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A Proof of Proposition 3.1
Taking the loss function to be NLL, we have `(f(x), y)) = − log [f(x)]y, where [f(x)]y is the
probability assigned by the network f of x belonging to the true class y, i.e. indexing the predicted
probabilities f(x) with the true target y. Note that t 7→ − log t is a convex and decreasing function.

We first prove `(FOE(x), y) ≤ `(F (x), y). Recall, by definition of FOE, we have FOE(x) = fθk(x)
where k ∈ argmini `(fθi(x), y), therefore [FOE(x)]y = [fθk(x)]y ≥ [fθi(x)]y for all i = 1, . . . , C.
That is, fθk assigns the highest probability to the correct class y for input x. Since − log is a
decreasing function, we have

`(F (x), y) = − log

(
1

M

M∑
i=1

[fθi(x)]y

)
≥ − log ([fθk(x)]y) = `(FOE(x), y).

We apply Jensen’s inequality in its finite form for the second inequality. Jensen’s inequality states
that for a real-valued, convex function ϕ with its domain being a subset of R and numbers t1, . . . , tn
in its domain, ϕ( 1

n

∑n
i=1 ti) ≤

1
n

∑n
i=1 ϕ(ti). Noting that − log is a convex function, `(F (x), y) ≤

1
M

∑M
i=1 `(fθi(x), y) follows directly.

B Experimental and Implementation Details
We describe details of the experiments shown in Section 5 and Appendix C and include Algorithms 2
and 3 describing NES-RS and ForwardSelect, respectively. Note that unless stated otherwise, all
sampling over a discrete set is done uniformly in the discussion below.

Algorithm 2: NES with Random Search
Data: Search space A; ensemble size M ; comp. budget K; Dtrain,Dval.

1 Sample K architectures α1, . . . , αK independently and uniformly from A.
2 Train each architecture αi using Dtrain, yielding a pool of networks
P = {fθ1,α1

, . . . , fθK ,αK
}.

3 Select base learners {fθ∗1 ,α∗
1
, . . . , fθ∗M ,α∗

M
} = ForwardSelect(P,Dval,M) by forward

step-wise selection without replacement.
4 return ensemble Ensemble(fθ∗1 ,α∗

1
, . . . , fθ∗M ,α∗

M
)

Algorithm 3: ForwardSelect (forward step-wise selection without replacement [7])
Data: Pool of base learners P; ensemble size M ; Dval. Assume |P| ≥M .

1 Initialize an empty set of base learners E = {}.
2 while |E| < M do
3 Add fθ,α to E, where fθ,α ∈ argminf∈P L(Ensemble(E ∪ {f}),Dval)
4 Remove fθ,α from P . // without replacement.
5 return E // set of selected base learners.

B.1 Architecture Search Spaces

DARTS search space. The first architecture search space we consider in our experiments is
the one from DARTS [39]. We search for two types of cells: normal cells, which preserve the
spatial dimensions, and reduction cells, which reduce the spatial dimensions. See Figure 11b for an
illustration. The cells are stacked in a macro architecture, where they are repeated and connected
using skip connections (shown in Figure 11a). Each cell is a directed acyclic graph, where nodes
represent feature maps in the computational graph and edges between them correspond to operation
choices (e.g. a convolution operation). The cell parses inputs from the previous and previous-previous
cells in its 2 input nodes. Afterwards it contains 5 nodes: 4 intermediate nodes that aggregate the
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(a) Macro architecture.
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Figure 11: Illustration of the DARTS search space: (a) The macro architecture is a stack of normal
and reduction cells. Normal cells are repeated N times between reduction cells (N = 2 in our
experiments, i.e. 8 cells in total). (b) The cells for the DARTS architecture are depicted as directed
acyclic graphs. Briefly, cells are composed of 2 input nodes (green), 4 intermediate nodes (blue) and
one output node (red). Each edge is an operation which is applied to the preceding node’s tensor and
the output is summed element-wise in the succeeding node (an intermediate node). The output node
is a concatenation of all intermediate nodes.

information coming from 2 previous nodes in the cell and finally an output node that concatenates
the output of all intermediate nodes across the channel dimension. AmoebaNet contains one more
intermediate node, making that a deeper architecture. The set of possible operations (eight in total in
DARTS) that we use for each edge in the cells is the same as DARTS, but we leave out the “zero”
operation since that is not necessary for non-differentiable approaches such as random search and
evolution. Specifically, this leaves us with the following set of seven operations: 3 × 3 and 5 × 5
separable convolutions, 3× 3 and 5× 5 dilated separable convolutions, 3× 3 average pooling, 3× 3
max pooling and identity. Randomly of architectures is done by sampling the structure of the cell and
the operations at each edge. The total number of architectures contained in this space is ≈ 1018. We
refer the reader to Liu et al. [39] for more details.

NAS-Bench-201 search space. NAS-Bench-201 [13] is a tabular NAS benchmark, i.e. all
architectures in the cell search space are trained and evaluated beforehand so one can query their
performance (and weights) from a table quickly. Since this space is exhaustively evaluated, its size is
also limited to only normal cells containing 4 nodes in total (1 input, 2 intermediate and 1 output
node) and 5 operation choices on every edge connecting two nodes. This means that there are only
15,625 possible architecture configurations in this space. The networks are constructed by stacking
5 cells with in-between fixed residual blocks for reducing the spacial resolution. Each of them is
trained for 200 epochs 3 times with 3 different seeds on 3 image classification datasets. For more
details, please refer to Dong & Yang [13].

B.2 Datasets
Fashion-MNIST [55]. Fashion-MNIST consists of a training set of 60k 28×28 grayscale images
and a test set of 10k images. The number of total labels is 10 classes. We split the 60k training set
images to 50k used to train the networks and 10k used only for validation.

CIFAR-10/100 [31]. CIFAR-10 and CIFAR-100 both consist of 60k 32×32 colour images with 10
and 100 classes, respectively. We use 10k of the 60k training images as the validation set. We use the
10k original test set for final evaluation.

Tiny ImageNet [34]. Tiny Imagenet has 200 classes and each class has 500 training, 50 validation
and 50 test colour images with 64×64 resolution. Since the original test labels are not available, we
split the 10k validation examples into 5k for testing and 5k for validation.
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ImageNet-16-120 [13] This variant of the ImageNet-16-120 [9] contains 151.7k train, 3k valida-
tion and 3k test ImageNet images downsampled to 16×16 and 120 classes.

Note that the test data points are only used for final evaluation. The data points for validation
are used by the NES algorithms and DeepEns + ES baselines during ensemble selection and by
DeepEns (RS) for picking the best architecture from the pool to use in the deep ensemble. Note that
when considering dataset shift for CIFAR-10, CIFAR-100 and Tiny ImageNet, we also apply two
disjoint sets of “corruptions” (following the terminology used by Hendrycks & Dietterich [26]) to the
validation and test sets. We never apply any corruption to the training data. More specifically, out of
the 19 different corruptions provided by Hendrycks & Dietterich [26], we randomly apply one from
{Speckle Noise, Gaussian Blur, Spatter, Saturate} to each data point in the validation set
and one from {Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Glass Blur,
Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast, Elastic Transform,
Pixelate, JPEG compression} to each data point in the test set. This choice of validation and
test corruptions follows the recommendation of Hendrycks & Dietterich [26]. Also, as mentioned
in Section 5, each of these corruptions has 5 severity levels, which yields 5 corresponding severity
levels for Dshift

val and Dshift
test .

B.3 Training Routine & Time
The macro-architecture we use has 16 initial channels and 8 cells (6 normal and 2 reduction) and was
trained using a batch size of 100 for 100 epochs for CIFAR-10/100 and 15 epochs for Fashion-MNIST.
For Tiny ImageNet, we used 36 initial channels and a batch size of 128 for 100 epochs. Training a
single network took roughly 40 minutes and 3 GPU hours4 for CIFAR-10/100 and Tiny ImageNet,
respectively. The networks are optimized using SGD with momentum set to 0.9. We used a learning
rate of 0.025 for CIFAR-10/100 and Fashion-MNIST, and 0.1 for Tiny ImageNet. Unlike DARTS,
we do not use any data augmentation procedure during training, nor any additional regularization
such as ScheduledDropPath [64] or auxiliary heads, except for the case of Tiny ImageNet, for which
we used ScheduledDropPath, gradient clipping and standard data augmentation as default in DARTS.
All other hyperparameter settings are exactly as in DARTS [39].

All results containing error bars are averaged over multiple runs (at least five) with error bars indicating
a 95% confidence interval. We used a budgetK = 400 for CIFAR-10/100 (corresponding to 267 GPU
hours). For Tiny ImageNet on the DARTS search space, unless otherwise stated, we used K = 200
(corresponding to 600 GPU hours). Note that only in Figure 7 and Table 30 we also tried NES
algorithms using a higher budget of K = 400 on Tiny ImageNet for an equal-cost comparison with
DeepEns + ES (RS). For ImageNet-16-120 on the NAS-Bench-201 search space, we used K = 1000
(compute costs are negligible since it is a tabular benchmark). Note that NES algorithms can be
parallelized, especially NES-RS which is embarrassingly parallel like deep ensembles, therefore
training time can be reduced easily when using multiple GPUs.

B.4 Implementation Details of NES-RE
Parallization. Running NES-RE on a single GPU requires evaluating hundreds of networks se-
quentially, which is tedious. To circumvent this, we distribute the “while |P| < K” loop in
Algorithm 1 over multiple GPUs, called worker nodes. We use the parallelism scheme provided by
the hpbandster [16] codebase.5 In brief, the master node keeps track of the population and history
(lines 1, 4-6, 8 in Algorithm 1), and it distributes the training of the networks to the individual worker
nodes (lines 2, 7 in Algorithm 1). In our experiments, we always use 20 worker nodes and evolve a
population p of size P = 50 when working over the DARTS search space. Over NAS-Bench-201,
we used one worker since it is a tabular NAS benchmark and hence is quick to evaluate on. During
iterations of evolution, we use an ensemble size of m = 10 to select parent candidates.

Mutations. We adapt the mutations used in RE to the DARTS search space. As in RE, we first pick
a normal or reduction cell at random to mutate and then sample one of the following mutations:

• identity: no mutation is applied to the cell.

• op mutation: sample one edge in the cell and replace its operation with another operation
sampled from the list of operations described in Appendix B.1.

4We used NVIDIA RTX 2080Ti GPUs for training.
5https://github.com/automl/HpBandSter
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• hidden state mutation: sample one intermediate node in the cell, then sample one of
its two incoming edges. Replace the input node of that edge with another sampled node,
without altering the edge’s operation.

For example, one possible mutation would be changing the operation on an edge in the cell (as shown
in e.g. Figure 16) from say 5× 5 separable convolution to 3× 3 max pooling. See Real et al. [48] for
further details and illustrations of these mutations. Note that for NAS-Bench-201, following Dong &
Yang [13] we only use op mutation.

Adaptation of NES-RE to dataset shifts. As described in Section 4.3, at each iteration of evolu-
tion, the validation set used in line 4 of Algorithm 1 is sampled uniformly between Dval and Dshift

val
when dealing with dataset shift. In this case, we use shift severity level 5 forDshift

val . Once the evolution
is complete and the pool P has been formed, then for each severity level s ∈ {0, 1, . . . , 5}, we apply
ForwardSelect with Dshift

val of severity s to select an ensemble from P (line 9 in Algorithm 1), which
is then evaluated on Dshift

test of severity s. (Here s = 0 corresponds to no shift.) This only applies to
CIFAR-10, CIFAR-100 and Tiny ImageNet, as we do not consider dataset shift for Fashion-MNIST
and ImageNet-16-120 .

B.5 Implementation details of anchored ensembles.
Anchored ensembles [47] are constructed by independently trainingM base learners, each regularized
towards a new initialization sample (called the anchor point). Specifically, the k-th base learner fθk
is trained to minimize the following loss (using the notation in Section 3.1):

1

N

N∑
i=1

`(fθk(xi), yi) +
λ

N
‖Γ1/2(θk −

◦
θk)‖22

where `(fθk(xi), yi) = − log [fθk(xi)]yi is the cross-entropy loss for the i-th datapoint. Moreover,

the anchor point
◦
θk is an independently sampled initialization, and λ is the regularization strength.

Defining p to be the number of parameters, i.e. θ ∈ Rp, and letting σ2
i be the variance of the

initialization for the i-th parameter (θk)i, Γ ∈ Rp×p is the diagonal matrix with Γii = 1/(2σ2
i ).

Although Pearce et al. [47] do not include a tune-able regularization parameter λ (they set λ = 1), we
found anchored ensembles performed poorly without tuning λ. For CIFAR-10/100, we used λ = 0.4
and for Tiny ImageNet, we used λ = 0.1 (tuned by grid search). We followed the recommendation
of Pearce et al. [47] in using a different initialization for optimization than the anchor point

◦
θk.

Moreover, we turned off weight decay when training anchored ensembles, and we did not apply
the regularization to the trainable parameters in batch normalization layers (which are initialized
deterministically).

C Additional Experiments
In this section we provide additional results for the experiments conducted in Section 5. Note that, as
with all results shown in Section 5, all evaluations are made on test data unless stated otherwise.

C.1 Supplementary plots complementing Section 5
C.1.1 Results on Fashion-MNIST

As shown in Figure 12, we see a similar trend on Fashion-MNIST as with other datasets: NES
ensembles outperform deep ensembles with NES-RE outperforming NES-RS. To understand why
NES algorithms outperform deep ensembles on Fashion-MNIST [55], we compare the average base
learner loss (Figure 13) and oracle ensemble loss (Figure 14) of NES-RS, NES-RE and DeepEns (RS).
Notice that, apart from the case when ensemble size M = 30, NES-RS and NES-RE find ensembles
with both stronger and more diverse base learners (smaller losses in Figures 13 and 14, respectively).
While it is expected that the oracle ensemble loss is smaller for NES-RS and NES-RE compared to
DeepEns (RS), it initially appears surprising that DeepEns (RS) has a larger average base learner
loss considering that the architecture for the deep ensemble is chosen to minimize the base learner
loss. We found that this is due to the loss having a sensitive dependence not only on the architecture
but also the initialization of the base learner networks. Therefore, re-training the best architecture
by validation loss to build the deep ensemble yields base learners with higher losses due to the
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Figure 12: Results on Fashion-MNIST with varying ensembles sizes M . Lines show the mean NLL
achieved by the ensembles with 95% confidence intervals.
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Figure 13: Average base learner loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST.
Lines show the mean NLL and 95% confidence intervals.
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Figure 14: Oracle ensemble loss for NES-RS, NES-RE and DeepEns (RS) on Fashion-MNIST. Lines
show the mean NLL and 95% confidence intervals.

use of different random initializations. Fortunately, NES algorithms are not affected by this, since
they simply select the ensemble’s base learners from the pool without having to re-train anything
which allows them to exploit good architectures as well as initializations. Note that, for CIFAR-10-C
experiments, this was not the case; base learner losses did not have as sensitive a dependence on the
initialization as they did on the architecture.

In Table 4, we compare the classification error and expected calibration error (ECE) of NES algorithms
with the deep ensembles baseline for various ensemble sizes on Fashion-MNIST. Similar to the loss,
NES algorithms also achieve smaller errors, while ECE remains approximately the same for all
methods.

C.1.2 Entropy on out-of-distribution inputs
To assess how well models respond to completely out-of-distribution (OOD) inputs (inputs which do
not belong to one of the classes the model can predict), we investigate the entropy of the predicted
probability distribution over the classes when the input is OOD. Higher entropy of the predicted
probabilities indicates more uncertainty in the model’s output. For CIFAR-10 on the DARTS search
space, we compare the entropy of the predictions made by NES ensembles with deep ensembles on
two types of OOD inputs: images from the SVHN dataset and Gaussian noise. In Figure 15, we
notice that NES ensembles indicate higher uncertainty when given inputs of Gaussian noise than
deep ensembles but behave similarly to deep ensembles for inputs from SVHN.

C.1.3 Additional Results on the DARTS search space
In this section, we provide additional experimental results on CIFAR-10, CIFAR-100 and Tiny
ImageNet on the DARTS search space, complementing the results in Section 5 as shown in Figures 17-
23. We also include examples of architectures chosen by NES-RE in Figure 16 for Tiny ImageNet,
showcasing variation in architectures.
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Table 4: Error and ECE of ensembles on Fashion-MNIST for different ensemble sizes M . Best values
and all values within 95% confidence interval are bold faced.

Classification Error (out of 1) Expected Calibration Error (ECE)

M NES-RS NES-RE DeepEns
(RS)

DeepEns
(DARTS)

DeepEns
(AmoebaNet) NES-RS NES-RE DeepEns

(RS)
DeepEns
(DARTS)

DeepEns
(AmoebaNet)

3 0.074±0.001 0.072±0.001 0.076±0.001 0.077 0.077 0.007±0.001 0.007±0.002 0.008±0.001 0.003 0.008
5 0.073±0.001 0.071±0.002 0.075±0.001 0.077 0.074 0.005±0.001 0.005±0.001 0.006±0.001 0.005 0.005
10 0.073±0.001 0.070±0.001 0.075±0.001 0.076 0.073 0.004±0.001 0.005±0.001 0.005±0.001 0.006 0.005
30 0.073±0.001 0.070±0.001 0.074±0.001 0.075 0.073 0.004±0.001 0.004±0.002 0.004±0.001 0.008 0.004
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Figure 15: Entropy of predicted probabilities when trained on CIFAR-10 in the DARTS search space.

Results on CIFAR for larger models. In additional to the results on CIFAR-10 and CIFAR-100
on the DARTS search space using the settings described in Appendix B.3, we also train larger models
(around 3M parameters) by scaling up the number of stacks cells and initial channels in the network.
We run NES and other baselines similarly as done before and plot results in Figure 27 and 28 for
NLL and classification test error with budget K = 90. As shown, NES algorithms tend to outperform
or be competitive with the baselines. Note, more runs are needed including error bars for conclusive
results in this case.
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Figure 16: Illustration of example cells found by NES-RE for an ensemble of size M = 3 on Tiny
ImageNet over the DARTS search space. In each sub-figure, left is the normal cell and right is the
reduction cell. Note that the first and third base learners have the same reduction cell in this instance.
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Figure 17: NLL vs. ensemble sizes on CIFAR-10, CIFAR-100 and Tiny ImageNet with varying
dataset shifts [26] over DARTS space.
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Figure 18: Classification error rate (between 0-1) vs. ensemble size on DARTS search space.
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Figure 19: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on CIFAR-10 over DARTS search space.
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Figure 20: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on CIFAR-100 over DARTS search space.
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Figure 21: Average base learner and oracle ensemble NLL across ensemble sizes and shift severities
on Tiny ImageNet over DARTS search space.
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Figure 22: Ensemble NLL vs. budget K. Ensemble size fixed at M = 10.
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Figure 23: Ensemble error vs. budget K. Ensemble size fixed at M = 10.
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Figure 24: NES and deep ensembles performance on the NAS-Bench-201 search space and CIFAR-10
dataset. Plots show ensemble NLL, average baselearner NLL and oracle ensemble NLL vs. budget
K. Ensemble size fixed at M = 3.
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(f) Data shift (severity 5)

Figure 25: CIFAR-100 analogous to Figure 24.
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Figure 26: Ensemble error vs. budget K on the NAS-Bench-201 space (CIFAR-10 and CIFAR-100).
Ensemble size fixed at M = 3.
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Figure 27: High fidelity NLL vs. budgetK on CIFAR-10 and CIFAR-100 with and without respective
dataset shifts over the DARTS search space. Ensemble size is fixed at M = 10.
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Figure 28: High fidelity classification error vs. budget K on CIFAR-10 and CIFAR-100 with and
without respective dataset shifts over the DARTS search space. Ensemble size is fixed at M = 10.
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Figure 29: Results on CIFAR-10 [26] with varying ensembles sizes M and shift severity. Lines show
the mean NLL achieved by the ensembles with 95% confidence intervals. See Appendix C.1.3 for the
definition of NES-RE-0.
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Tiny ImageNet

Method No dataset shift Dataset shift: severity 5

NLL Error (%) NLL Error (%)
DeepEns (DARTS) 1.59 39.08 3.75 71.58
DeepEns + ES (DARTS) 1.57 38.68 3.68 70.90
DeepEns (AmoebaNet) 1.55 38.46 3.76 71.72
DeepEns + ES (AmoebaNet) 1.54 38.12 3.70 71.68
DeepEns (RS) 1.51±0.00 37.46±0.27 3.60±0.03 70.48±0.38

DeepEns + ES (RS) 1.50 36.98 3.55 70.10
NES-RS (K = 200) 1.51±0.01 37.42±0.21 3.53±0.01 69.93±0.23

NES-RS (K = 400) 1.48±0.01 37.45±0.25 3.51±0.01 70.15±0.34

NES-RE (K = 200) 1.48±0.01 36.98±0.57 3.55±0.02 70.22±0.13

NES-RE (K = 400) 1.44±0.02 36.55±0.17 3.54±0.02 69.98±0.24

Figure 30: Comparison of NES to deep ensembles with ensemble selection over initializations over
the DARTS search space. LEFT: NLL vs ensemble size on CIFAR-10 (similar to ablation in Figure 7).
RIGHT: Test NLL and classification error NES vs. deep ensembles on Tiny ImageNet with ensemble
size M = 10.

C.1.4 Additional Results on the NAS-Bench-201 search space

In this section, we provide additional experimental results on CIFAR-10, CIFAR-100 and ImageNet-
16-120 on the NAS-Bench-201 search space, complementing the results in Section 5 as shown in
Figures 24-26.

C.2 Ablation study: NES-RE optimizing only on Dval

We also include a variant of NES-RE, called NES-RE-0, in Figure 29. NES-RE and NES-RE-0 are
the same, except that NES-RE-0 uses the validation set Dval without any shift during iterations of
evolution, as in line 4 of Algorithm 1. Following the discussion in Appendix B.4, recall that this is
unlike NES-RE, where we sample the validation set to be either Dval or Dshift

val at each iteration of
evolution. Therefore, NES-RE-0 evolves the population without taking into account dataset shift,
with Dshift

val only being used for the post-hoc ensemble selection step in line 9 of Algorithm 1.

As shown in the Figure 29, NES-RE-0 shows a minor improvement over NES-RE in terms of
loss for ensemble size M = 30 in the absence of dataset shift. This is in line with expectations,
because evolution in NES-RE-0 focuses on finding base learners which form strong ensembles for
in-distribution data. On the other hand, when there is dataset shift, the performance of NES-RE-0
ensembles degrades, yielding higher loss and error than both NES-RS and NES-RE. Nonetheless,
NES-RE-0 still manages to outperform the DeepEns baselines consistently. We draw two conclusions
on the basis of these results: (1) NES-RE-0 can be a competitive option in the absence of dataset shift.
(2) Sampling the validation set, as done in NES-RE, to be Dval or Dshift

val in line 4 of Algorithm 1 plays
an important role is returning a final pool P of base learners from which ForwardSelect can select
ensembles robust to dataset shift.

C.3 What if deep ensembles use ensemble selection over initializations?

We provide additional experimental results in this section for comparing NES to deep ensembles
with ensemble selection building on those shown in Figure 7 in Section 5. The table in Figure
30-right compares the methods with respect to classification error as well as loss at different dataset
shift severities. In the absence of any dataset shift, we find that NES-RE outperforms all baselines
with respect to both metrics, specially at the higher budget of K = 400 and NES-RS performs
competitively. At shift severity 5, NES algorithms also outperform the baselines, with NES-RS
performing slightly better than NES-RE. The plot in Figure 30-left shows similar results on CIFAR-10
over the DARTS search space for the same experiment as the one conducted on Tiny ImageNet and
shown in Figure 7.

C.4 Comparing NES to ensembles with other varying hyperparameters

Since varying the architecture in an ensemble improves predictive performance and uncertainty
estimation as demonstrated in Section 5, it is natural to ask what other hyperparameters should be
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Figure 31: Plots show NLL vs. ensemble sizes comparing NES to the baselines introduced in
Appendix C.4 on CIFAR-10 and CIFAR-100 with and without respective dataset shifts [26].

varied in an ensemble. It is also unclear which hyperparameters might be more important than others.
Note that concurrent work by Wenzel et al. [53] has shown that varying hyperparameters such as
L2 regularization strength, dropout rate and label smoothing parameter also improves upon deep
ensembles. While these questions lie outside the scope of our work and are left for future work, we
conduct preliminary experiments to address them.
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(a) Average base learner loss and oracle ensem-
ble loss for NES and the baselines introduced
in Appendix C.4 on CIFAR-10 and CIFAR-100.
Recall that small oracle ensemble loss generally
corresponds to higher diversity.

Dataset Shift
Severity

DARTS search space
DeepEns
(DARTS) HyperEns NES-RS

(depth, width) NES-RS NES-RE

C10
0 8.2 8.1 8.0 8.0 7.7
3 25.9 25.0 24.1 22.5 21.5
5 43.3 40.8 42.1 38.1 34.9

C100
0 28.8 28.1 28.8 28.4 28.4
3 54.0 52.7 53.1 48.9 48.5
5 68.4 67.2 67.9 61.3 60.7

(b) Classification errors comparing NES to the
baselines introduced in Appendix C.4 for differ-
ent shift severities and M = 10. Best values are
bold faced.

Figure 32: See Appendix C.4 for details.

In this section, we consider two additional baselines
working over the DARTS search space on CIFAR-
10/100:

1. HyperEns: Optimize a fixed architecture, train K
random initializations of it where the learning rate
and L2 regularization strength are also sampled
randomly and select the final ensemble of size M
from the pool using ForwardSelect. This is similar
to hyper ens from Wenzel et al. [53].

2. NES-RS (depth, width): As described in Appendix
B.1, NES navigates a complex (non-Euclidean)
search space of architectures by varying the cell,
which involves changing both the DAG structure of
the cell and the operations at each edge of the DAG.
We consider a baseline in which we keep the cell
fixed (the optimized DARTS cell) and only vary the
width and depth of the overall architecture. More
specifically, we vary the number of initial channels
∈ {12, 14, 16, 18, 20} (width) and the number of
layers ∈ {5, 8, 11} (depth). We apply NES-RS over
this substantially simpler search space of architec-
tures as usual: train K randomly sampled architec-
tures (i.e. sampling only depth and width) to form
a pool and select the ensemble from it.

The results shown in Figures 31 and Table 32b compare
the two baselines above to DeepEns (DARTS), NES-
RS and NES-RE.6 As shown in Figure 31, NES-RE
tends to outperform the baselines, though is at par with
HyperEns on CIFAR-100 without dataset shift (Fig-
ure 31a). Under the presence of dataset shift (Figures
31b and 31c), both NES algorithms substantially out-
perform all baselines. Note that both HyperEns and
NES-RS (depth, width) follow the same protocol as
NES-RS and NES-RE: ensemble selection uses a shifted validation dataset when evaluating on a

6Note that runs of DeepEns (DARTS), NES-RE and NES-RS differ slightly in this section relative to Section
5, as we tune the learning rate and L2 regularization strength for each dataset instead of using the defaults used
in Liu et al. [39]. This yields a fair comparison: HyperEns varies the learning rate and L2 regularization while
using a fixed, optimized architecture (DARTS), whereas NES varies the architecture while using fixed, optimized
learning rate and L2 regularization strength.
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shifted test dataset. In terms of classification error, the observations are similar as shown in Table
32b. Lastly, we view the diversity of the ensembles from the perspective of oracle ensemble loss in
Figure 32a. As in Section 5, results here also suggest that NES agorithms tend to find more diverse
ensembles despite having higher average base learner loss.

C.5 Sensitivity to the size of the validation dataset Dval and overfitting during ensemble
selection
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(a) Ensemble loss over the validation and test
datasets over time (i.e. with increasing budget
K). These curves being similar indicates no
overfitting to the validation dataset during en-
semble selection.
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(b) Test performance of NES algorithms with
varying validation data sizes. Each curve cor-
responds to one particular dataset shift severity
(0-5 with 0 being no shift), with more transparent
curves corresponding to higher shift severities.
The loss stays relatively constant even with 10×
fewer validation data samples, indicating NES is
not very sensitive to validation dataset size.

Figure 33: See Appendix C.5 for details.

In this section, we consider how sensitive the perfor-
mance of NES is to changes in the size of the validation
dataset Dval, and we discuss why overfitting to Dval
is not a concern in our experiments. Recall that Dval
is used by NES algorithms during ensemble selection
from the pool of base learners as outlined in Algo-
rithm 3, and we useDval orDshift

val depending on whether
dataset shift is expected at test time as described in Sec-
tion 4.3. Over the DARTS search space for CIFAR-100
and Tiny ImageNet, we measure the test loss of NES as
a function of different validation dataset sizes. Specif-
ically, we measure test loss of the ensembles selected
using validation datasets of different sizes (with as few
as 10 validation samples). Figure 33b shows this for
different levels of dataset shift severity. The results
indicate that NES is insensitive to the validation set
size, achieving almost the same loss when using 10×
fewer validation data.

NES also did not overfit to the validation data in our
experiments. This can be seen in Figure 33a for CIFAR-
100 over the DARTS search space, which shows that
both the test and validation losses decrease over time
(i.e. as the pool size K increases). This finding is con-
sistent across datasets and search spaces in our exper-
iments. We also remark that overfitting is unexpected,
because ensemble selection “fits a small number of pa-
rameters” since it only selects which base learners are
added to the ensemble.

C.6 Re-training
the selected architectures on Dtrain +Dval

Figure 34: Re-training
the selection architec-
tures on Dtrain +Dval.

In practice, one might choose to re-trained the selected architectures from
NES on the Dtrain +Dval to make maximal use of the data available. We
re-trained the ensembles constructed by NES and the best performing
deep ensemble baseline, DeepEns (DARTS), on Dtrain + Dval, finding
that both ensembles improve since the base learners improve due to more
training data (see Figure 34). Note that, as shown in Appendix C.5,
the performance of ensemble selection (which uses Dval) is relatively
insensitive to the size ofDval. Therefore, one way to bypass the additional
cost of having to re-train the ensembles on Dtrain +Dval is to simply pick
a very small Dval, such that the performance of the models when trained
on Dtrain +Dval is approximately the same as when trained on Dtrain.

C.7 Averaging logits vs. averaging probabilities in an ensemble

In Figure 35, we explore whether ensembles should be constructed by averaging probabilities (i.e.
post-softmax) as done in our work or by averaging the logits (i.e. pre-softmax). We find that while
classification error of the resulting ensembles is similar, ensembles with averaged probabilities
perform notably better in terms of uncertainty estimation (NLL) and are better calibrated as well
(ECE).
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Figure 35: See Appendix C.7 for details.

2 4 6 8 10 12 14
Ensemble size (M)

0.30

0.32

0.34

0.36

0.38

En
se

m
bl

e 
NL

L

NES-RS (ForwardSelect)
NES-RS (Top M)
NES-RS (Quick and greedy)
NES-RS (ForwardSelect w/ repl.)
NES-RS (Unweighted stacking)
NES-RS (Weighted stacking)

2 4 6 8 10 12 14
Ensemble size (M)

0.28

0.30

0.32

0.34

0.36

0.38
En

se
m

bl
e 

NL
L

NES-RE (ForwardSelect)
NES-RE (Top M)
NES-RE (Quick and greedy)
NES-RE (ForwardSelect w/ repl.)
NES-RE (Unweighted stacking)
NES-RE (Weighted stacking)

(a) LEFT: NES-RS. RIGHT: NES-RE.
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(b) LEFT: NES-RS. RIGHT: NES-RE.

Figure 36: ForwardSelect compared to other ensemble selection algorithms. Experiments were
conducted on CIFAR-10 over the DARTS search space. See Appendix C.8 for details.

C.8 Comparison of ensemble selection algorithms

In Figure 9a, we compare the performance of NES for different choices of the ensemble selec-
tion algorithm (ESA) used in stage 2 (ensemble selection from pool). In addition to our default
ForwardSelect without replacement, we experiment with the following seven choices:

• TopM: selects the top M (ensemble size) models by validation performance.
• QuickAndGreedy: Starting with the best network by validation performance, add the next best

network to the ensemble only if it improves validation performance, iterating until the ensemble
size is M or all models have been considered (returning an ensemble of size at most M).

• ForwardSelect with replacement: ForwardSelect but with replacement which allows repetitions
of base learners.

• Stacking (Weighted): Linearly combines all base learners in the pool with learned stacking weights
(which are positive and sum to 1). Then keeps only the base learners with the M largest stacking
weights and weights them using the renormalized learned stacking weights.

• Stacking (Unweighted): Linearly combines all base learners in the pool with learned stacking
weights (which are positive and sum to 1). Then keeps only the base learners with the M largest
stacking weights and combines them by a simple, unweighted average.

• ForwardSelect with Bayesian model averaging by likelihood: Selects the base learners in the
ensemble using ForwardSelect and then takes an average weighted by the (normalized) validation
likelihoods of the base learners.

• ForwardSelect with Bayesian model averaging by accuracy: Selects the base learners in the
ensemble using ForwardSelect and then takes an average weighted by the (normalized) validation
accuracies of the base learners.

In Figure 36 we provide additional results including the one in Figure 9a. From the plots we can
observe that:

• ForwardSelect performs better than or at par with all ESAs considered here.
• Stacking tends to perform competitively but still worse than ForwardSelect, and whether weighted

averaging is used or not has a very minor impact on performance, since the learned weights tend to
be close to uniform.
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• Bayesian model averaging (BMA) also has a very minor impact (almost invisible in the plots in
Figure 36b), because the likelihoods and accuracies of individual base learners are very similar (a
consequence of multi-modal loss landscapes in neural networks with different models achieving
similar losses) hence the BMA weights are close to uniform. The NLL achieved by the BMA
ensemble only differed at the 4th or 5th decimal places compared to unweighted ensembles with
the same base learners.
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Figure 37: Ensemble selection with explicit diversity regu-
larization. Experiments were conducted on CIFAR-10 over
the DARTS search space.

Lastly, we assess the impact of explic-
itly regularizing for diversity during
ensemble selection as follows: we use
ForwardSelect as before but instead
use it to minimize the objective “val-
idation loss - diversity strength × di-
versity” where diversity is defined as
the average (across base learners and
data points) L2 distance between a
base learner’s predicted class proba-
bilities and the ensemble’s predicted
class probabilities. The plots below
show the results for different choices
of the “diversity strength” hyperpa-
rameter. In summary, if appropriately
tuned, ForwardSelect with diversity performs slightly better than usual ForwardSelect for NES-RS,
though for NES-RE, the diversity term seems to harm performance as shown in Figure 37-right.

C.9 Generating the architecture pool using weight-sharing NAS algorithms

Figure 38: Comparison of NES-RS-WS and NES-RS-
DARTS with the other baselines and NES-RS and NES-RE.
The plots show the NLL vs. ensemble sizes on CIFAR-10
with and without dataset shifts over the DARTS search space.
Mean NLL shown with 95 confidence intervals.

In order to accelerate the NES
search phase, we generated the pool
using the weight sharing schemes
proposed by Random Search with
Weight Sharing [37] and DARTS [39].
Specifically, we trained one-shot
weight-sharing models using each of
these two algorithms, then we sam-
pled architectures from the weight-
shared models uniformly at random
to build the pool. Next, we ran
ForwardSelect as usual to select en-
sembles from these pools. Finally, we
retrained the selected base learners
from scratch using the same training
pipeline as NES and the deep ensem-
ble baselines. In Figure 38, we refer to
the results of these methods as NES-
RS-WS and NES-RS-DARTS, respectively. As we can see, their performance is worse than NES-RS
and NES-RE, even though the computation cost is reduced significantly. This is likely due to the low
correlation between the performance of the architectures when evaluated using the shared weights
and the performance when re-trained in isolation. Prior work has shown this is caused by weight
interference and co-adaptation which occurs during the weight-sharing model training [58, 59].
Nonetheless, we believe this is a promising avenue for future research requiring more development,
as it substantially reduces the cost of exploring the search space.
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D NAS Best Practice Checklist

Our experimental setup resembles that of NAS papers, therefore, to foster reproducibility, we now
describe how we addressed the individual points of the NAS best practice checklist by Lindauer &
Hutter [38].

1. Best Practices for Releasing Code

For all experiments you report:
(a) Did you release code for the training pipeline used to evaluate the final architectures?

[Yes] Code for our experiments, including NES and baselines, is open-source.
(b) Did you release code for the search space? [Yes]
(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as

random seeds? [Yes]
(d) Did you release code for your NAS method? [Yes]
(e) Did you release hyperparameters for your NAS method, as well as random seeds? [Yes]

2. Best practices for comparing NAS methods
(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,

including the same dataset (with the same training-test split), search space and code for
training the architectures and hyperparameters for that code? [Yes] All base learners
follow the same training routine and use architectures from the same search space.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? [Yes]

(c) Did you run ablation studies? [Yes] See Section 5.2 and Appendices C.2, C.3, C.4, C.5,
C.6, C.7, C.8, C.9.

(d) Did you use the same evaluation protocol for the methods being compared? [Yes]
(e) Did you compare performance over time? [Yes] As shown in all figures with K (which

is proportional to training time) on the x-axis.
(f) Did you compare to random search? [Yes]
(g) Did you perform multiple runs of your experiments and report seeds? [Yes] We ran

NES with multiple seeds and averaged over them in Section 5.
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We

performed experiments over the tabular NAS-Bench-201 search space, including an in-
depth evaluation of NES by comparing it to the deep ensemble of the best architecture
in the search space.

3. Best practices for reporting important details
(a) Did you report how you tuned hyperparameters, and what time and resources this

required? [Yes] We relied on default hyperparameter choices from Liu et al. [39] as
described in Appendix B.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? [Yes] See Figure 7 and Appendix B.3.

(c) Did you report all the details of your experimental setup? [Yes]
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