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A Proof of Lemma 2

As stated in Section 4.1 and the previous section, Theorem 1 relies on Lemma 2 which states that all entries
in z(1) (the representation extracted by the neural network) are independent with each other. To prove this
lemma, we can explicitly write the kth entry in z(1) as follows:
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Since the weights and biases are all i.i.d. Gaussian with zero mean a priori and they are independent of the
outputs from the previous layer, we have:
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Therefore, we have cov
(
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= 0, meaning that z
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ik and z
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jl are uncorrelated with each other

a priori, which completes the proof of Lemma 2. However, we do not claim the validity of this lemma a
posteriori.

B A More Detailed Proof for Theorem 1

In this section, we provide a more detailed proof for Theorem 1. Again, suppose we have data X = [xi]Ni=1 with
information from 2 different sources x =

{
x(1), x(2)} where x(1) ∈ RD1 is high-dimensional and x(2) ∈ RD2 is

low-dimensional with some known relationship with the targets Y = [yi]Ni=1. With ICK formulation, we have
z(1) = fNN

(
x(1)) ∈ Rp where fNN is a NN-implied function with parameters θ(1) and z(2) = g

(
x(2)) ∈ Rp
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where g is a kernel-to-latent-space mapping specified by a chosen kernel function K(2) with parameters θ(2).
In Section 3.3, it is stated that the latent representation z(1) from fNN will converge in distribution to a
multi-output GP in the infinite width limit. In case when the NN has finite width, z(1) will approximately
follows a GP with empirical NNGP kernel function K̂NNGP

z(1) ∼ GPapprox

(
0, K̂NNGP

)
. (19)

Let Z(1) =
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Gaussian as shown below
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where Z(1) ∈ RN×p and K̂NNGP ∈ RNp×Np is the corresponding kernel matrix
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width, all K̂NNGP

1 , ..., K̂NNGP
p will converge to a deterministic limit. Therefore, in the finite-width case, it is
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where Ip is a p× p identity matrix. In other words, each entry in z
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i has a univariate Gaussian distribution
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Therefore, the joint distribution of the final predictions of the whole training set Ŷ = [ŷi]Ni=1 will be a
multivariate Gaussian as given below:
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, and

"⊙" represents elementwise multiplication. Therefore, if g includes the kernel-to-latent-space mapping
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Figure C1: Scatter plots of the true values of y against the predicted values of y using our ICKr framework
with information from (a) one source ŷ = fNN

(
x(1)), (b) 2 sources ŷ = fICKr

(
x(1), x(2)), and (c) 3 sources

ŷ = fICKr
(
x(1), x(2), x(3)).
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, i, j = 1, ..., N as shown in Equation 5, then K(2) = ααT

and we derive that
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Since this derivation reasonably holds for any finite set of X and Y , we say the ICK framework is approximately
equivalent to a GP with zero mean and a multiplicative kernel between the NNGP kernel matrix K̂NNGP

and the user-specified kernel matrix K2.

C Experimental Results of Random Fourier Features

C.1 Synthetic Data

We use the same toy data set where each data point x =
{

x(1), x(2), x(3)} contains 3 sources of information
as described in Section 5.1.2. Also, we use the same types of kernels as those in ICKy. The only difference
here is that we use RFF instead of Nyström method to transform the kernel matrix into the latent space in
ICKr framework.

The results are displayed in Figure C1. It can be observed that when we add in only the side information
x(2) along with the exponential sine squared kernel, both the correlation and the predictive performance are
improved (though not as good as the results from ICKy as shown in Figure 9). However, after we further
include x(3) with the RBF kernel, we realize that the parameters of ICKr become very hard to optimize and
it fails to make valid predictions and starts to guess randomly around zero.

C.2 Remote Sensing Data

We also try ICKr on the forecasting task using the remote sensing data (see Section 5.2) and compare the
results with those from ICKy. Each data point x = {x, t} contains a satellite image x as the high-dimensional
information and its corresponding timestamp t as the low-dimensional information. The satellite images
are processed with a two-layer CNN and the timestamps are processed with an exponential-sine-squared
kernel with a period of T = 365 (days). As can be observed from Figure C2, ICKr yields much higher error
compared to ICKy.
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Figure C2: Density plots of the true PM2.5 concentrations against the forecasted PM2.5 concentrations for
t ≥ 500 using (a) ICKy and (b) ICKr.

D Number of Inducing Points

As discussed in Section 4.2.1, as we increase the number of inducing points p, we expect the approximation
error between the true kernel matrix K and the approximated kernel matrix K̂ to decrease. Here, we
empirically show how the value of p impacts our predictions. In Figure D1a, we plot the prediction error
of ŷ = fICKy

(
x(1), x(2), x(3)) against the number of inducing points using the synthetic data generated in

Appendix F. As can be observed, the prediction error drops sharply as we raise p from a small value (e.g.
p = 2). When p is relatively large, increasing p yields smaller improvement on the predictions. Additionally,
in Figure D1b, we plot the total training time against p. The total training time is dependent on how long
a single iteration takes and the total number of epochs required. We note that once p > 80 the training
time is relatively flat, which is due to the fact that the total computation in the Cholesky is less than the
computation in the neural network. Interestingly, it appears that when p is very small, ICKy takes longer to
converge due to the need for many more epochs. As we increase p, the training time goes down and then
goes up again due to the computational complexity, i.e. O(p3), of the Cholesky decomposition. Based on
these observations, we are not concerned about the computational complexity for reasonable values of p.

E Applying Sample-then-optimize Procedure to ICK

As elaborated in Section 4.3.1, a deep ensemble with proper initialization scheme will have a GP posterior
interpretation in the infinite width limit when trained by a squared-error loss (He et al., 2020), which is an
example of the "sample-then-optimize" procedure of Matthews et al. (2017) Algorithm 3 is an alternative to
replace fNN with such a deep ensemble F = {fne}

Ne

ne=1 where the dimension of the final readout layer of each
fne

is p. In this case, each baselearner fne
can be viewed as an i.i.d. sample from a multi-output GP in the

infinite width limit. In the finite-width case, this relationship becomes approximate:

fne

d−→ GPapprox (0, KF ) , (28)

As stated by Lee et al. (2019), if all the parameters in fne
are randomly drawn from a Gaussian distribution

and are all fixed except the last layer, then after training F on a squared-error loss, we will have KF → KNNGP

where KNNGP is the NNGP kernel. He et al. (2020) also proposed to add a random and untrainable function
δ(·) to the output of fne so we have KF → KNTK where KNTK is the limiting NTK.
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Figure D1: Plots of (a) prediction error and (b) training time of ŷ = fICKy
(
x(1), x(2), x(3)) against the number

of inducing points p

With ICK formulation, by following the proof given in Appendix B, we can derive that, for each baselearner
in the ICK ensemble, the joint distribution of the final predictions of the whole training set Ŷne will again be
a multivariate Gaussian as shown below if Lemma 2 holds a posteriori:

Ŷne ∼ N
(

0, KF ⊙K(2)
)

, (29)

where (KF )ij = KF

(
x

(1)
i , x

(1)
j

)
. Since Equation 29 holds for any finite input data set, we can conclude that

each baselearner fs in the ICK ensemble FICKy = {fs}Ne
s=1 can be approximately viewed as an i.i.d. sample

from a single-output GP

fs ∼ GPapprox

(
0, KF K(2)

)
= GPapprox (0, Kcomp) . (30)

Building an ensemble FICKy = {fs}Ne
s=1 is thus equivalent to performing a Monte Carlo approximation to a

GP predictive posterior distribution whose mean and covariance matrix for a test data set X∗ = [x∗
i ]N

∗

i=1 are

fs(X∗|X) ∼ N (µ∗, Σ∗) , (31)

µ∗ = Kcomp
X∗X (Kcomp

XX )−1
Y , (32)

Σ∗ = Kcomp
X∗X∗ −Kcomp

X∗X (Kcomp
XX )−1

Kcomp
XX∗ , (33)

where (Kcomp
X∗X )ij = Kcomp (x∗

i , xj), (Kcomp
XX )ij = Kcomp (xi, xj), (Kcomp

X∗X∗)ij = Kcomp (x∗
i , x∗

j

)
, and Kcomp

XX∗ =
(Kcomp

X∗X )T . In other words, we can approximate the GP predictive posterior using the predictive mean and
variance generated by Algorithm 3 as follows:

µ̂∗ = 1
Ne

Ne∑
n=1

fs(X∗|X) ≈ E [fs(X∗|X)] = µ∗, (34)

σ̂∗2 = 1
Ne

Ne∑
n=1

[fs(X∗|X)− µ̂∗]2 ≈ V [fs(X∗|X)]

= diag (Σ∗) . (35)
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Table 5: Model architecture and training details for remote sensing data experiment in Section 5.2
Backbone architecture

details
Output FC layers

dimension Optimizer

CNN-RF # Conv blocks = 2, # Channels = 16,
Kernel size = 3, Stride = 1 1000 + dRT, 512, 512, 1

Adam
β1 = 0.9

β2 = 0.999

ViT-RF
# Transformer blocks = 2,

# Attention heads = 8,
Dropout ratio = 0.1

1000 + dRT, 512, 512, 1
Adam

β1 = 0.9
β2 = 0.999

DeepViT-RF
# Transformer blocks = 2,

# Attention heads = 8,
Dropout ratio = 0.1

1000 + dRT, 512, 512, 1
Adam

β1 = 0.9
β2 = 0.999

MAE-ViT-RF

# Transformer blocks = 2,
# Attention heads = 8,

Dropout ratio = 0.1,
Masking ratio = 0.75

1000 + dRT, 512, 512, 1
Adam

β1 = 0.9
β2 = 0.999

CNN-ICKy # Conv blocks = 2, # Channels = 16,
Kernel size = 3, Stride = 1 1000, 512, p

SGD
momentum = 0.9

ViT-ICKy
# Transformer blocks = 2,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, p
SGD

momentum = 0.9

DeepViT-ICKy
# Transformer blocks = 2,

# Attention heads = 8,
Dropout ratio = 0.1

1000, 512, p
SGD

momentum = 0.9

F Experimental Details

F.1 Synthetic Data

We use the GPytorch package to generate the synthetic data. The data set is first randomly shuffled and
then divided into train and test set with a 50:50 ratio. Before feeding x(1) into MLP, we first map x(1) into
higher dimension using an unsupervised algorithm called Totally Random Trees Embedding. All the MLP
structures in this experiment (including those in MLP-RF and ICKy) contain one single fully connected (FC)
layer of width 1000, which serves as a simple benchmark since a one-hidden-layer MLP can only capture
linear relationship between the input and output. For model training, we optimize a Mean Squared Error
(MSE) objective using Adam optimizer with a weight decay of 0.1.

F.2 Remote Sensing Data

We collect remote sensing data from 51 air quality monitoring (AQM) stations located in the National Capital
Territory (NCT) of Delhi and its satellite cities over the period from January 1, 2018 to June 30, 2020 (see
Appendix G for notes on data availability). The timestamps are converted into numerical values t (where the
day 2018-01-01 corresponds to t = 0) before feeding them into the models. We split the train, validation, and
test data set based on t. Specifically, we use all the data points with t < 365 for training, 365 ≤ t < 500 for
validation, and t ≥ 500 for testing.

The model architecture and training details are listed in Table 5. Here p denotes the length of latent
representations z as discussed in Section 4 and dRT denotes the transformed dimension of timestamp t
using the Random Trees Embedding as mentioned in Section F.1. Note that we use stochastic gradient
descent (SGD) optimizer with a momentum of 0.9 for ICKy as we realize that SGD helps ICKy find a local
minimum on the objective more efficiently. We use MSE objective for ICKy and all benchmark models in
this experiment.
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Figure H1: Time series visualization of predictive mean and uncertainty of PM2.5 in Section 5.2 (remote
sensing experiment) for (a) CNN-ICKy (1.92M parameters) and (b) DeepViT-ICKy (21.80M parameters).

F.3 Other Regression Datasets

For the worker productivity, we separate out the temporal information (i.e. date and time) and use it as
the low-dimensional information. The rest of the features are then concatenated together to serve as the
high-dimensional information. The MLPs (including the MLP part in ICKy) in this experiment share the
same structure as the one used in Al Imran et al. (2019), which consist of 3 hidden layers of width 128, 32,
and 32, respectively. For plain MLP, cyclic MLP, and ICKy, we use the mean absolute error (MAE) objective
to put less weight on the outliers and thus enhance the model performance. All these objectives are optimized
by an Adam optimizer with β1 = 0.9 and β2 = 0.999.

The power consumption data is preprocessed in a similar way to the worker productivity data, where we
separate out the data and time features, transform them into a one-dimensional time index, and use it
as the low-dimensional information. The rest of the features are concatenated together to serve as the
high-dimensional information. The performance of the GP benchmarks are directly obtained from Wang
et al. (2019).

G Accessibility and Restrictions of the Data

All experiments are conducted on a computer cluster equipped with a GeForce RTX 2080 Ti GPU. The
synthetic data in Section 5.1 are generated using the GPyTorch package. The remote sensing data in Section
5.2 is downloaded using PlanetScope API whose content is protected by copyright and/or other intellectual
property laws. To access the data on PlanetScope, the purchase of an end-user license is required. When this
manuscript is accepted, we will provide the codes we used to acquire the data. The UCI machine learning
repository data we use in Section 5.3 has an open access license, meaning that the data is freely available
online.

H Time Series Visualization for Remote Sensing Experiment

To explore the problem of posterior uncertainty calibration for ViT variants of ICKy (i.e. extremely large
MSLL as shown in Table 2 in Section 5.2), we visualize the results as time series by first grouping the
predictions by the timestamp t, taking the minimum of the predictive variance, and plotting them along with
the corresponding true values and the predictive mean as shown in Figure H1. The shaded region represents
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the confidence interval [µ−2σ, µ+2σ] where µ and σ are the predictive mean and standard deviation of PM2.5,
respectively. We realize that CNN-ICKy ensemble tends to yield much higher variance than DeepViT-ICKy
ensemble when the predictive mean deviates from the true values. A plausible explanation is that the DeepViT
structure contains much more parameters than the CNN structure (21.80M vs 1.92M) used in our remote
sensing experiment, which makes DeepViT-ICKy overparameterized (The DeepViT architecture is set to be
consistent with the CNN architecture as shown in Table 5). To alleviate this problem, we try reducing the
number of transformer blocks in ViT and DeepViT and we do observe a significant drop in MSLL.

27


	Proof of Lemma 2
	A More Detailed Proof for Theorem 1
	Experimental Results of Random Fourier Features
	Synthetic Data
	Remote Sensing Data

	Number of Inducing Points
	Applying Sample-then-optimize Procedure to ICK
	Experimental Details
	Synthetic Data
	Remote Sensing Data
	Other Regression Datasets

	Accessibility and Restrictions of the Data
	Time Series Visualization for Remote Sensing Experiment

