Towards the Identification of Latent Structures in Language Embeddings
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Introduction
Background: Intrinsic universality in latent representations CEBRA

Language models .often share structural - - \ CEBRA: a contrastive learning framework, origially developed for neural data.
patterns, suggesting the presence of Ensures Identifiability up to linear transformation, by leveraging auxiliary

universal regularities in the data. Models . .
ARRRA | variables. (e.g. time, labels).
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Aims: ldentify the latent structure \ ' & Objective function
Low-dimensional structure inherent in ST generalized InfoNCE loss:
. . . _ = Representations 2
high-dimensional language embeddings. e ot = B[y rog3e
i “ yzf,z-) ~ -oiz’:q(z;li) =1
Approach: CEBRA \:lniversal” representatitiy Minimizer of generalized InfoNCE loss: |
A contrastive learning framework, E < p(y | x) e representations maiche:
. . > =1 _ 17
grounded in the theory of nonlinear ICA. viny) =log ey ) f(x) = Lf(x)
Materials & Methods
Datasets Language Embedding Models CEBRA Pieline:
gt B A el LU | 2. Train CEBRA with discrete emotion labels as a AUX.
(5 GoEmotions Qwen3-Embedding-8B Similarityinthe latent - o
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L J space: Cosine learned embeddings.
sentence-transformer )

_ Discussions
CEBRA learns low-dimensional latent structures highly consistent across random initializations CEBRA reflect stable, label-relevant factors inherent in the data:

Euclidean similarity generally yields higher consistency than cosine similarity as a similarity metric of latent space. CEBRA produces latent embeddings with clear and well-separated cluster structures
QEEEIIT oo e v, ) (T e o o aligned with the emotion labels.

e L] ) The arrangement of clusters are highly consistent

: g.zgg;f;i;§;<§7:;‘<§;E§;’E:E’ snaiiing Justip Label-elated organization may reflect a stable latent structure associated with the data-
ARdl AR e e nr e generating process.
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Choice of auxiliary variables with minimal inductive bias

LTI T A Can we move beyond explicit labels to achieve identifiability in a more unsupervised manner?
e e Interpretation of indeterminacy up to a linear transformation:

The choice of language embedding model strongly influences the the learned latent structure; How can we define robust and meaningful metrics on the relative geometric structure.
Sentence-Transformer models tend to produce more consistency with low dimensional output. Ceometricallstiuchuraof [atertspace:
Ddair-ai/emotion J)dair-ai/emotion p ]

S o . saeusCor by o i) Analyzing distance/similarity patterns and relative geometric arrangements. .)/‘

Y L0 1 o e Topological structure of latent space: L <
) ;-; M; sentence-transformers/all-mpnet-base-v2

e —— Examining cluster relationships, connectivity patterns, M
google/embeddinggemma-300M and manifold-level organization.

[, ° ibm-granite/granite-embedding-english-r2 m
. B Qwen/Qwen3-Embedding-8B

all-MiniLM-L6-v2
B T P T Future work will apply this framework to multimodal data (image,audio) and to neural
dair-ai/emotion | allMiniLM-L6v2 dair-ai/emotion data, probing whether similar identifiable structures emerge in biological brains.

dair-ai sentence -transformers /all-mpnet -base-v2 (4D) with PCA
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