

]
− P b−a

2

∣∣∣ ≤ 2P b−a
2
(
√

ζ + b2) + 200CBEd
−1/2,

which proves the lemma.
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C.2 SIMULTANEOUS TRAINING OF TWO-LAYER RELU NETWORKS

We will make use of the following general-purpose lemma for training neural networks with ReLU
activations and Lipshitz loss functions.
Lemma C.12 (Empirical Concentration). If we train with data from Pd on any loss L that is
2-Lipshitz in the output of the network, with a minibatch size of m ≥ d log(d)2, we have for any
neuron (w, aw) with probability 1− d−ω(1),

1. ∥∇wL−∇wL̂∥2 ≤ d log2(d)
m a2w; and for any i ∈ [d], ∥∇wi

L−∇wi
L̂∥2 ≤ log2(d)

m a2w;

2. ∥∇aw
L−∇aw

L̂∥2 ≤ d log2(d)
m ∥w∥2;

Proof. We can use the Generalized Hoeffding’s inequality to prove this.
For the first statement, each coordinate of ℓ′ρ(x)σ

′(wTx)x minus its expectation a random variable
bounded by a constant, and is thus subgaussian.
For the second statements, ℓ′ρ(x)σ(w

Tx) minus its expectation is subgaussian with parameter ∥w∥.

Lemma C.13. If we train with data from Pd on any loss ℓ that is 2-Lipshitz with respect the the
output of the network, with a minibatch size of m ≥ d log(d)2 and η ≤ 1/4, we have for any neuron
(w, aw) with probability 1− d−ω(1),

S1 ∥∇wL∥ ≤ 2|aw|;
S2 ∥∇aL∥ ≤ 2∥w∥;

S3 If |a(t)w | ≤ ∥w(t)∥, then |a(t+1)
w | ≤ ∥w(t+1)∥.

S4 ∥w(t+1)∥2 − |(a(t+1)
w )|2 ≤ 4η2|a(t)w |2 + ∥w(t)∥2 − |(a(t)w )|2.

Proof. Consider the first statement first. We have

1

|aw|
∥∇wL∥ = sup

v:∥v∥=1

Exℓ
′
ρ(x)σ

′(wTx)xT v

≤ Ex|ℓ′ρ(x)||xT v|
≤ 2Ex|xT v|
≤ 2.

For the second statement, we have

∥∇aL∥ = Exℓ
′
ρ(x)σ(w

Tx)

≤ 2∥w∥.

For the third and fouth statements, we use the shorthand a = a
(t)
w , w = w(t). To prove the third

statement, we can write

(a(t+1))2 =
(
a− η∇aL̂

)2
= (a)2 − 2ηa∇aL̂+ η2(∇aL̂)

2

and

∥w(t+1)∥2 = ∥w − η∇wL̂∥2

= ∥w∥2 − 2ηwT∇wL̂+ η2∥∇wL̂∥2.

Because we use the ReLu activation, we have

(w(t))T∇wL̂ = a(t)∇aL̂.
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Thus

(a(t+1))2 − ∥w(t+1)∥2 = (a(t))2 − ∥w(t)∥2 + η2
(
(∇aL̂)

2 − ∥∇wL̂∥2
)

≤ (a(t))2 − ∥w(t)∥2 + η2
(
(∇aL̂)

2 − 1

∥w∥2
(wT∇wL̂)

2

)
= (a(t))2 − ∥w(t)∥2 + η2

(
(∇aL̂)

2 − a2

∥w∥2
(∇aL̂)

2

)
= (a(t))2 − ∥w(t)∥2 + η2(∇aL̂)

2

∥w∥2
(
∥w∥2 − a2

)
=
(
(a(t))2 − ∥w(t)∥2

)(
1− η2(∇aL̂)

2

∥w∥2

)

By the previous conclusions of the lemma and Lemma C.12, we have with probability 1− d−ω(1),

(∇aL̂)
2 ≤ 2(∇aL)

2 + 2ζ∥w∥2 ≤ 2∥w∥2 + 2ζ∥w∥2,

where ζ = log(d)2 d
m . Assuming η ≤ 1/4, this yields the desired statement.

For the fourth result, we have with probability 1− d−ω(1),

∥w(t+1)∥2 − (a(t+1))2 − ∥w(t)∥2 + (a(t))2 = η2
(
∥∇wL̂∥2 − (∇aL̂)

2
)

≤ 2η2
(
∥∇wL∥2 + ∥∇wL̂−∇wL∥2

)
≤ 4η2a2w.

D PHASE 1

In this section, we prove the following lemma.
Lemma D.1 (Output of Phase 1; Formal). For any constants c sufficiently large, and C sufficiently
large in terms of c, for any d large enough, the following holds. Let θ := 1/ log(d)C .
Suppose we train a 2-layer neural network with minibatch SGD as in Section 2.2 with a minibatch
size of m ≥ d/θ2, width 1/θ ≤ p ≤ dC , and step size η ≤ θ, and initialization scale θ. Then with
probability at least 1− θ, after some T1 = Θ(log(d)/η) steps of minibatch SGD, the network ρT1

satisfies:

1. EρT1
[∥aww∥] ≤ 1;

2. EρT1
[∥w⊥ + wopp∥2] ≤ 4θ2;

3. For all µ ∈ {±µ1,±µ2}, on at least a 0.1 fraction of the neurons, we have ∥wsig∥ ≥ log(d)cθ
and wT

sigµ > 0.

Additionally,
EρT1

[∥w∥2] ≤ EρT1
[|aw|2] +

√
η,

and for all neurons, we have |aw| ≤ ∥w∥.

D.1 PHASE 1 GRADIENT BOUNDS

The core ingredients of Phase 1 are the following three lemmas, which relate the gradient ∇Lρ to
∇L0 and compute several properties of the L0 population gradient. Recall that we have

∇wL0 = Ex
∂

∂w
ℓ0(x; ρ) = −Exawy(x)σ

′(wTx)x;

∇awL0 = Ex
∂

∂aw
ℓ0(x; ρ) = −Exy(x)σ(w

Tx),

which is independent of the full distribution ρ.
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Lemma D.2. For any neuron (w, aw),
G1 |∇aw

L0 −∇aw
Lρ| ≤ 2∥w∥Eρ[∥aww∥].

G2 ∥∇wL0 −∇wLρ∥ ≤ 2|aw|Eρ[∥aww∥].
Lemma D.3. Suppose Eρ[∥aww∥] ≤ dO(1). For any neuron (w, aw), for any i ∈ [d],

∥∇wiLρ −∇wiL0∥

≤ |aw|
(
4(Eρ[∥awwi∥]) + 2 log(d)Eρ[∥aww∥]Ex1(|xT

\iw| ≤ |wi|) + d−ω(1)
)
.

Lemma D.4 (Signal Subspace L0 Population Gradients). For any neuron (w, aw), we have

B1 −wT
sig∇wL0 =

√
2
4 |aw|Eξ1(|wT ξ| ≤

√
2∥wsig∥)∥wsig∥

B2 −wT
opp∇wL0 = −

√
2
4 |aw|Eξ1(|wT ξ| ≤

√
2∥wopp∥)∥wopp∥

B3 −wT
⊥∇wL0 ≤

{
|aw|
4 Eξ[1(|wT ξ| ∈ [

√
2∥wsig∥,

√
2∥wopp∥])|wT ξ|] ∥wopp∥ > ∥wsig∥;

− |aw|
4 Eξ[1(|wT ξ| ∈ [

√
2∥wopp∥,

√
2∥wsig∥])|wT ξ|] ∥wopp∥ ≤ ∥wsig∥.

B4 For i ∈ [3, d], with X = (ξ − eiξi)
Tw, we have

−wT
i ∇wiL0 =

|aw||wi|
4

(
P
[
X ∈ [

√
2∥wopp∥ − |wi|,

√
2∥wopp∥+ |wi|]

]
− P

[
X ∈ [

√
2∥wsig∥ − |wi|,

√
2∥wsig∥+ |wi|]

])
.

Proof of Lemma D.4. First consider B1. By symmetrizing over the pair (z + ξ,−z + ξ), we have

−wT
sig∇wL0 = awExy(x)σ

′(wTx)zTwsig

=
1

2
awEξy(z)(σ

′(wT ξ + wT
sigz)− σ′(wT ξ − wT

sigz))z
Twsig

=
1

2
awEξy(z)1(|wT ξ| ≤ |wT

sigz|) sign(wT
sigz)z

Twsig

=

√
2

4
|aw|Eξ1(|wT ξ| ≤

√
2∥wsig∥)∥wsig∥

since y(z)aw > 0 if z ∈ span(wsig).
Next consider B2. By a similar calculation via symmetrization, but using the fact that y(z)aw < 0
if z ∈ span(wopp), we have

−wT
opp∇wL0 =

1

2
awEξy(z)1(|wT ξ| ≤ |wT

oppz|) sign(wT
oppz)z

Twopp

=

√
2

4
|aw|Eξ1(|wT ξ| ≤

√
2∥wopp∥)∥wopp∥.

Next consider B3. Symmetrizing over the pair (z + ξ, z − ξ), we have

−wT
⊥∇w⊥L0 = awExy(x)σ

′(wTx)wT
⊥ξ

= aw
1

2
Exy(z)

(
σ′(wT z + wT ξ)− σ′(wT z − wT ξ)

)
wT

⊥ξ

= aw
1

2
Exy(z)1(|wT ξ| ≥ |wT z|)|wT

⊥ξ|

=

{
|aw| 14Eξ1(|wT ξ| ∈ [

√
2∥wopp∥,

√
2∥wsig∥])|wT ξ| ∥wopp∥ ≤ ∥wsig∥

−|aw| 14Eξ1(|wT ξ| ∈ [
√
2∥wsig∥,

√
2∥wopp∥])|wT ξ| ∥wsig∥ ≤ ∥wopp∥

Finally consider B4. Recall that ξ\i denotes ξ − eiξi. Then symmetrizing over the pair (z + ξ\i +
eiξi, z + ξ\i − eiξi), we have

−wT
i ∇wi

L0 = −awExy(x)σ
′(wTx)wiξi

= −aw
1

2
Exy(z)

(
σ′(wT z + wT ξ\i + wiξi)− σ′(wT z + wT ξ\i − wiξi)

)
wiξi

= −aw
1

2
Exy(z)1(|wT z + wT ξ\i| ≤ |wi|)|wi|
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Now explicitly evaluating the expectation over z and noting that the variable ξ\i is symmetric, we
have

awExy(z)1(|wT z + wT ξ\i| ≤ |wi|)

= |aw|
1

2
Pξ\i

[
wT ξ\i ∈

[√
2∥wsig∥ − |wi|,

√
2∥wsig∥ − |wi|

]]
− |aw|

1

2
Pξ\i

[
wT ξ\i ∈

[√
2∥wopp∥ − |wi|,

√
2∥wopp∥ − |wi|

]]
.

Thus with X = wT ξ\i, we have

−wT
i ∇wi

L0 =

|aw||wi|
4

(
PX

[
X ∈ [

√
2∥wopp∥ − |wi|,

√
2∥wopp∥+ |wi|]

]
− PX

[
X ∈ [

√
2∥wsig∥ − |wi|,

√
2∥wsig∥+ |wi|]

])
.

To prove Lemma D.2 and D.3, we will need the following lemma.

Lemma D.5. Suppose x ∼ Radd. Then

Ex(ℓ
′
ρ(x)− ℓ′0(x))

2 ≤ 4(Eρ[∥aww∥])2.

Further for any x on the boolean hypercube and i ∈ [d],

(ℓ′ρ(x\i + eixi)− ℓ′ρ(x\i − eixi))
2 ≤ 16(Eρ[∥awwi∥])2.

Proof. Recall that ℓρ(x) = −2 log
(

1
1+exp(−y(x)fρ(x))

)
, and so ℓ′ρ(x) = − 2y(x) exp(−y(x)fρ(x))

1+exp(−y(x)fρ(x))
.

Observe that ℓ′ρ(x) is 2-Lipshitz with respect to fρ(x). Thus for the first statement, using Jensen’s
inequality, we have

Ex(ℓ
′
ρ(x)− ℓ′0(x))

2 ≤ 4Exfρ(x)
2

= 4Ex

(
Eρawσ(w

Tx)
)2

= 4 sup
v:∥v∥=1

Ex

(
Eρ∥aww∥|vTx|

)2
= 4(Eρ∥aww∥)2

For the second statement, by the 2-Lipshitzness of ℓ′, we have

(ℓ′ρ(x\i + eixi)− ℓ′ρ(x\i − eixi))
2 ≤ 4(fρ(x\i + eixi)− fρ(x\i − eixi))

2

= 4
(
Eρaw(σ(w

Tx\i + wixi)− σ(wTx\i − wixi))
)2

≤ 4 (Eρ2|aw||wi|)2

= 16(Eρ[∥awwi∥])2.

Proof of Lemma D.2. For convenience, define ∆x := (ℓ′ρ(x) − ℓ′0(x))σ
′(wTx). We consider

item G1 first. By Cauchy Schwartz, we have

|∇L0(aw)−∇Lρ(aw)| =
∣∣Ex(ℓ

′
ρ(x)− ℓ′0(x))σ(w

Tx)
∣∣

=
∣∣Ex∆xw

Tx
∣∣

≤
√

Ex[∆2
x]
√

Ex(wTx)2

≤
√

Ex[(ℓ′ρ(x)− ℓ′0(x))
2]∥w∥2.

Now by Lemma D.5, we have Ex[(ℓ
′
ρ(x)− ℓ′0(x))

2] ≤ 4p2(Eρ[∥aww∥])2. Plugging this yields G1
and G2.
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For item G2, we similarly have

∥∇wLρ −∇wL0∥2 = |aw|∥Ex∆xx∥
= |aw| sup

v:∥v∥=1

Ex∆x⟨v, x⟩

≤ |aw| sup
v:∥v∥=1

√
Ex∆2

x

√
Ex⟨v, x⟩2

≤ |aw|
√
Ex∆2

x

≤ |aw|2Eρ[∥aww∥].

Proof of Lemma D.3. Define ∆x := (ℓ′ρ(x)− ℓ′0(x))σ
′(wTx). Using the symmetry of the data for

pairs (x\i + eixi, x\i − eixi), we have∥∥∥∥ 1

aw
(∇wi

Lρ −∇wi
L0)

∥∥∥∥
= ∥Ex∆xxi∥

=
1

2
∥Ex(∆x\i+eixi

−∆x\i−eixi
)xi∥

≤ 1

2
∥Ex1(|xT

\iw| ≥ |wi|)(∆x\i+eixi
−∆x\i−eixi

)xi∥+
1

2
∥Ex1(|xT

\iw| ≤ |wi|)(∆x\i+eixi
−∆x\i−eixi

)xi∥

≤ 1

2
sup
x

|ℓ′ρ(x\i + eixi)− ℓ′ρ(x\i − eixi)|+ Ex1(|xT
\iw| ≤ |wi|)|∆x|.

Here the last line follows from the fact that whenever |xT
\iw| ≥ |wi|, we have σ′(wT (x\i+eixi)) =

σ′(wT (x\i − eixi)), and thus |∆x\i+eixi
−∆x\i−eixi

| ≤ |ℓ′ρ(x\i + eixi)− ℓ′ρ(x\i − eixi)|. Note
that the sup is over x on the boolean hypercube.
Now by Lemma D.5, we have supx |ℓ′ρ(x\i + eixi)− ℓ′ρ(x\i − eixi)| ≤ 4(Eρ[∥awwi∥]). Further,
by the 2-Lipshitzness of ℓ′ρ with respect to fρ(x), (see the proof of Lemma D.5), we have

Ex1(|xT (w − wixi)| ≤ |wi|)|∆x|
≤ 2Ex1(|xT (w − wixi)| ≤ |wi|)|fρ(x)|

≤ 2Ex1(|xT (w − wixi)| ≤ |wi|) log(d)Eρ[∥aww∥] + 2
(√

dEρ[∥aww∥]
)
Px[|fρ(x)| ≥ log(d)Eρ[∥aww∥]]

≤ 2Ex1(|xT (w − wixi)| ≤ |wi|) log(d)Eρ[∥aww∥] + d−ω(1),

where the last line follows from McDiarmid’s inequality of bounded differences. Thus putting these
pieces together,

∥∇wi
Lρ −∇wi

L0∥

≤ |aw|
(
4Eρ[∥awwi∥] + 2 log(d)Eρ[∥aww∥]Ex1(|xT

\iw| ≤ |wi|) + d−ω(1)
)
,

which yields the lemma.

We additionally state and prove the following helper lemma that will be used in Phase 1.
Lemma D.6 (Helper Lemma). Suppose for some vector ut and reals 0 ≤ Qt ≤ Bt < 1, we have
∥ut∥2 ≤ Q2

t + θB2
t . Also suppose that for some vectors G and Ĝ and some χ > θ1/2:

1. −uT
t G ≤ χ

(
Q2

t + θB2
t

)
2. ∥G− Ĝ∥ ≤ θBt

3. ∥G∥ ≤ O(Bt).
4. η ≤ θ2 = o(1).

Then with ut+1 := ut − ηĜ, we have

∥ut+1∥2 ≤ (Q2
t + θB2

t )(1 + 5ηχ).
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Proof. Define W 2
t := Q2

t + θ1/2B2
t , such that Bt ≤ Wtθ

−1/2.

∥ut+1∥2 = ∥ut − ηĜ∥2

≤ ∥ut∥2 − 2ηuT
t G+ 2η∥ut∥∥G− Ĝ∥+ 2η2∥G− Ĝ∥2 + 2η2∥G∥2

≤ W 2
t (1 + 2ηχ) + 2η∥ut∥θBt +O(η2B2

t )

≤ W 2
t (1 + 2ηχ) + 3η∥Wt∥θBt

≤ W 2
t

(
1 + 2ηχ+ 3ηθ1/2

)
≤ W 2

t (1 + 5ηχ) .

D.2 INDUCTIVE LEMMAS, AND PROOF OF LEMMA D.1 ASSUMING INDUCTIVE LEMMASS

We now give a short sketch of the analysis in Phase 1 used to prove Lemma D.1. Let ζ = 1/ logc(d)

and θ = 1/ logC(d), where c and C are sufficiently large constants. While we will omit stating
it explicitly, in all the lemmas henceforth in Section D, it is assumed that first c is chosen to be a
sufficiently large constant, and then C is chosen to be sufficiently large in terms of c.
Phase 1 will be broken down into two sub-phases, 1a and 1b. The analysis in both sub-phases
is quite similar, but our approximation of the gradients will be courser in Phase 1b than in 1a.
Phase 1a will last for most of the time (some T1a = Θ(log(d)) iterations), and and the end of the
phase, we will guarantee the existence of a substantial set of “strong” neurons (see Definition D.13)
for which ζ1.5∥w∥ ≤ ∥wsig∥ ≤ ∥w∥. Note that this is a very meaningful guarantee, since at
initialization we have ∥wsig∥ ≈ 1√

d
∥w∥, and ζ is 1/polylog(d). Phase 1b will last for only some

T1b = Θ(log log(d)) iterations, enough to guarantee that on some set of strong neurons, we have
∥wsig∥ ≥ ∥w⊥ + wopp∥/ζ. This will suffice to prove Lemma D.1.
To formalize this, we state three definitions will will be the basis of our inductive analysis for Phase
1. Our goal will to be to show that all neurons are “controlled” or “weakly controlled”, meaning
wopp and w⊥ don’t grow too large, while a substantial fraction of neurons are “strong”, and in these
neurons, wsig grows quickly.
In what follows, we define the rate parameter τ := 1√

2π
to be the approximate rate at which the

neurons near initialization would grow at under the L0 population loss if |aw| = ∥w∥. To see this,
observe that from Lemma D.4, we have

−wT
sig∇wsigL0

∥wsig∥2
=

|aw|
∥wsig∥

√
2

4
Pξ1(|wT ξ| ≤

√
2∥wsig∥)

≈ |aw|
∥wsig∥

√
2

4

2
√
2∥wsig∥√
2π∥w∥

=
1√
2π

.

Note that the “≈” approximation step will hold under the conditions that ∥wsig∥ ≪ ∥w⊥∥ ≈ |aw|,
and that the vector w⊥ is well-spread among its coordinates – that is, none of its coordinates in
the standard basis are too large, which could preclude the central limit theorem convergence of
wT ξ → N (0, ∥w⊥∥) in distribution. The details of the comparison of the probability over the
boolean vector to the analogous probability over a Gaussian vector is fleshed out in Section C.1.
This calculation gives some intuition for two conditions that we will maintain in our definition of
controlled neurons for Phase 1a: we should have |aw| ≈ ∥w⊥∥, and w⊥ should be well-spread in
some sense, which we will enforce by requiring that w(t)

⊥ − w
(0)
⊥ and ∥w⊥∥∞ are small. We define

the following control parameters.
Definition D.7 (Control Parameters). Let T1a and T1b be as defined in Definition D.8. Define

B2
t :=

{
log3(d)θ2

d (1 + 2ητ(1 + 1/ log(d)))t t ≤ T1a;
log3(d)θ2

d (1 + 2ητ(1 + 1/ log(d)))T1a(1 + 4η)t−T1aζ−2 T1a ≤ t ≤ T1b.
(D.1)

Q2
t :=

log3(d)θ2

d

(
1 +

50η

log(d)

)t

.
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Let CWS be the universal constant which is the maximum of the constants in Lemmas C.2, C.3, and
C.4.
Definition D.8 (Phase 1 Length). Let T1a be the last time at which we have B2

t ≤ θ2ζ2, that is,

T1a :=

⌊
log(d) + 2 log(ζ)− 3 log(log(d))

log(1 + 2ητ(1 + 1/ log(d)))

⌋
=

1

η
Θ(log(d)).

Let T1b to be the last time at which we have B2
t ≤ θ2ζ−600, that is,

T1b := T1a +

⌊
log(θ2ζ−598/B2

T1a
)

log(1 + 4η)

⌋
= T1a +

1

η
Θ(log log(d)).

Definition D.9 (Controlled Neurons). We say a neuron (w, aw) is controlled at iteration t ≤ T1b if:
C1 ∥wsig∥2 ≤ min(B2

t , θ
2ζ2).

C2 ∥wopp∥2 ≤ Q2
t + θB2

t

C3 |aw| ∈ θ(1± tηζ), and |aw| ≤ ∥w∥.

C4 ∥w⊥ − w
(0)
⊥ ∥ ≤ θζ1/4ηt , and w

(0)
⊥ is CWS-well spread (see Definition C.1).

C5 ∥w⊥∥2∞ ≤ Q2
t + θB2

t .

In Phase 1b, we will need to consider the case where ∥wsig∥ grows larger than θζ for some neurons.
Thus we introduce the following definition of “weakly controlled” neurons.
Definition D.10 (Weakly Controlled Neurons). We say a neuron (w, aw) is weakly controlled at
iteration t ∈ [T1a, T1b] if:
W1 θ2ζ2 ≤ ∥wsig∥2 ≤ B2

t ≤ θ2ζ−600.
W2 ∥wopp∥2 ≤ 2θB2

t (1 + 3ηζ)t ≤ 4θ2ζ2.
W3 ∥w∥2 ≥ |aw|2 ≥ ∥w∥2 − ζ1/2θ2 − 8η2(t− T1a)θ

2ζ−600.
W4 ∥w⊥∥2 ≤ 2θ2(1 + 3ηζ)t ≤ 3θ2.
W5 Either we have ∥w⊥∥ ≤ ∥wsig∥, or ∥w⊥∥∞ ≤ ζCBE10000θ(1 + 21CBEη)

t−T1a ≤ ζ1000∥w⊥∥2,
where CBE is the universal constant from Theorem C.5.

We note the following simple claims which can be verified by plugging in the values T1a and T1b,
and recalling that ζ = log−c(d) and θ = log−C(d) for c and C sufficiently large.
Claim D.11. For any t ≤ T1b, conditions C2-C5 of Definition D.9 imply conditions W2-W5 of
Definition D.10.
Claim D.12. If all neurons are controlled or weakly controlled at time t, then

1. Eρt
[∥aww∥] ≤ 2max

(
θ2, B2

t

)
≤ 2θ2ζ−600.

2. For any i ∈ [d], Eρt
[∥awwi∥] ≤ 3max

(
θBt, B

2
t

)
.

We now define strong neurons, which is the set of neurons on which ∥wsig∥ grows quickly.
Definition D.13 (Strong Neurons). We say a neuron (w, aw) is strong at iteration t if it is controlled
or weakly controlled, wT

sigw
(0)
sig > 0, and

∥wsig∥2 ≥ S2
t :=

θ2

d

∏
s≤t

(1 + 2ητ(1− ϵs))
s
,

where

ϵs :=


1− 1

CS
s ≤ CS log(800CBE)/(ητ);

5ζ1/10 + 200CBE
√
π

(1+2ητ/CS)s/2
CS log(800CBE)/(ητ) < s ≤ T1a;

1− 1
20 T1a ≤ s ≤ T1b,

and we have defined the universal constant CS := 6400√
π

exp(100C8
WS).

While the definition of a strong neuron is technical, the meaning is that ∥wsig∥2 grows roughly at
the rate of (1 + 2ητ)t. Indeed, this is the case when ϵs is small, which is true in the middle range of
values s above, which covers most of the iterations. (The fact that ϵs is constant for small s comes
from some errors derived in comparing probabilities of events on Boolean vectors to their Gaussian
counterparts; see Section C.1).
We have the following implication of the definition of a strong neuron.
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Lemma D.14. For t ≤ T1a, we have S2
t ≥ B2

t / log
4(d). Thus for a strong neuron, after T1a steps,

we have ∥w(T1a)
sig ∥ ≥ ζ1.5θ. Further, after T1b steps, we have ∥w(T1b)

sig ∥ ≥ ζ−1θ.

Proof. We check the first statement first.

B2
t

S2
t

≤ log3(d)

t∏
s=1

1 + 2ητ ((1 + 1/ log(d))

1 + 2ητ(1− ϵs)
(Defs. D.13, D.7)

≤ log3(d)

t∏
s=1

(1 + 2ητ ((1 + 1/ log(d)))
(
1− 2ητ(1− ϵs) + 4η2τ2

)
( 1
1+q ≤ 1− q + q2 ∀q > 0)

≤ log3(d)

t∏
s=1

(1 + 4ητ (1/ log(d) + ϵs)) (η = o(1))

≤ log3(d) exp

(
4ητ

t∑
s=1

1/ log(d) + ϵs

)
(1 + q ≤ eq ∀q > 0)

= Θ
(
log3(d)

)
≤ log4(d).

Here the last line follows from the fact that ϵs is constant for Θ(1/η) iterations, and then it is
exponentially decaying down to a minimum of 5ζ1/10. Thus since t ≤ T1a = Θ(log(d)/η),the sum
is Θ(1/η).
Thus after T1a steps, since ζ = o(log−4(d)), we have

∥w(T1a)
sig ∥ ≥ Bt

log2(d)
≥ ζθ

2 log2(d)
≥ ζ1.5θ.

For the second statement, we consider ∥w(T1b)
sig ∥. Observe that

B2
T1b

S2
T1b

=
B2

T1a

S2
T1a

ζ−2
T1b∏

s=T1a+1

1 + 4η

1 + ητ/10
(Defs. D.13, D.7)

≤
B2

T1a

S2
T1a

ζ−2
T1b∏

s=T1a+1

(1 + 4η)0.99

=
B2

T1b

S2
T1a

(
B2

T1b

B2
T1a

)−0.01

ζ−0.02 (Def. D.7)

≤
B2

T1b

S2
T1a

ζ5.5, (Def. D.8)

and thus S2
T1b

≥ S2
T1a

ζ−5.5 ≥ (θ2ζ3)ζ−5.5 ≥ θ2ζ−2. It follows that ∥w(T1b)
sig ∥ ≥ θζ−1.

The first main lemma for Phase 1 is the following inductive step.
Lemma D.15 (Controlled Neurons Inductive Step). Suppose for some t ≤ T1b, all neurons are
controlled or weakly controlled. Then with probability at least 1−d−ω(1), for any neuron (w(t), a

(t)
w )

which is controlled, at step t+ 1:

1. The neuron (w(t+1), a
(t+1)
w ) is either controlled or weakly controlled.

2. If (w(t), a
(t)
w ) is strong, then (w(t+1), a

(t+1)
w ) is strong.

The following is our main inductive step for the second half of Phase 1.
Lemma D.16 (Weakly Controlled Neurons Inductive Step). Suppose for some T1a ≤ t ≤ T1b, all
neurons are controlled weakly controlled. Then with probability at least 1− d−ω(1), at step t+ 1,
all neurons are controlled or weakly controlled, and any strong neuron remains strong.
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We defer the proofs of Lemmas D.15 and D.16 to the following subsection. Assuming Lemma D.16
we can now prove Lemma D.1, which we restate here for the readers convenience.
Lemma D.1 (Output of Phase 1; Formal). For any constants c sufficiently large, and C sufficiently
large in terms of c, for any d large enough, the following holds. Let θ := 1/ log(d)C .
Suppose we train a 2-layer neural network with minibatch SGD as in Section 2.2 with a minibatch
size of m ≥ d/θ2, width 1/θ ≤ p ≤ dC , and step size η ≤ θ, and initialization scale θ. Then with
probability at least 1− θ, after some T1 = Θ(log(d)/η) steps of minibatch SGD, the network ρT1

satisfies:

1. EρT1
[∥aww∥] ≤ 1;

2. EρT1
[∥w⊥ + wopp∥2] ≤ 4θ2;

3. For all µ ∈ {±µ1,±µ2}, on at least a 0.1 fraction of the neurons, we have ∥wsig∥ ≥ log(d)cθ
and wT

sigµ > 0.

Additionally,
EρT1

[∥w∥2] ≤ EρT1
[|aw|2] +

√
η,

and for all neurons, we have |aw| ≤ ∥w∥.

Proof of Lemma D.1. Choose T1 = T1a+T1b. First we confirm that at initialization, all neurons are
controlled (Definition D.9), and at least a 0.1 fraction of neurons are strong (Definition D.13). Indeed
for any neuron w, by the Guassian CDF, with probability 1 − d−ω(1), we have |wi| ≤ θ log(d)2√

d
.

Taking a union bound over all i and over all at most polynomially many neurons yields properties
C1, C2, and C5 for all neurons. Property C3 holds for all neurons since aw is initialized to
have norm 1. Finally, with probability 1− d−ω(1), by Lemma C.2, all neurons are well-spread at
initialization, yielding C4. Now we can applying Chernoff’s bound to bound the number of neurons
for which ∥w(0)

sig ∥ ≥ θ√
d

, yielding a 0.1 fraction of neurons with ∥w(0)
sig ∥ ≥ θ√

d
and wT

sigµ > 0 for
each µ ∈ {±µ1,±µ2}.
Now with probability 1−d−ω(1), after T1a steps, Lemma D.15 guarantees that we have a network for
which all of the neurons are controlled or weakly controlled (D.10), and for each µ ∈ {±µ1,±µ2},
at least a 0.1 fraction of the neurons are strong and wT

sigµ > 0.

Now applying Lemma D.16 T1b − T1a times yields that with probability 1− d−ω(1), after T1b steps,
for each µ, we have at least a 0.1 fraction of the neurons are strong and wT

sigµ > 0, and all neurons
are controlled or weakly controlled.
We can now conclude the first item of the lemma, which bounds EρT1

[∥aww∥] from properties W1,
W2, and W3, W4. The second item, which bounds EρT1

[∥w⊥+wopp∥2] follows from properties W2
and W4. Note, if any of the neurons are controlled (instead of weakly controlled), the same bounds
hold from the respective properties of controlled neurons. The third item follows by considering the
set of strong neurons, and observing that on strong neurons, by Lemma D.14, we have

∥wsig∥ ≥ ζ−1θ ≥ log(d)cθ.

Finally, the additional clause follows from properties C3 and W3.

D.3 PROOF OF INDUCTIVE LEMMAS (LEMMAS D.15 AND D.16)

To prove Lemma D.15, we will need to compute several bounds on the L0 population gradients on
controlled neurons. Recall that most of the gradients have been computed already in Lemma D.4;
the following lemma just gives some additional bounds that hold for controlled neurons.
Lemma D.17 (Phase 1a L0 Population Gradients Bounds). If all neurons in the network are
controlled or weakly controlled at some step t ≤ T1b, then for any controlled neuron (w, aw),

A1 ∥∇w⊥L0∥ ≤ 3min
(√

θBt, θζ
1/2
)
.

A2 |∇aw
L0| ≤ 4θmin

(√
θBt, θζ

1/2
)
.

A3 For any i ∈ [d], ∥∇wiL0∥ ≤ 1
2 min (Bt, θζ).

A4 For any i ∈ [d], ∥∇wiL0 −∇wiLρ∥ ≤ 1
2θBt.
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Proof. We begin with A1. Recalling that x = z + ξ for z = x1:2, we have
1

aw
∇w⊥L0 = Ex − y(x)σ′(wTx)ξ

= −Exy(z)σ
′(wT ξ)ξ + Exy(z)(σ

′(wTx)− σ′(wT ξ))ξ

= Exy(x)(σ
′(wTx)− σ′(wT ξ))ξ,

since y(z) is independent of ξ.
Now consider the norm of Exy(x)(σ

′(wTx)− σ′(wT ξ))ξ. We have

∥Exy(x)(σ
′(wTx)− σ′(wT ξ))ξ∥ = sup

v:∥v∥=1

Exy(x)(σ
′(wTx)− σ′(wT ξ))ξT v

≤
√

Ex(σ′(wTx)− σ′(wT ξ))2
√

Eξ(vT ξ)2

=
√

Ex1(|ξTw| ≤ |zTw|)

≤
√

Pξ[|ξTw| ≤
√
2∥w1:2∥].

Now since (w, aw) is controlled, the property C4 and Lemma C.4 (plugging in v = w
(0)
⊥ , ∆ =

w
(t)
⊥ − w

(0)
⊥ , and a =

√
2∥w1:2∥
∥v∥ ≪ 1) guarantees that

Pξ[|ξTw| ≤
√
2∥w1:2∥] ≤ 2PG∼N (0,1)[|G| ≤ a] + 200CBEd

−1/2

≤ ∥w1:2∥
θ

+ 200CBEd
−1/2.

Thus we have

∥∇w⊥L0∥ ≤ 2
√
θ∥w1:2∥+ 15|aw|

√
CBEd

−1/4 ≤ 3min
(√

θBt, θζ
1/2
)
,

where we have used the fact that since the neuron is controlled, |aw| ≤ 2θ.
Next consider A3. By Lemma D.4, we have

∥∇wi
L0∥ ≤ 1

4
|aw|

(
Px1(|wTx\i| ≤ |wi|)

)
≤ |aw|

4

(
|wi|

∥w(0)∥
+ 200CBEd

−1/2

)
≤ 1

3
|wi|+ 50CBEd

−1/2θ

≤ 1

2
min (Bt, θζ) ,

where the third to last line follows from Lemma C.4 and plugging in the Gaussian density Pa :=

PG∼N (0,1)[|G| ≤ a] ≤
√

2
πa. The final inequality follows from C1, C2, and C5.

Next consider A2. Combining A3 and A1, we have

|∇awL0| = |wT∇wL0|
≤ |wT

⊥∇w⊥L0|+ |w1:2∇w⊥L0|
≤ ∥w∥∥∇w⊥L0∥+ ∥w1:2∥∥∇w1:2

L0∥

≤ 3∥w∥min
(√

θBt, θζ
1/2
)
+ ∥w∥min (Bt, θζ)

≤ 4θmin
(√

θBt, θζ
1/2
)
.

Finally consider A4. Applying Lemma D.3 and then Claim D.12 yields

∥∇wi
Lρ −∇wi

L0∥ (D.2)

≤ |aw|
(
4(Eρ[∥awwi∥]) + 2 log(d)Eρ[∥aww∥]EξEz1(|xT

\iw| ≤ |wi|) + d−ω(1)
)

≤ 2θ
(
12Bt max(θ,Bt) + 4 log(d)max(θ2, B2

t )EξEz1(|xT
\iw| ≤ |wi|) + d−ω(1)

)
.
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Now w
(0)
⊥ is well-spread, and ∥w(t)

⊥ − w
(0)
⊥ ∥ ≤ o(1)∥w(0)

⊥ ∥ by the definition of controlled. Letting
v = w

(0)
⊥ and ∆ = w

(t)
⊥ − w

(0)
⊥ , plugging in Lemma C.4 we obtain

ExEz1(|xT
\iw| ≤ |wi|) ≤ PG∼N (0,1)

[
|G| ≤ |wi|

∥w − eiwi∥

]
(1 + o(1)) + 200CBEd

−1/2

≤ |wi|
∥w∥

+ 200CBEd
−1/2

≤ 2min(Bt, θζ)

θ

≤ 2Bt

max(θ,Bt)

where the second to last line follows from the definition of controlled and of Bt (eq. D.1). Thus
returning to Equation D.2, and using Claim D.12, we have

∥∇wi
Lρ −∇wi

L0∥ ≤ Θ(log(d)) (θBt max(θ,Bt) + θBt max(θ,Bt)) ≤ θBt/2,

since max(θ,Bt) = o(1/ log(d)).

We are now ready to prove the inductive step, Lemma D.15.

Proof of Lemma D.15. Suppose that (w(t), a
(t)
w ) is controlled. Our first goal will be to show that

for (w(t+1), a
(t+1)
w ), items C3, C4, C2, and C5 hold. We will handle ∥wsig∥ at the end.

Next we prove that C3. To prove that |aw| ∈ θ(1± tηζ) holds at the (t+ 1)th step, we have with
probability 1− d−ω(1)

|a(t+1)
w − a(t)w | = |η∇L̂ρa

(t)
w |

≤ η|∇aw
L0|+ η|∇aw

Lρ −∇aw
L̂ρ|+ η|∇aw

L0 −∇aw
Lρ|

≤ η

(
4θ2ζ1/2 + ∥w∥

√
d log(d)2

m
+ 4∥w∥Eρ[∥aww∥]

)
(Lemma D.17 (item A2), C.12, and D.2 respectively)

≤ ηθζ. ( d
m ≤ θ2, Claim D.12)

Here the final inequality we also used the definition of controlled to bound ∥w∥. With probability
1− d−ω(1), by Lemma C.13 S3, we have |a(t+1)

w | ≤ ∥w(t+1)∥.

To prove that C4, which states that ∥w⊥ − w
(0)
⊥ ∥ ≤ θζ1/4ηt, continues to hold, we similarly have

with probability 1− d−ω(1),

∥w(t+1)
⊥ − w

(t)
⊥ ∥ = ∥η∇w⊥L̂ρ∥

≤ η∥∇w⊥L0∥+ η∥∇wLρ −∇wL̂ρ∥+ η∥∇wL0 −∇wLρ∥

≤ η

(
3θζ1/2 + |aw|

√
d log(d)2

m
+ 2|aw|Eρ[∥aww∥]

)
(Lemma D.17 (item A1), C.12, and D.2 respectively)

≤ ηθζ1/4. (C3, d
m ≤ θ2, Claim D.12)

Next we check that item C2, which states that ∥wopp∥2 ≤ Q2
t + θB2

t , continues to hold. We will
use the helper lemma, Lemma D.6. Observe that we have:

1. −wT
opp∇wL0 ≤ 0 by Lemma D.4.

2. ∥∇w1:2
L0 − ∇w1:2

L̂ρ∥ ≤ θBt with probability 1 − d−ω(1). This follows from combining
Lemma D.17 item A4 (applied twice to i = 1, 2) with Lemma C.12.

3. ∥∇woppL0∥ ≤ Bt by Lemma D.17 item A3.
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Then calling Lemma D.6 with ut = wopp, G = ∇w1:2
L0, Ĝ = ∇w1:2

L̂ρ, and Qt and Bt as in
Definition D.7, we achieve

∥w(t+1)
opp ∥2 ≤ (Q2

t + θB2
t )(1 + 5ηθ1/2) ≤ Q2

t+1 + θB2
t+1,

as desired.
Finally we check that C5, which states that ∥w⊥∥2∞ ≤ Q2

t +θB2
t , continues to hold by showing that

for any i ∈ [3, d], w2
i cannot grow too quickly. From Lemma D.4 item B4, with X = (ξ − eiξi)

Tw,
we have that

−wT
i ∇wi

L0 =
|aw||wi|

4

(
Pξ

[
X ∈ [

√
2∥wopp∥ − |wi|,

√
2∥wopp∥+ |wi|]

]
− Pξ

[
X ∈ [

√
2∥wsig∥ − |wi|,

√
2∥wsig∥+ |wi|]

])
.

Now employing Lemma C.4 twice with v = w
(0)
⊥ , ∆ = w

(t)
⊥ − w

(0)
⊥ − eiwi

both times, and [a∥v∥, b∥v∥] as the intervals
[√

2∥wsig∥ − |wi|,
√
2∥wsig∥ − |wi|

]
and[√

2∥wopp∥ − |wi|,
√
2∥wopp∥ − |wi|

]
, we obtain that

−wT
i ∇wiL0 ≤ |aw||wi|P |wi|

∥w(0)
⊥ ∥

(√
2ηtζ1/4 +

log(d)2√
d

+ 2|aw|
∥w1:2∥2 + ∥w⊥∥2∞

∥w(0)
⊥ ∥

)
+ 200CBEd

−1/2|aw||wi|,

where Pc := PG∼N (0,1)[|G| ≤ c]. Here we have used the fact that ∥w(t)
⊥ −w

(0)
⊥ −eiwi∥

∥w(0)
⊥ ∥

≤ 2ηtζ1/4 +

log(d)2√
d

by C4 and C5, which serves as the role of ζ in Lemma C.4.

Simplifying this expression, and observing that the second term in the parenthesis becomes insignif-
icant by C1-C5, we have that

−wT
i ∇wi

L0 ≤ −|aw||wi|2

∥w⊥∥
ζ1/9 + 200CBEd

−1/2|aw||wi|.

Thus since |aw| ≤ ∥w∥ ≤ 2θ, and ∥w⊥∥ ≥ θ/2 (by C3 and C4), we have

wT
i ∇wi

L0 ≤ 2|wi|2ζ1/9 + 200CBEd
−1/2θ|wi| ≤ 2ζ1/9|wi|2 +

Q0

log(d)
|wi|.

Now we proceed via Lemma D.6. Observe that for any i ∈ [3, d], we have:

1. −wT
i ∇wL0 ≤ (Q2

t + θB2
t )
(
2ζ1/9 + 1

log(d)

)
by the calculation above and the assumption

that w is controlled.
2. ∥∇wi

L0 − ∇wi
L̂ρ∥ ≤ θBt with probability 1 − d−ω(1). This follows from combining

Lemma D.17 item A4 with Lemma C.12.
3. ∥∇wiL0∥ ≤ Bt/2 by Lemma D.17 item A3.

Then calling Lemma D.6 with ut = wopp, G = ∇w1:2
L0, Ĝ = ∇w1:2

L̂ρ, and Qt and Bt as in
Definition D.7, we achieve with probability 1− d−ω(1),

∥w(t+1)
i ∥2 ≤ (Q2

0 + θB2
t )

(
1 + 5η

(
2ζ1/9 +

1

log(d)

))
≤ Q2

t+1 + θB2
t+1,

as desired.
Finally we check the growth of ∥wsig∥, which we will use to show that either C1 or W1 holds at
step t+ 1, and that a strong neuron stays strong. We have by Lemma D.17 item B1 that

∥w(t+1)
sig ∥2 = ∥w(t)

sig − ηµµT∇L̂ρ(w
(t))∥2 (D.3)

= ∥wsig∥2 − 2ηwT
sig∇wL̂ρ + η2∥µµT∇wL̂ρ∥2

= ∥wsig∥2 − 2ηwT
sig∇wL0 − 2ηwT

sig(∇wL̂ρ −∇wL0) + η2∥µµT∇wL̂ρ∥2

= ∥wsig∥2 + 2η

√
2

4
|aw|∥wsig∥X − 2ηwT

sig(∇wL̂ρ −∇wL0) + η2∥µµT∇wL̂ρ∥2,

where X := Eξ1(|wT ξ| ≤
√
2∥wsig∥).
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Now with probability 1− d−ω(1), we can control the last two terms as follows.

| − 2ηwT
sig(∇wL̂ρ −∇wL0) + η2∥µµT∇wL̂ρ∥2| ≤ 2η∥wsig∥∥∇w1:2

L̂ρ −∇w1:2
L0∥+ η2∥µµT∇wL̂ρ∥2(D.4)

≤ 2η∥wsig∥∥∇w1:2
L̂ρ −∇w1:2

L0∥
+ 2η2∥∇w1:2L̂ρ −∇w1:2L0∥2 + 2η2∥∇w1:2L0∥2.

Now we have

∥∇w1:2
L̂ρ −∇w1:2

L0∥ ≤ ∥∇w1:2
L̂ρ −∇w1:2

Lρ∥+ ∥∇w1:2
Lρ −∇w1:2

L0∥
≤ θBt/2 + θBt/2 ≤ θBt,

by Lemma C.12 and Lemma D.4 A4. Second, we have ∥∇w1:2
L0∥2 ≤ B2

t by Lemma D.4 A3.
Plugging these two bounds back into Eq. D.4 yields

| − 2ηwT
sig(∇wL̂ρ −∇wL0) + η2∥µµT∇wL̂ρ∥2| ≤ 2η∥wsig∥θBt + 4η2B2

t ≤ 6ηθB2
t , (D.5)

where we have used the fact that ∥wsig∥ ≤ Bt (property C1) and that η ≤ θ. Now by Lemma C.4,
we have

X ≤ (1 + 3ζ1/10)PG∼N (0,1)

[
|G| ≤

√
2∥wsig∥
∥w(0)

⊥ ∥

]
+ 200CBEd

−1/2 (D.6)

≤ (1 + 3ζ1/10)
2
√
2√

2π

∥wsig∥
∥w(0)

⊥ ∥
+ 200CBEd

−1/2

(Upper bound Gaussian density by density at 0.)

≤ Bt

θ

2√
π

(
1 + 3ζ1/10 +

1

log1.1(d)

)
(Definition D.7 of Bt and C1)

≤ Bt

θ

2√
π

(
1 +

2

log1.1(d)

)
(ζ = log−c(d) for c large enough.)

Here we have used Lemma C.4 with v = w
(0)
⊥ , ∆ = w⊥ −w

(0)
⊥ , and ζ =

w⊥−w
(0)
⊥

w
(0)
⊥

≤ ζ1/5 (by C4),

and b = −a =
∥wsig∥

√
2

∥w(0)
⊥ ∥

.

To check that either C1 in the definition of controlled continues to hold at time t+ 1, so that w(t+1)

is controlled (Def. D.9) or that item W1 in the definition of weakly controlled (Def. D.10), it
suffices to check that ∥w(t+1)

sig ∥2 ≤ B2
t+1. Indeed from combining Eqs. D.3, D.5, D.6 we have with

probability 1− d−ω(1),

∥w(t+1)
sig ∥2 ≤ ∥wsig∥2 +

1√
2
η∥wsig∥|aw|X + 6ηθB2

t

≤ B2
t + 2ητB2

t

(
1 +

2

log1.1(d)

)
+ 6ηθB2

t

≤ B2
t

(
1 + 2ητ

(
1 +

1

log(d)

))
≤ B2

t+1.

Here the second inequality we used the fact that |aw|
θ ≤ 1 + Θ(log(d)ζ) by C3.

Now we check that if the neuron is strong, it stays strong. To do this, we need to lower bound
X = Eξ1(|wT ξ| ≤

√
2∥wsig∥). For the case that ∥wsig∥

∥w⊥∥ is small (ie., t is small), we use Lemma C.3,
which yields that

X ≥ 1

2 exp(100C8
WS)

√
d
.

Indeed, we can apply Lemma C.3 wit v = w
(0)
⊥ and ∆ = w⊥ − w

(0)
⊥ , which by C4 yields

∥∆∥
∥v∥ ≤ ζ1/5.
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Recall the definition of St from Definition D.13. For t ≤ CS log(800CBE)/(ητ), we have St =
θ√
d
(1 + 2τη/CS)

t/2 ≤ θ√
d
etτη/CS = θ√

d
800CBE, and thus

X ≥ 1

2 exp(100C8
WS)

1

800CBE

St

θ
=

2

CS

(
St

θ

2√
π

)
,

where we recall that CS = 6400√
π

exp(100C8
WS). Further, from Lemma C.4, applied as in Eq. D.6,

we have

X ≥ (1− 3ζ1/10)PG∼N (0,1)

[
|G| ≤

√
2∥wsig∥
∥w(0)

⊥ ∥

]
− 200CBE√

d

≥ (1− 3ζ1/10)

(
2√
π

∥wsig∥
∥w(0)

⊥ ∥

)
e
−

2∥wsig∥
2

2∥w(0)
⊥ ∥2 − 200CBE√

d

(Lower bound Gaussian density by endpoints of interval)

≥ (1− 3ζ1/10)

(
2√
π

∥wsig∥
∥w(0)

⊥ ∥

)(
1−

∥wsig∥2

∥w(0)
⊥ ∥2

)
− 200CBE√

d
(e−x ≥ 1− x)

≥ (1− 4ζ1/10)

(
2√
π

∥wsig∥
∥w(0)

⊥ ∥

)
− 200CBE√

d
. ( ∥wsig∥2

∥w(0)
⊥ ∥2

≤ ζ2 by C1.)

Thus from the definition of strong neurons, since ϵs is decreasing for s ≤ T1a (see Def. D.13), we
have ∥wsig∥2

d∥w⊥∥2 ≥ ∥wsig∥2

2dθ2 ≥ 1
2 (1 + 2ητ/CS)

t, and so

X ≥
(
1− 4ζ1/10 − 200CBE√

d

√
π∥w⊥∥
2∥wsig∥

)(
2√
π

∥wsig∥
∥w⊥∥

)
≥
(
1− 4ζ1/10 − 200CBE

√
π

(1 + 2ητ/CS)t/2

)(
2√
π

∥wsig∥
∥w⊥∥

)
.

Returning to Eq. D.3, we have that

∥w(t+1)
sig ∥2 ≥ ∥wsig∥2 + 2η

√
2

4
|aw|∥wsig∥X − 6ηθB2

t .

To complete this computation, observe that for t ≤ T1a, by Lemma D.14, we have B2
t ≤

S2
t log

3(d) ≤ S2
t θ

−1/2. Thus since ∥wsig∥ ≥ St, using the previous lower bounds on X , we
have

∥w(t+1)
sig ∥2 ≥ S2

t

(
1− 6ηθ1/2

)
+ 2η

√
2

4
|aw|∥wsig∥X

≥

S2
t

(
1− 6ηθ1/2 + 2ητ 2

CS

|aw|
θ

)
t ≤ CS log(800CBE)/(ητ);

S2
t

(
1− 6ηθ1/2 + 2ητ

(
1− 4ζ1/10 − 200CBE

√
π

(1+2ητ/CS)t/2

)
|aw|
∥w⊥∥

)
t > CS log(800CBE)/(ητ);

≥

S2
t

(
1 + 2ητ

CS

)
t ≤ CS log(800CBE)/(ητ);

S2
t

(
1 + 2ητ

(
1− 5ζ1/10 − 200CBE

√
π

(1+2ητ/CS)t/2

))
t > CS log(800CBE)/(ητ);

= S2
t (1 + 2ητ(1− ϵt)),

which means that the neuron stays strong.

We are now ready to prove Lemma D.16.

Proof of Lemma D.16. By Lemma D.15, it suffices to prove that with probability 1− d−ω(1), all
weakly controlled neurons stay weakly controlled, and that all weakly controlled and strong neurons
stay strong at iteration t+ 1.
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Suppose (w(t), a
(t)
w ) is weakly controlled. We begin by showing that with high probability, the five

properties W1, W2, W3, W4, W5 of controlled neurons hold at iteration t+ 1. We will omit the
proof that W2 continues to hold, as this proof is nearly identical to the proof for C2 in Lemma D.15,
which proceeds by applying Lemma D.6
We begin with W3. We have with probability 1− d−ω(1),

|a(t+1)
w |2 − ∥w(t+1)∥2 ≥ |aw|2 − ∥w∥2 − 4η2|aw|2

≥ |aw|2 − ∥w∥2 − 4η2∥w∥2

≥ |aw|2 − ∥w∥2 − 8η2θ2ζ−600,

Here the first and second inequalities are from Lemma C.13 item S4 and C3 respectively, and the
third is from combining W1, W2, and W4 to bound ∥w∥. This, in addition to Lemma!C.13 S3, yield
the desired conclusion since the gap between a2w and ∥w∥2 cannot grow by more than 8η2θ2ζ−600

at each step.
Next we show W4 holds at step t+ 1 with high probability. Observe that we have:

1. −wT
⊥∇wL0 ≤ 0 by Lemma D.4, since by the definition of weakly controlled, ∥wsig∥ ≥ ∥wopp∥.

2. ∥∇wL0−∇wL̂ρ∥ ≤ θζ with probability 1−d−ω(1). This follows from combining Lemmas D.2
and Claim D.12 (which together yield ∥∇wL0 −∇wLρ∥ ≤ θζ ) with Lemma C.12 (which
yields ∥∇wLρ −∇wL̂ρ∥ ≤ ζθ/2).

3. ∥∇wLρ∥ ≤ 3Bt with probability 1− d−ω(1) by Lemma C.13 (S1) and Lemma D.2.
Note the all the above approximations are very loose. Thus we have

∥w(t+1)
⊥ ∥2 ≤ ∥w(t)

⊥ ∥2 + 2η∥w(t)
⊥ ∥∥∇wL0 −∇wL̂ρ∥+ η2∥∇wL̂ρ∥2

≤ 2θ2(1 + 3ηζ)t + 2η(2θ)θζ + 9η2B2
t

≤ 2θ2(1 + 3ηζ)t (1 + 3ηζ) ≤ 2θ2(1 + 3ηζ)t+1,

as desired.
We can carry out an almost identical computation to bound ∥w(t+1)

opp to prove that W2 continues to
hold, so we omit the details.
Next we show that property W1 holds at step t+ 1 with high probability. Let µ be the direction of
wsig := w

(t)
sig . Following the same steps Lemma D.15, we have

∥w(t+1)
sig ∥2 = ∥wsig − ηµµT∇wL̂ρ∥2

= ∥wsig∥2 − 2ηwT
sig∇wL̂ρ + η2∥µµT∇wL̂ρ∥2

∈ ∥wsig∥2 − 2ηwT
sig∇wL0 ± 2η∥wsig∥∥∇wL̂ρ −∇wL0∥ ± η2∥µµT∇wL̂ρ∥2

∈ ∥wsig∥2 − 2ηwT
sig∇wL0 ± 6ηθB2

t .

Here the final inequality follows from Eq. D.5 from the proof of Lemma D.15; the difference
in assumption that the neurons are weakly controlled and not controlled does not affect this
computation.
Now plugging in the L0 population gradient from Lemma D.4, we have

∥w(t+1)
sig ∥2 ∈ ∥wsig∥2 − 2ηwT

sig∇wL0 ± η6ηθB2
t (D.7)

∈ ∥w(t)
sig ∥

2

(
1 + 2η

√
2

4

|aw|
∥wsig∥

Pξ[|wT ξ| ≤
√
2∥wsig∥]

)
± 6ηθB2

t .

Now to prove that W1 holds at time t+1, we upper bound Pξ[|wT ξ| ≤
√
2∥wsig∥] by 1 and consider

two cases:
1. Case 1: ∥w(t)

sig ∥ ≤ Bt/2. In this case, since |aw| ≤ ∥w∥ ≤ 2Bt (since the neuron is weakly

controlled), we have ∥w(t+1)
sig ∥2 ≤ B2

t ≤ B2
t+1.

2. Case 2: ∥w(t)
sig ∥ ≥ Bt/2. In this case, since t ≥ T1a, we have Bt ≥ θ(1 − o(1)) (see

Definition D.8), and so ∥wsig∥ ≥ |aw|/4. Thus we have

∥w(t+1)
sig ∥2 ∈ ∥w(t)

sig ∥
2

(
1 + 2η

√
2

4
4

)
± 6ηθB2

t ≤ ∥w(t)
sig ∥

2(1 + 4η) ≤ Q2
t+1.
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We now show that the if the neurons have the additional strong property at step t (Definition D.13),
they continue to have this property at step t+ 1. To do this, we need to lower bound the probability
Pξ[|wT ξ| ≤

√
2∥wsig∥].

Claim D.18. If (w, aw) is weakly controlled and strong, then

Pξ[|wT ξ| ≤
√
2∥wsig∥] ≥

∥wsig∥
5∥w⊥ + wsig∥

.

Proof. We will use the Berry-Esseen Inequality (stated in Theorem C.5). We have

Pξ[|wT ξ| ≤
√
2∥wsig∥] ≥ PG∼N (0,1)

[
|G| ≤

√
2∥wsig∥
∥w⊥∥

]
− CBE

∥w⊥∥33
∥w⊥∥32

(D.8)

≥ PG∼N (0,1)

[
|G| ≤

√
2∥wsig∥
∥w⊥∥

]
− CBE

∥w⊥∥∞
∥w⊥∥2

≥
∥wsig∥

4∥wsig + w⊥∥
− CBE

∥w⊥∥∞
∥w⊥∥2

.

Now by W5, either we have ∥w⊥∥ ≤ ∥wsig∥, or ∥w⊥∥∞
∥w⊥∥2

≤ ζ1000.

We first consider the latter case when ∥w⊥∥∞
∥w⊥∥2

≤ ζ3. By definition of a strong neuron and
Lemma D.14, we have

∥wsig∥ ≥ St ≥ θζ700.

Thus we have from Eq. D.8

Pξ[|wT ξ| ≤
√
2∥wsig∥] ≥

∥wsig∥
5∥wsig + w⊥∥

.

Now if ∥w⊥∥ ≤ ∥wsig∥, then we have by Chebychev’s inequality,

Pξ[|wT ξ| ≤
√
2∥wsig∥] ≥ 1− Pξ[|wT ξ| ≥

√
2∥wsig∥]

≥ 1− Eξ[(w
T
⊥ξ)

2]

2∥wsig∥2

= 1− ∥w⊥∥2

2∥wsig∥2
≥ 1

2
≥

∥wsig∥
5∥wsig + w⊥∥

.

It follows from Claim D.18, Eq. D.7, and the definition of weakly controlled that

∥w(t+1)
sig ∥2 ≥ ∥w(t)

sig ∥
2

(
1 + 2η

√
2

4

|aw|
∥wsig∥

∥wsig∥
5∥wsig + w⊥∥

)
− 6ηθB2

t

≥ ∥w(t)
sig ∥

2

(
1 + 2η

√
2

4

∥wsig + w⊥∥/2
5∥wsig + w⊥∥

)
− 6ηθB2

t (|aw| ≥ ∥w∥/2 by W3)

≥ ∥w(t)
sig ∥

2

(
1 + η

√
2

20

)
− ηθ1/2∥w(t)

sig ∥
2

(∥wsig∥ ≥ St ≥ Btζ
Θ(1) by Lemma D.14, and C is large enough in terms of c.)

≥ ∥w(t)
sig ∥

2
(
1 +

η

20

)
,

which means that the neuron stays strong.

We now check that W5 continues to hold. If ∥w(t)
⊥ ∥ ≤ ∥w(t)

sig ∥, then it is a routine calculation to
verify from the above computation and Lemma D.4 (and the associated [high probability] bounds
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on the gradients in Lemmas C.13, C.12 that with probability 1− d−ω(1), ∥w(t)
⊥ ∥ grows at a slower

rate than ∥w(t)
sig ∥, and thus ∥w(t+1)

⊥ ∥ ≤ ∥w(t+1)
sig ∥. We omit the details of the calculation.

If ∥w(t)
⊥ ∥ ≥ ∥w(t)

sig ∥, then we must consider the growth of ∥w⊥∥∞. Fix any i ≥ 3. Mt :=

χCBE10000θ(1 + 21CBEη)
t−T1a is the bound guaranteed on on ∥w⊥∥∞ in Definition D.10, item W5.

We will show that w2
i cannot grow too quickly. Recall that ξ\i denotes ξ− eiξi. Then symmetrizing

over the pair (z + ξ\i + eiξi, z + ξ\i − eiξi), we have

−wT
i ∇wi

L0 = awExy(x)σ
′(wTx)ξi (D.9)

= aw
1

2
Exy(z)

(
σ′(wT z + wT ξ\i + wiξi)− σ′(wT z + wT ξ\i − wiξi)

)
wiξi

= aw
1

2
Exy(z)1(|wT z + wT ξ\i| ≤ |wi|)|wi|

Now explicitly evaluating the expectation over z, we have

awExy(z)1(|wT z + wT ξ\i| ≤ |wi|)

= |aw|
1

4
Eξ\i

[
1(|

√
2∥wsig∥+ wT ξ\i| ≤ |wi|) + 1(| −

√
2∥wsig∥+ wT ξ\i| ≤ |wi|)

]
− |aw|

1

4
Eξ\i

[
1(|

√
2∥wopp∥+ wT ξ\i| ≤ |wi|) + 1(| −

√
2∥wopp∥+ wT ξ\i| ≤ |wi|)

]
Since the neuron is weakly controlled and thus ∥wsig∥ ≥ ∥wopp∥, this equals

−|aw|
1

4
Pξ\i

[
|wT ξ\i| ∈ |wi| −

√
2∥wsig∥, |wi| −

√
2∥wopp∥

]
+ |aw|

1

4
Pξ\i

[
|wT ξ\i| ∈ |wi|+

√
2∥wopp∥, |wi|+

√
2∥wsig∥

]
,

By Berry-Esseen (Theorem C.5), we have

−Pξ\i

[
|wT ξ\i| ∈ |wi| −

√
2∥wsig∥, |wi| −

√
2∥wopp∥

]
+ Pξ\i

[
|wT ξ\i| ∈ |wi|+

√
2∥wopp∥, |wi|+

√
2∥wsig∥

]
≤ 4CBE

∥w⊥∥33
∥w⊥ − eiwi∥32

≤ 4CBE
∥w⊥∥∞

∥w⊥ − eiwi∥2

≤ 5CBE
Mt

∥w⊥∥2
.

Here the the first inequality following because the Guassian analog of the first probability will be
greater than the Gaussian analog of the second probability, since the intervals in question are of the
same length, but the first one is closer to 0. The last inequality follows from W5, since the neuron is
weakly controlled.
Now returning to Equation D.9, we have

−wT
i ∇wiL0 ≤ 5CBE|aw|

Mt

∥w⊥∥
|wi| ≤ 5CBE|aw|

M2
t

∥w⊥∥
.

Since we are in the case that ∥w⊥∥ ≥ ∥wsig∥ (which is also at least ∥wopp∥), we have ∥w⊥∥ ≥
∥w∥/

√
3, and thus since |aw| ≤ ∥w∥ (recall Lemma C.13 S3), we have

−wT
i ∇wi

L0 ≤ 10CBEM
2
t .

We can show via the same calculation performed in this lemma for wsig, that with probability
1− d−ω(1), the approximation error due to using the population gradient ∇L0 instead of ∇L̂ρ and
due to the second order term in η are sufficiently small. We omit the details; as before, this uses
Lemmas C.12 and C.13. Thus with probability 1− d−ω(1),

(w
(t+1)
i )2 ≤ M2

t (1 + η21CBE) ≤ M2
t+1,

as desired.
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E PHASE 2

Throughout Phase 2, we will show that we can maintain the following invariant. Recall that we have
defined the following notation (summarized in Table 1):

γµ := fρ(µ)y(µ)

γmin := min
µ∈{±µ1,±µ2}

γµ gmin := min
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmax)

1 + exp(−γmax)

γmax := max
µ∈{±µ1,±µ2}

γµ gmax := max
µ∈{±µ1,±µ2}

|ℓ′ρ(µ)| =
exp(−γmin)

1 + exp(−γmin)

Definition 4.2 (Signal-Heavy Inductive Hypothesis). For parameters ζ = o(1) and H > 1 with
ζ ≤ exp(−10H), we say a network is (ζ,H)-signal-heavy if there exists some set of heavy neurons
S on which exp(6H)∥w⊥∥+ ∥wopp∥ ≤ ζ∥wsig∥, and

Eρ1(w /∈ S)∥w∥2 ≤ ζγ̃min.

Here we have defined γ̃µ := E[1(w ∈ S,wT
sigµ > 0)awσ(w

Tµ)] and γ̃min := minµ∈{±µ1,±µ2} γ̃µ.
Further,

Eρ[∥w∥2] ≤ Eρ[|aw|2] + ζH ≤ 2H,

and for all neurons, we have |aw| ≤ ∥w∥.

We will additionally use/recall the following definitions.
Definition E.1. For a (ζ,H)-signal heavy network ρ with heavy set S, we define the heavy-margin:

γ̃µ := E[1(w ∈ Sµ)awσ(w
Tµ)],

and Sµ := S ∩ {w : wT
sigµ > 0}. Let γ̃min := minµ∈{±µ1,±µ2} γ̃µ, and γ̃max :=

maxµ∈{±µ1,±µ2} γ̃µ.

Throughout this section, we define the rate parameter

τ :=

√
2

4
.

We additionally define the following quantities.

Definition E.2 (Parameters for Phase 2). Define ζT1
:= log−c/3(d), where c is the constant in

Lemma D.1, and H := − log(ζT1
)/20.

Our main inductive lemma for this phase is as follows:

Lemma E.3 (Phase 2 Inductive Lemma; Formal). Suppose t ≤ T1 +
ζ
−1/160
T1

η . If a network ρt

is (ζ,H)-signal heavy with heavy set S and ζ ≤ ζT1
(1 + 10ηζH)t−T1 , then after one minibatch

gradient step with step size η ≤ ζ3, with probability 1− d−ω(1),

1. ρt+1 is (ζ(1 + 10ηζH), H)-signal heavy.

2. γ̃
(t+1)
min ≥ (1 + 2ητ(1− o(1))gmax) γ̃

(t)
min

3. γ̃
(t+1)
max ≤ (1 + 2ητ(1 + o(1))gmin) γ̃

(t)
max.

Here ζT1
and H are defined in Definition E.2, and τ =

√
2
4 .

Lemma E.4 (Base Case from Phase 1). Assume the conclusion of Lemma D.1 holds for the network
ρT1

after T1 steps. Then ρT1
is (ζT1

, H) signal-heavy for the parameters ζT1
and H define in

Definition E.2.

Further, we have γ̃
(T1)
min ≥ log−Θ(1)(d), and γ̃

(T1)
max ≤ 1.

Proof. Let ρ := ρT1 , and we will likewise drop the superscript T1 on all other variables. First
observe that γ̃max ≤ 1 since for any µ ∈ {±µ1,±µ2}, we have γ̃µ ≤ Eρ[∥aww1:2∥] ≤ 1.
For µ ∈ {±µ1,±µ2}, define

Sµ := {w : ζT1
wTµ ≥ exp(6H)∥w⊥∥+ ∥wopp∥, awy(µ) > 0},
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and let S := Sµ1
∪ S−µ1

∪ Sµ2
∪ S−µ2

.
First observe that for any µ ∈ {±µ1,±µ2}, by the third item of Lemma D.1, we have

γ̃µ = Eρ[1(w ∈ Sµ)∥awwsig∥]

≥ 1

20
logc(d)θ2

≥ log−Θ(1)(d).

fFinally, we have

Eρ[1(w /∈ S)∥w∥2] = Eρ

[
1(w /∈ S)

(
∥wns∥2 + ∥wsig∥2

)]
≤ Eρ

[
1(w /∈ S)∥wns∥2

(
1 + (exp(6H)ζ−1

T1
)2
)]

≤ Eρ

[
∥wns∥2

] (
1 + (ζ

−2/3
T1

)2
)

≤ 4θ2(ζ
−4/3
T1

+ 1)

≤ 8ζ
−4/3
T1

(20 log−c γ̃min)

≤ 160ζ
−4/3
T1

ζ3T1
γ̃min

≤ ζT1 γ̃min.

Finally, observe that the last clause of Lemma D.1 yields the final condition of Definition 4.2 abound
E[∥w∥2]. This yields the lemma.

We recall that in Phase 2, our main analysis tool is to compare to the “clean” gradients ∇cl, which
are defined in Equation 4.7 as

∇cl
wLρ := awExℓ

′
ρ(z)σ

′(wTx)x and ∇cl
aw

Lρ := Exℓ
′
ρ(z)σ(w

Tx).

Similarly to Phase 1, the main building blocks of Phase 2 are computations of the gradients ∇clLρ,
and bounds on the distance ∥∇cl

wLρ −∇Lρ∥. We state these main lemmas here.
Throughout, we define

Hρ := Eρ[∥aww∥],
such that we have

exp(−Hρ) ≤ gmin ≤ gmax ≤ 2. (E.1)

E.1 BOUNDING DISTANCE TO CLEAN GRADIENTS.

Lemma E.5. For any neuron w, we have

∥∇cl
wLρ −∇wLρ∥2 ≤ 4|aw|ζHρ;

∥∇cl
aw

Lρ −∇aw
Lρ∥2 ≤ 4∥w∥ζHρ.

Proof. Letting ∆x := (ℓ′ρ(x)− ℓ′ρ(z))σ
′(wTx), we have

∥∇cl
wLρ −∇wLρ∥2 = |aw|∥Ex∆xx∥

= |aw| sup
v:∥v∥=1

Ex∆x⟨v, x⟩

≤ |aw| sup
v:∥v∥=1

√
Ex∆2

x

√
Ex⟨v, x⟩2

= |aw|
√
Ex∆2

x.
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Now

Ex[∆
2
x] ≤ Ex[(ℓ

′
ρ(x)− ℓ′ρ(z))

2]

= Ez(ℓ
′
ρ(z))

2Eξ

(
ℓ′ρ(x)

ℓ′ρ(z)
− 1

)2

≤ Ez(ℓ
′
ρ(z))

2Eξ (exp(|fρ(z)− fρ(x)|)− 1)
2

≤ g2maxEξ

(
exp(Eρ|awwT ξ|)− 1

)2
≤ g2maxEξ

(
exp(Eρ[∥aww⊥∥]|vT ξ|)− 1

)2
,

where v is any unit vector. Here the last line holds because the expression will be maximized when
all neurons are in the same direction (up to sign).
Then since vT ξ is subgaussian, defining N := Eρ[∥aww⊥∥] ≤ ζHρ, we have

Eξ

(
exp(|vT ξ|)− 1

)2 ≤ (exp(2N + 2N2)− 1)2 ≤ (exp(ζHρ + ζ2H2
ρ)− 1)2 ≤ 4ζ2H2

ρ .

(Explicitly, we can verify this by upper bounding the moments of |vT ξ| by moments of a Gaussian,
and then using the moment generating function of a half-Gaussian distribution.)
Thus plugging this back in and recalling that gmax ≤ 2 always, we achieve

∥∇cl
wLρ −∇wLρ∥2 ≤ 4|aw|ζHρ < 1,

as desired. Similarly, we have

∥∇cl
aw

Lρ −∇aw
Lρ∥2 = Ex[∥∆xw

Tx∥] ≤ ∥w∥
√

Ex∆2
x,

and thus

∥∇cl
aw

Lρ −∇aw
Lρ∥2 ≤ 4∥w∥ζHρ.

E.2 CLEAN GRADIENTS

E.2.1 NEURONS IN S

Claim E.6 (Clean Gradients in Signal Direction). If w ∈ S and µTwsig > 0, then

µT∇cl
wLρ = −|aw|τgµ(1± o(1)),

and

−y(µ)∇cl
aw

Lρ = (1± o(1))∥wsig∥τgµ.

Proof. First, we compute

µT∇cl
wLρ = awEzℓ

′
ρ(z)σ

′(wT z)zTµ− Exℓ
′
ρ(z)(σ

′(wTx)− σ′(wT z))ztµ

∈ −τawy(µ)gµ ±
√
2Ex|ℓ′ρ(z)|1(|wT ξ| ≥ |wT z|)

∈ −τ |aw|gµ ±
√
2|aw|gmax

∥w⊥∥2

∥w2
sig∥

(Chebychev’s inequality)

∈ −τ |aw|gµ ±
√
2|aw|gmaxζ

2 (w ∈ S)
= −|aw|τgµ(1± o(1)).

Second, we compute

∇cl
aw

Lρ = Ezℓ
′
ρ(z)σ(w

Tx)

= −τy(µ) (gµ∥wsig∥ ±Θ(gmax∥wns∥))
= −τy(µ) (gµ∥wsig∥ ±Θ(gmaxζ∥wsig∥))

= −(1± o(1))
τy(µ)

gµ
∥wsig∥.
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In the following lemma, we lower bound the size of the gradient in the w⊥ and wopp directions.

Lemma E.7. For a neuron (w, aw), let X := Pξ[|wT
⊥ξ| ≥

√
2∥wopp∥]. Then

1

|aw|
wT

⊥∇cl
wLρ ≥ 1

8
gminX∥w⊥∥ − ζ∥w⊥∥.

and
1

|aw|
wT

opp∇cl
wLρ ≥ 1

8
gmin

√
2∥wopp∥ −

gmax
√
2

4
X∥wopp∥.

Proof of Lemma E.7. We compute

sign(aw)Exℓ
′
ρ(z)σ

′(wTx)xTw⊥ = EξEzℓ
′
ρ(z)σ

′(wT ξ + wT z)ξTw⊥

=
1

2
EξEzℓ

′
ρ(z)

(
σ′(wT ξ + wT z)− σ′(−wT ξ + wT z)

)
ξTw⊥

=
1

2
Ezℓ

′
ρ(z)Eξ1(|wT ξ| ≥ |wT z|)|ξTw⊥|

≥ −1

4
gmaxEξ1(|wT ξ| ≥

√
2∥wsig∥)|ξTw⊥|+

1

4
gminEξ1(|wT ξ| ≥

√
2∥wopp∥)|ξTw⊥|

≥ −1

4
gmax

√
Eξ[1(|wT ξ| ≥

√
2∥wsig∥)]

√
Eξ[ξTw⊥|2] +

1

4
gminEξ1(|wT ξ| ≥

√
2∥wopp∥)Eξ|ξTw⊥|

≥ −gmax

√
P[|wT ξ| ≥

√
2∥wsig∥]∥w⊥∥+

1

4
gminX∥w⊥∥

≥ −ζ∥w⊥∥+
1

4
gminX∥w⊥∥.

where here in the last line, we used the inductive hypothesis that ∥w⊥∥ ≤ ∥wns∥ ≤ ζ∥wsig∥. We
also compute the gradient in the wopp direction:

sign(aw)Exℓ
′
ρ(z)σ

′(wTx)xTwopp ≥ −1

4
Eξgmax1(|wT ξ| ≥

√
2∥wopp∥)

√
2∥wopp∥+

1

8
gmin

√
2∥wopp∥

= −gmax
√
2

4
X∥wopp∥+

1

8
gmin

√
2∥wopp∥.

We derive the following corollary of Lemma E.7, which will be used to show that a weighted
average of ∥w⊥∥2 and ∥wopp∥2 decreases under the clean gradients.
Corollary E.8 (Clean Population Gradients for wns). If w ∈ S, then

−∇cl
wL

T
ρ wopp − exp(6H)∇cl

wL
T
ρ w⊥ ≤ −ζ2/3 (∥wopp∥+ exp(6H)∥w⊥∥) |aw|

Proof. The gist of the proof of this claim is to show that if wopp is large relative to w⊥, then the
gradient will be large in the wopp direction, thereby decreasing wopp. Conversely, if w⊥ is large
relative to wopp, then the gradient will be large in the w⊥ direction. Because however we are working
on the Boolean hypercube, where ξ is not rotationally invariant, the exact condition of “wopp being
large relative to w⊥” is slightly nuanced.
Let

X := Pr[|wT
⊥ξ| ≥

√
2∥wopp∥].

If X is large, then we will show that wT
⊥∇cl

wLρ is sufficiently large to yield the desired result. If X
is small, we will show that wT

opp∇cl
wLρ is sufficiently large to yield the desired result.

Now
1

|aw|
(
wT

opp∇cl
wLρ + exp(6H)wT

⊥∇cl
w

)
≥

(
1

8
gmin

√
2∥wopp∥ −

gmax
√
2

4
X∥wopp∥+

exp(6H)

8
gminX∥w⊥∥ − ζ exp(6H)∥w⊥∥

)

≥ 1

8
gmin

√
2∥wopp∥ −

exp(H)gmin
√
2

4
X∥wopp∥+

exp(6H)

8
gminX∥w⊥∥ − ζgmin exp(7H)∥w⊥∥
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First we will consider the case that ∥w⊥∥ is large relative to ∥wopp∥. We will need the following
claim.

Claim E.9. If ∥w⊥∥ ≥ 10∥wopp∥, then X ≥ 1
2 .

Proof. If ∥w⊥∥∞ ≥
√
2∥wopp∥, then with i := argmax |(w⊥)i|, with probability 1/2 condtional

on {ξj}j ̸=i, ξi is such that |wT
⊥ξ| ≥ |(w⊥)i|, and thus

X = P[|wT
⊥ξ| ≥

√
2∥wopp∥] ≥

1

2
.

Otherwise, by Berry-Essen (Theorem C.5), we have

P[|wT
⊥ξ| ≥

√
2∥wopp∥] ≥ PG∼N(0,1)

[
|G| ≥

√
2∥wopp∥
∥w⊥∥

]
− ∥w⊥∥∞

∥w⊥∥

≥ PG∼N(0,1)

[
|G| ≥

√
2∥wopp∥
∥w⊥∥

]
−

√
2∥wopp∥
∥w⊥∥

≥ PG∼N(0,1)

[
|G| ≥

√
2

10

]
−

√
2

10

≥ 1

2
.

Thus if ∥w⊥∥ ≥ 10∥wopp∥, by bounding 1
2 ≤ X ≤ 1, we have

1

|aw|
(
wT

opp∇cl
wLρ + exp(6H)wT

⊥∇cl
wLρ

)
≥

(
1

8
gmin

√
2∥wopp∥ −

exp(H)gmin
√
2

4
∥wopp∥+

exp(6H)

16
gmin∥w⊥∥ − ζgmin exp(7H)∥w⊥∥

)

≥ exp(6H)

16
gmin∥w⊥∥ −

exp(H)gmin
√
2

40
∥w⊥∥ − ζgmin exp(7H)∥w⊥∥

(∥w⊥∥ ≥ 10∥wopp∥)

≥ exp(6H)

20
gmin∥w⊥∥ (ζ ≤ exp(−10H))

≥ gmin

30
(∥wopp∥+ exp(6H)∥w⊥∥) . (∥w⊥∥ ≥ 10∥wopp∥)

Now if ∥w⊥∥ ≤ 10∥wopp∥, we have

1

|aw|
(
wT

opp∇cl
wLρ + exp(6H)wT

⊥∇cl
wLρ

)
≥

(
1

8
gmin

√
2∥wopp∥ −

exp(H)gmin
√
2

4
X∥wopp∥+

exp(6H)

8
gminX∥w⊥∥ − ζ exp(6H)∥w⊥∥

)

≥

(
1

10
gmin

√
2∥wopp∥ −

exp(H)gmin
√
2

4
X∥wopp∥+

exp(6H)

8
gminX∥w⊥∥

)
(ζ ≤ exp(−10H), ∥w⊥∥ ≤ 10∥wopp∥)

≥ 1

10
gmin

√
2∥wopp∥ (2

√
2 exp(−5H)∥wopp∥ ≤ ∥w⊥∥)

≥ gmin

√
2

200
exp(−6H) (∥wopp∥+ exp(6H)∥w⊥∥) (∥w⊥∥ ≤ 10∥wopp∥)

≥ ζ2/3gmin (∥wopp∥+ exp(6H)∥w⊥∥) . (ζ ≤ exp(−10H))

Here the third inequality follows from the fact that if ∥w⊥∥ ≥ 2
√
2 exp(−5H)∥wopp∥, then

the positive term with an X exceeds the negative term with an X . Alternatively, if ∥w⊥∥ ≤
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2
√
2 exp(−5H)∥wopp∥, then by Chebychev’s inequality that X ≤ ∥w⊥∥2

2∥wopp∥2 ≤ 4 exp(−10H), so
we can bound the negative term with an X .
These two cases prove the lemma.

E.2.2 NEURONS NOT IN S

Finally, we need to show that the neurons not in S don’t grow too large. To do this, we use the
following claim, which states that no neuron can grow more at the rate τgmax, which is the rate of
growth of the neuron in the direction argminµ µ

T .
Lemma E.10 (Clean Gradient Bound for all Neurons). For any neuron,

|∇cl
aw

Lρ| = |wT∇cl
wLρ| ≤ τgmax∥w∥.

Proof. First recall that

|wT∇cl
wLρ| = |Ezℓ

′
ρ(z)Eξσ(w

T z + wT ξ)| = |∇cl
aw

Lρ|.

We compute

|Ezℓ
′
ρ(z)Eξσ(w

T z + wT ξ)|

≤ sup
µ

1

4

(
gmaxEξσ(w

Tµ+ wT ξ) + gminEξσ(−wTµ+ wT ξ)
)

≤ sup
µ

1

4
gmax

(
Eξσ(w

Tµ+ wT ξ) + σ(−wTµ+ wT ξ)
)

= sup
µ

1

8
gmax

(
Eξσ(w

Tµ+ wT ξ) + σ(−wTµ+ wT ξ) + σ(wTµ− wT ξ) + σ(−wTµ− wT ξ)
)

≤
√
2

4
∥w∥gmax = τgmax∥w∥.

Indeed, the last inequality follows from the fact that the expression is maximized when w is in the
direction of µ.

We additionally use the following lemma.
Lemma E.11. For any neuron w, with high probability

∥w(t+1)∥2 ≤ ∥w(t)∥2 (1 + 2η(1 + 2ζH)τgmax) .

Proof. With high probability,

∥w(t+1)∥2 = ∥w(t)∥2 − 2ηwT∇wL̂+ η2∥∇wL̂∥2

≤ ∥w(t)∥2 − 2ηwT∇cl
wLρ + 2η∥w∥∥∇cl

wLρ −∇wL̂∥+ η2∥∇wL̂∥2

≤ ∥w(t)∥2 − 2ηwT∇cl
wLρ + 2η∥w∥2ζHgmax + η2∥∇wL̂∥2

≤ ∥w(t)∥2 − 2ηwT∇cl
wLρ + 4ηHζgmax∥w∥2,

where in the second inequality we used Claim E.5. Plugging in Lemma E.10 yields the claim.

E.3 PROOF OF INDUCTIVE LEMMA

We break the proof of Lemma E.3 up into three main lemmas. The first lemma shows the growth of
γ̃min. The second ensures that γ̃max doesn’t grow too fast. The third lemma ensures that the network
stays signal-heavy.
Lemma E.12 (γ̃min). Suppose ρt is (ζ,H)-signal heavy for some signal-heavy set S. Then if η ≤ ζ3,
with probability 1− d−ω(1),

γ̃
(t+1)
min ≥ (1 + 2ητ(1− o(1))gmax) γ̃

(t)
min.

Further, for any neuron for which ∥w(t)
sig ∥ ≤ exp(6H)∥w(t)

⊥ ∥ + ∥w(t)
opp∥, we have ∥w(t+1)

sig ∥ ≤
exp(6H)∥w(t+1)

⊥ ∥+ ∥w(t+1)
opp ∥.
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Lemma E.13 (γ̃max). Suppose ρt is (ζ,H)-signal heavy for some signal-heavy set S. Then if
η ≤ ζ3, with probability 1− d−ω(1),

γ̃(t+1)
max ≤ (1 + 2ητ(1 + o(1))gmin) γ̃

(t)
max.

To prove these two lemmas, we will also need the following lemma which states the the network
doesn’t change too much at each iteration.

Lemma E.14. If ρt satisfies Definition 4.2 and η ≤ ζ2, then with probability 1− d−ω(1), we have

|γ̃(t+1)
µ − γ̃(t)

µ | ≤ √
η.

Further for any µ,

|γµ − γ̃µ| ≤ 2ζH. (E.2)

Proof. Using Lemma C.13, and C.12 we have with probability 1− d−ω(1)

|γ̃(t+1)
µ − γ̃(t)

µ | ≤ ηEρ[∥∇aw
L̂ρ∥∥w∥+ ∥∇wL̂ρ∥∥aw∥]

≤ 2ηEρ[∥w∥2 + ∥aw∥2] (Lemma C.13 and C.12 )
≤ 8ηH (Definition 4.2)

≤ √
η. (H ≤ log(ζ−1)/10 ≤ log(η−1/2)/10 ≤ η−1/2/8)

For the second statement, we have

|γµ − γ̃µ| ≤ Eρ[1(w /∈ S)∥aww∥] + Eρ[1(w ∈ S)∥awwopp∥]
≤ Eρ[1(w /∈ S)∥w∥2] + ζEρ[1(w ∈ S)∥aww∥]
≤ 2ζH.

Proof of Lemma E.12. Our approach here will be to show that for any µ ∈ {±µ1,±µ2} from which
γ̃µ ≤ γ̃min + 2

√
η, we have

γ̃(t+1)
µ ≥

(
1 + η

√
2

2
(1 + o(1))gmax

)
γ̃
(t)
min. (E.3)

Then by Lemma E.14 for any µ for which γ̃
(t)
µ ≥ γ̃

(t)
min + 2

√
η, we have

γ̃(t+1)
µ ≥ γ̃(t)

µ −√
η ≥ γ̃

(t)
min +

√
η ≥ (1 + η) γ̃

(t)
min ≥

(
1 +

√
2

2
ηg(t)max

)
γ̃
(t)
min.

Let us prove Equation E.3. Fix any µ with γ̃µ ≤ γ̃min + 2
√
η. We first define a set of neurons on

which the growth of signal is large. Let

Sµ = {w : ζwTµ ≥ ∥w⊥ + wopp∥, awy(µ) > 0},

that is, Sµ = S ∩ {w : wT
sigµ > 0}, where S is the signal-heavy set from Definition 4.2.

Claim E.15. For any w ∈ Sµ,

∥a(t+1)
w w

(t+1)
sig ∥ ≥ ∥a(t)w w

(t)
sig ∥

(
1 + 2ητ(1− o(1))g(t)µ

)
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Proof of Claim E.15. Observe that (with y = y(µ) and X := τg
(t)
µ , we have

ya(t+1)
w ∥w(t+1)

sig ∥ = y(a(t)w − η∇aw L̂ρ)(∥w(t)
sig ∥ − ηµT∇wL̂ρ)

≥ y(aw − η∇cl
aw

Lρ)(∥wsig∥ − ηµT∇cl
wLρ)−O

(
η|aw|∥∇cl

wLρ −∇wL̂ρ∥+ η∥wsig|∥∇cl
aw

Lρ −∇aw
L̂ρ∥

)
−O(η2∥aww∥)

(Lemma C.13)

≥ y(aw − η∇cl
aw

Lρ)(∥wsig∥ − ηµT∇cl
wLρ)−O

(
ηζHρ(a

2
w + ∥wsig∥2)

)
−O(η2∥aww∥)

(Lemma E.5)

≥ yaw∥wsig∥+ η(1− o(1))
(
X∥wsig∥2 +Xa2w

)
−O

(
ηζHρ(a

2
w + ∥w∥2)

)
−O(η2∥aww∥)

(Lemma E.6)

≥ yaw∥wsig∥+ 2Xη(1− o(1))yaw∥wsig∥+O(η2∥aww∥)
(AM-GM, and ζHρ = o(gmin) by Eq. E.1, ζ ≤ exp(−10H))

≥ ya(t)w ∥w(t)
sig ∥ (1 + 2η(1− o(1))X) ,

as desired.

Now we have
gµ
gmax

=
exp(−γµ + γmin)(1 + exp(−γmin))

1 + exp(−γµ)

≥ exp(−γµ + γmin) (γµ ≥ γmin)
≥ exp(−γ̃µ + γ̃min − 4ζH) (Eq E.2)
≥ exp(−2

√
η − 4ζH) (Lemma E.14)

≥ 1− o(1).

Plugging this in to the previous equation yields

ya(t+1)
w ∥w(t+1)

sig ∥ ≥ ya(t)w ∥w(t)
sig ∥ (1 + 2τη(1− o(1))gmax)

Now it remains to check that if a neuron is in Sµ at step t, then that neuron still satisfies ζ∥w(t+1)
sig ∥ ≥

exp(6H)∥w(t+1)
⊥ ∥+ ∥w(t+1)

opp ∥ at time t+ 1. Observe that for every neuron in S, we have:

1. ∥w(t+1)
sig ∥ ≥ ∥w(t)

sig ∥. This is easy to show (as in the calculation above) by plugging in the lower
bound on −wT

sig∇cl
wLρ, and the upper bound on ∥∇cl

wLρ −∇L̂ρ∥.

2. Since η is small enough (relative to ζ), if exp(6H)∥w(t)
⊥ ∥ + ∥w(t)

opp∥ ≤ ζ∥w(t)
sig ∥/2, then

exp(6H)∥w(t+1)
⊥ ∥+ ∥w(t+1)

opp ∥ ≤ ζ∥w(t)
sig ∥ ≤ ζ∥w(t+1)

sig ∥.

3. If exp(6H)∥w(t)
⊥ ∥+ ∥w(t)

opp∥ ≥ ζ∥w(t)
sig ∥/2, then

exp(6H)∥w(t+1)
⊥ ∥2 + ∥w(t+1)

opp ∥2 −
(
exp(6H)∥w(t)

⊥ ∥2 + ∥w(t)
opp∥2

)
≤ −2η exp(6H)(w

(t)
⊥ )T∇wL̂ρ − 2η(w(t)

opp)
T∇wL̂ρ + exp(6H)η2∥∇wL̂ρ∥2

≤ −2η
(
exp(6H)wT

⊥∇cl
wLρ + 2ηwT

opp∇cl
wLρ

)
+ 2η(exp(6H)∥w⊥∥+ ∥wopp∥)∥∇cl

wLρ −∇wL̂ρ∥

+ exp(6H)η2∥∇wL̂ρ∥2

Now we can use Corollary E.8 to bound the first term, and Lemma E.5, Lemma C.12, and
Lemma C.13 to bound the second and third terms. Thus we have
exp(6H)∥w(t+1)

⊥ ∥2 + ∥w(t+1)
opp ∥2 −

(
exp(6H)∥w(t)

⊥ ∥2 + ∥w(t)
opp∥2

)
≤ −2ηζ2/3 (∥wopp∥+ exp(6H)∥w⊥∥) |aw|+ 2η(exp(6H)∥w⊥∥+ ∥wopp∥)ζHρ|aw|+O(exp(6H)η2∥aw∥2)
≤ −ηζ2/3 (∥wopp∥+ exp(6H)∥w⊥∥) |aw|+O(exp(6H)η2∥aw∥2) (ζ ≤ exp(−10H))

≤ −ηζ2/3 (∥wopp∥+ exp(6H)∥w⊥∥) |aw|+O(exp(6H)η2∥w∥|aw|) (|aw| ≤ ∥w∥)

≤ −ηζ2/3(ζ/4)∥w∥|aw|+O(exp(6H)η2∥w∥|aw|)
(ζ∥wsig∥/2 ≤ exp(6H)∥w⊥∥+ ∥wopp∥ ≤ ζ∥wsig∥)

≤ 0. (η ≤ ζ3.)
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Thus it follows that exp(6H)∥w(t+1)
⊥ ∥+ ∥w(t+1)

opp ∥ ≤ exp(6H)∥w(t)
⊥ ∥+ ∥w(t)

opp∥ ≤ ∥w(t)
sig ∥ ≤

ζ∥w(t+1)
sig ∥.

Proof of Lemma E.13. Our approach here is similar to the previous lemma. We will show that for
any µ ∈ {±µ1,±µ2} from which γ̃µ ≥ γ̃max − 2

√
η, we have

γ̃(t+1)
µ ≤

(
1 + η

√
2

2
(1 + o(1))gmin

)
γ̃(t)

max.

Then by Lemma E.14, for any µ for which γ̃
(t)
µ ≤ γ̃

(t)
max − 2

√
η, we have

γ̃(t+1)
µ ≤ γ̃(t)

µ +
√
η ≤ γ̃(t)

max −
√
η ≤ γ̃(t)

max.

For any neurons w ∈ Sµ, using Lemma E.6 to bound ∇cl
wLρ, Lemma E.5 to bound ∥∇cl

wLρ−∇wLρ∥,
and Lemma C.12 to bound ∥∇wL̂ρ −∇wLρ∥, we have with probability 1− d−ω(1),

∥w(t+1)
sig ∥2 ≤ ∥wsig∥2

(
1 + 2η

|aw|
∥wsig∥

τgµ(1 + o(1))

)
.

Similarly, by the same 3 lemmas, we have with probability 1− d−ω(1),

(a(t+1)
w )2 = a2w

(
1 + 2η

∥wsig∥
|aw|

τgµ(1 + o(1))

)
.

Thus
Eρt+1

1(w(t) ∈ Sµ)∥a(t+1)
w w

(t+1)
sig ∥ (E.4)

≤ Eρ1(w
(t) ∈ Sµ)∥awwsig∥

(
1 + η

|aw|
∥wsig∥

τgµ(1 + o(1))

)(
1 + η

∥wsig∥
|aw|

τgµ(1 + o(1))

)
≤ Eρ1(w ∈ Sµ)∥awwsig∥+ ητgµ(1 + o(1))Eρ1(w ∈ Sµ)µ)

(
a2w + ∥wsig∥2

)
≤ Eρ1(w ∈ Sµ)∥awwsig∥+ ητgµ(1 + o(1))

(
Eρ[1(w ∈ Sµ)2a

2
w] +O(log(d)ηH)

)
≤ Eρ1(w ∈ Sµ)∥awwsig∥ (1 + 2ητgµ(1 + o(1)))

(|aw| ≤ ∥w∥ ≤ (1 + o(1))∥wsig∥ since w ∈ S.)

Next we show that gµ
gmin

is small. We have

gµ
gmin

=
exp(−γµ + γmax)(1 + exp(−γmax))

1 + exp(−γµ)

≤ exp(−γµ + γmax) (γµ ≤ γmax)
≤ exp(−γ̃µ + γ̃max − 4ζH) (Eq.E.2)
≤ exp(2

√
η + 4ζH) (Assumption that γ̃µ ≥ γ̃max − 2

√
η)

≤ 1 + o(1).

Plugging this into Eq. E.4 yields

γ̃(t+1)
µ ≤ γ̃(t)

µ (1 + 2ητgmin(1 + o(1))) ,

as desired.

Proof of Lemma E.3. The second and third items of Lemma E.3 follow immediately from Lem-
mas E.12 and E.13. To prove the first item, we first need to control the growth of Eρ[1(w /∈ S)∥w∥2].
We compute

Eρt+1
[∥w∥21(w /∈ S)] ≤ Eρt

[∥w∥21(w /∈ S)] (1 + 2η(1 + 2ζH)τgmax)

≤ ζγ̃
(t)
min (1 + 2η(1 + 2ζH)τgmax) (Lemma E.11)

≤ ζγ̃
(t+1)
min

1 + 2η(1 + 2ζH)τgmax

1 + 2η(1− 2ζH)τgmax
(Lemma E.12)

≤ ζγ̃
(t+1)
min (1 + 10ηζH) .
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Letting ζ ′ := ζ (1 + 10ηζH) be the new signal-heavy parameter, it follows that

ζ ′ ≤ ζ (1 + 10ηζH)

≤ ζT1
(1 + 10ηζH)

t−T1

≤ ζT1
(1 + 10ηζH)

ζ
−1/2
T1
η (t− T1 ≤

ζ
−1/2
T1

η by assumption)

≤ ζT1e
10ζHζ

−1/2
T1

≤ ζT1
e

≤ exp(−10H). (Lemma E.4)

Further, by Lemma C.13, we have that with probability 1 − d−ω(1), for all neurons, |a(t+1)
w | ≤

∥w(t+1)∥, and

Eρt+1
[∥w(t+1)∥2]− Eρt+1

[(a(t+1)
w )2] ≤ Eρt

[∥w(t)∥2]− Eρt
[(a(t)w )2] + 4η2Eρt

(a(t)w )2

≤ 2ζH + 2η2H

≤ 2ζ ′H.

Finally, to bound Eρt+1
[(a

(t+1)
w )2], we have

Eρt+1
[(a(t+1)

w )2] ≤ Eρt+1
[∥a(t+1)

w w(t+1)∥] (E.5)

≤ Eρt+1
[1(w(t+1 ∈ S)∥a(t+1)

w w(t+1)∥] + Eρt+1
[1(w(t+1 /∈ S)∥a(t+1)

w w(t+1)∥]

≤
∑

µ∈{±µ1,±µ2}

γ̃(t+1)
µ + ζ ′γ̃

(t+1)
min

≤ 5γ̃(t+1)
max .

We bound γ̃
(t+1)
max in the following claim.

Claim E.16.
γ̃
(T1+ζ

−1/2
T1

/η)
max ≤ − log(ζT1)/20.

Proof. Let t∗ be the last time at which γ̃max is at most − log(ζT1
)/40. If t∗ ≥ T1+ ζ

−1/160
T1

/η, then

we are done. Suppose t∗ ≤ T1 + ζ
−1/160
T1

/η. Then by Lemma E.13, we have

γ̃
(T1+ζ

−1/160
T1

/η)
max ≤ γ̃(t∗)

max

(
1 + 2η(1 + o(1))τ max

t∗≤s≤T1+ζ
−1/160
T1

/η

g
(s)
min

)ζ
−1/160
T1

/η

≤ − log(ζT1
)

40

(
1 + 2η(1 + o(1))τ max

t∗≤s≤T1+ζ
−1/160
T1

/η

g
(s)
min

)ζ
−1/2
T1

/η

≤ − log(ζT1
)

40
exp

(
1.5ζ

−1/160
T1

max
t∗≤s≤T1+ζ

−1/160
T1

/η

g
(s)
min

)

≤ − log(ζT1
)

40
exp

(
2ζ

−1/160
T1

exp(−γ̃(t∗)
max )

)
≤ − log(ζT1

)

40
exp

(
2ζ

−1/160
T1

ζ
1
40

T1
)
)

≤ − log(ζT1)

20
.

Here we have used Lemma E.14 to bound

g
(s)
min ≤ 2 exp(−γ(s)

max) ≤ 2 exp(−γ̃(s)
max + 2ζH),
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and thus

max
t∗≤s≤T1+ζ

−1/160
T1

/η

g
(s)
min ≤ 2.1 exp(−γ̃(t∗)

max ).

Plugging this claim into Eq. E.5 yields

Eρt+1
[(a(t+1)

w )2] ≤ 5γ̃(t+1)
max ≤ − log(ζT1

)/20 ≤ 2H.

The above computations, in addition to Lemma E.12 proves that ρt+1 is (ζ ′, H) signal-heavy with
the heavy set S.

F PROOF OF THEOREM 3.1

We now prove Theorem 3.1 from Lemmas D.1 and Lemmas E.3. We restate the theorem and these
two lemmas for the readers convenience.
Theorem F.1. There exists a constant C > 0 such that the following holds for any d large
enough. Let θ := 1/ log(d)C . Suppose we train a 2-layer neural network with minibatch SGD
as in Section 2.2 with a minibatch size of m ≥ d/θ, width 1/θ ≤ p ≤ dC , step size η ≤ θ, and
initialization scale θ. Then for some t ≤ C log(d)/η, with probability 1− d−ω(1), we have

Ex∼Pd
[ℓρt(x)] ≤ (log(d))−Θ(1).

Lemma D.1 (Output of Phase 1; Formal). For any constants c sufficiently large, and C sufficiently
large in terms of c, for any d large enough, the following holds. Let θ := 1/ log(d)C .
Suppose we train a 2-layer neural network with minibatch SGD as in Section 2.2 with a minibatch
size of m ≥ d/θ2, width 1/θ ≤ p ≤ dC , and step size η ≤ θ, and initialization scale θ. Then with
probability at least 1− θ, after some T1 = Θ(log(d)/η) steps of minibatch SGD, the network ρT1

satisfies:

1. EρT1
[∥aww∥] ≤ 1;

2. EρT1
[∥w⊥ + wopp∥2] ≤ 4θ2;

3. For all µ ∈ {±µ1,±µ2}, on at least a 0.1 fraction of the neurons, we have ∥wsig∥ ≥ log(d)cθ
and wT

sigµ > 0.

Additionally,
EρT1

[∥w∥2] ≤ EρT1
[|aw|2] +

√
η,

and for all neurons, we have |aw| ≤ ∥w∥.

Lemma E.3 (Phase 2 Inductive Lemma; Formal). Suppose t ≤ T1 +
ζ
−1/160
T1

η . If a network ρt

is (ζ,H)-signal heavy with heavy set S and ζ ≤ ζT1(1 + 10ηζH)t−T1 , then after one minibatch
gradient step with step size η ≤ ζ3, with probability 1− d−ω(1),

1. ρt+1 is (ζ(1 + 10ηζH), H)-signal heavy.

2. γ̃
(t+1)
min ≥ (1 + 2ητ(1− o(1))gmax) γ̃

(t)
min

3. γ̃
(t+1)
max ≤ (1 + 2ητ(1 + o(1))gmin) γ̃

(t)
max.

Here ζT1
and H are defined in Definition E.2, and τ =

√
2
4 .

Proof of Theorem 3.1. Let ρT1 be the network output by Lemma D.1. By Lemma E.4, we have that
ρT1 is (ζT1 , H)-signal-heavy, where ζT1 and H are defined in Definition E.2. Further, we have that
γ̃
(T1)
min ≥ ζ

1/200
T1

.

Let us iterate Lemma E.3 for T2 := −ζ
−1/160
T1

/η steps. We will show that γ̃(T1+T2)
min ≥ 1

200 log(ζ
−1
T1

).

If γ̃(t)
min for t ∈ [T1, T1+T2] ever exceeds 1

200 log(ζ
−1
T1

), then we are done since γ̃min always increases.

Suppose it does not exceed this value, and thus g(t)min is always at least ζ1/200T1
.
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Then we can show that gmin is relatively large, and thus by the second item of Lemma E.3, γ̃min will
grow quickly. Indeed for d large enough:

γ̃
(T1+T2)
min ≥ γ̃

(T1)
min

(
1 + 2ητ(1− o(1)) min

t∈[T1,T2]
g
(t)
min

)T2

≥ γ̃
(T1)
min

(
1 + 2ητ(1− o(1))ζ

1/200
T1

)T2

≥ γ̃
(T1)
min exp

(
ζ
−1/160
T1

(ζ
1/199
T1

)
)

≥ ζ
Θ(1)
T1

exp
(
ζ
−1/320
T1

)
(Lemma E.4)

= exp(logΘ(1)(d)) (ζT1 = log−Θ(1)(d))

≥ 1

200
log(ζ−1

T1
).

Here in the second inequality we have lower bounded g
(t)
min by (1 − o(1)) exp(−γ̃

(t)
min) using

Lemma E.14.
Finally, we check the loss guarantee of the network ρT for T = T1 + T2. Since ρT is (ζ ′, H)-signal
heavy for ζ ′ ≤ 2ζT1

(see the proof of Lemma E.3), and by Definition E.2, ζT1
H = o(1), we have

ExℓρT
(x) = −2 log

(
1

1 + exp(−fρ(x)y(x))

)
≤ Ex2 exp(−fρ(x)y(x))

≤ Ex2 exp(−γmin + |fρ(x)− fρ(z)|)
≤ 2 exp(−γmin)Ex exp(|fρ(x)− fρ(z)|)
≤ 2 exp(−γmin)Eξ exp(Eρ|awwT

⊥ξ|)
≤ 2 exp(−γ̃min + 2ζ ′H)Eξ exp(Eρ|awwT

⊥ξ|) (Lemma E.14)

≤ 3 exp(−γ̃min)Eξ exp(Eρ|awwT
⊥ξ|)

Since aww
T
⊥ξ is subguassian with norm Θ(∥aww⊥∥), we have

Eξ exp(Eρ|awwT
⊥ξ|) ≤ exp(Θ(Eρ[|aww⊥∥2])) ≤ exp

(
Θ

(√
Eρ[|aw∥2]

√
Eρ[|w⊥∥2]

))
≤ exp(Θ(Hζ ′)),

so since γ̃min ≥ 1
200 log(ζ

−1
T1

) = Θ(log log(d)), we have

ExℓρT
(x) ≤ 3 exp(−γ̃min) exp(Θ(Hζ)) ≤ 4 exp(−γ̃min) = log−Θ(1)(d).

This yields the theorem.

G LOWER BOUND OF Θ̃(d) FOR LEARNING THE XOR FUNCTION WITH
ROTATIONALLY INVARIANT ALGORITHM.

Proposition G.1. Suppose A : ({±1}d)n × {±1}n × {±1}d → ∆({±1}) is an algorithm, which
given n labeled samples X from the Boolean hypercube, and an additional unlabeled sample,
outputs a distribution over labels. Suppose additionally that A is rotationally invariant, that is, for
an orthonormal rotation U , we have A(UX, y, Ux) = A(X, y, x), so long as UX and Ux are on
the hypercube.
Then if n ≤ d/ log2(d), if X = (x1, . . . , xn) and x are sample uniformly at random from the
hypercube, and i, j are sampled uniformly without replacement from [d], we have

PX,x,i,jPŷ∼A(X,y(X),x)[ŷ ̸= y(x)] ≥ 0.03,

where y(x) := −(xT ei)(x
T ej), and y(X) ∈ {±1}n denotes the labels of the entire set X .
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Proof. Let H = {±1}d denote the Boolean Hypercube. Let Q := {h ∈ H : hTxi = xTxi∀i ∈
[n]}. Because the geometry of the set of points (x1, . . . , xn, x) is the same as the geometry of the
points (x1, . . . , xn, q), for each q ∈ Q, for each such q, there exists (at least 1) rotation U such that
Ux = q and Uxi = xi for i ∈ [n].
Thus by the rotational invariance of A, for all q ∈ Q, we must have that A(X, y, q) is the same
distribution. Let us denote this distribution by DX,y,Q.
We make the following claim:

Claim G.2. For some sufficiently small constant c, if |Q| ≥ 2d−cd, we have that with probability at
least 0.25 over i, j, for any distribution D, Pq∼Q,ŷ∼D[y(q) ̸= ŷ] ≥ 0.15.

Proof. Without loss of generality let i = 1. It suffices to prove that with probability 0.25 over j, at
most a 0.85 fraction of the points in Q have the same label.
Suppose this was not true. For j ∈ [d], let vj denote the majority of y(q) over q ∈ Q (break ties
arbitrarily), where the labeling function y is determined by i and j. Let P ⊂ [d] be the set of all j
such that Pq∼Q[y(q) = vj ] > 0.85, such that we must have |P | ≥ 0.75d. To abbreviate, for j ∈ P ,
define yj(q) := −(qTa1)(q

Taj). Then for at least a 0.1 fraction of points in q ∈ Q, we must have
Pj∼P [yj(q) = vj ] ≥ 0.8. Indeed, if not,

Ej∼PEq∼Q1(yj(q) = vj) = Eq∼QEj∼P1(yj(q) = vj) ≤ 0.1 ∗ 1.0 + 0.9 ∗ 0.8 < 0.85.

Now we consider how many points h there are in H satisfying Pj∼P [yj(h) = vj ] ≥ 0.8. Consider
first the number of such points over H1 := {h ∈ H : e1 = 1}. Having Pj∼P [yj(h) = vj ] ≥ 0.8
implies that −hj = vj for at least 0.8|P | ≥ 0.55d coordinates. By a standard Chernoff bound,
the number of such points is smaller that 2d−1 exp(−Cd) for some constant C. The same holds
for the set of all points where hT e1 = −1. Thus the total number of points in H satisfying
Pj∼P [yj(h) = vj ] ≥ 0.6 is at most 2d exp(−Cd). Thus if |Q| > 1

0.12
d exp(−Cd) we have

reached a contradiction. This holds for |Q| ≥ 2d−cd for c small enough.

Now fix X and partition H into K disjoint sets Q1, Q2, . . . QK such that that for any k, for all
q ∈ Qk, the projection of q onto X is the same. We have

Px∼H,i,j [ŷ ̸= y(x)] ≥
K∑

k=1

|Qk|
2d

Pi,jPq∼Qk
[ŷ ̸= y(q)]

≥
K∑

k=1

|Qk|
2d

(0.25)(0.15)1(|Qk| ≥ 2d(1−c))

Now since K ≤ (d + 1)n = 2o(d) (indeed, the projection onto each xi can only take on d + 1
different integer values −2d,−2(d− 1), . . . , 2d), we have that

K∑
k=1

|Qk|1(|Qk| ≥ 2d(1−c)) ≥ 2d − 2d(1−c)K ≥ (1− o(1))2d.

Thus for any X , we have that

Pŷ∼A(X,y(X),x)[ŷ = y(x)]Px∼H,i,j [ŷ ̸= y(x)] ≥ (0.25)(0.15)(1− o(1)) ≥ 0.03.

The result follows.
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