
A Missing Proofs

We provide the complete proofs of the theorems stated in the main paper. We defer the proofs of the
technical results to Appendix B.

A.1 Proof of Theorem 4.1

Theorem 4.1. For any policy π, heuristic f : S → R, and mixing coefficient λ ∈ [0, 1],

V ∗(d0)− V π(d0) = Regret(h, λ, π) + Bias(h, λ, π)

where we define

Regret(h, λ, π) := λ
(
Ṽ ∗(d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
Ṽ ∗(dπ)− Ṽ π(dπ)

)
(3)

Bias(h, λ, π) :=
(
V ∗(d0)− Ṽ ∗(d0)

)
+
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a

[
h(s′)− Ṽ ∗(s′)

]
(4)

Furthermore, ∀b ∈ R, Bias(h, λ, π) = Bias(h+ b, λ, π) and Regret(h, λ, π) = Regret(h+ b, λ, π).

First we prove the equality using a new performance difference lemma that we will prove in Ap-
pendix B. This result may be of independent interest.

Lemma A.1 (General Performance Difference Lemma). Consider the reshaped MDP M̃ defined by
some f : S → R and λ ∈ [0, 1]. For any policy π, any state distribution d0 and any V : S → R, it
holds that

V (d0)− V π(d0) =
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a [h(s′)− V (s′)]

+ λ
(
V (d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
V (dπ)− Ṽ π(dπ)

)
Now take V as Ṽ ∗ in the equality above. Then we can write

V ∗(d0)− V π(d0) =
(
V ∗(d0)− Ṽ ∗(d0)

)
+
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a

[
h(s′)− Ṽ ∗(s′)

]
+ λ

(
Ṽ ∗(d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
Ṽ ∗(dπ)− Ṽ π(dπ)

)
which is the regret-bias decomposition.

Next we prove that these two terms are independent of constant offsets. For the regret term, this is
obvious because shifting the heuristic by a constant would merely shift the reward by a constant. For
the bias term, we prove the invariance below.

Proposition A.1. Bias(h, λ, π) = Bias(h+ b, λ, π) for any b ∈ R.

Proof. Notice that any b ∈ R and π, Ṽ π(s; f + b)− Ṽ π(s; f) =
∑∞
t=0(λγ)t(1− λ)γb = (1−λ)γ

1−λγ b.
Therefore, we can derive

Bias(h+ b, λ, π)− Bias(h, λ, π) = − (1− λ)γ

1− γλ
b+

γ(1− λ)

1− γ
Es,a∼dπEs′|s,a

[
b− (1− λ)γ

1− γλ
b

]
=
γ(1− λ)

1− γ
b−

(
1 +

γ(1− λ)

1− γ

)
(1− λ)γ

1− γλ
b

Since(
1 +

γ(1− λ)

1− γ

)
(1− λ)γ

1− γλ
b =

1− γ + γ(1− λ)

1− γ
(1− λ)γ

1− γλ
b =

1− γλ
1− γ

(1− λ)γ

1− γλ
b =

(1− λ)γ

1− γ
b

we have Bias(h+ b, λ, π)− Bias(h, λ, π) = 0. �
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A.2 Proof of Proposition 4.1

Proposition 4.1. For any policy π, heuristic f : S → R and mixing coefficient λ ∈ [0, 1],

Regret(h, λ, π) = −Eρπ(d0)
[∑∞

t=0 γ
tÃ∗(st, at)

]
where ρπ(d0) denotes the trajectory distribution of running π from d0, and Ã∗(s, a) = r̃(s, a) +

γ̃Es′|s,a[Ṽ ∗(s′)]− Ṽ ∗(s) ≤ 0 is the action gap with respect to the optimal policy π̃∗ of M̃.

Define the Bellman backup for the reshaped MDP:

(B̃V )(s, a) := r̃(s, a) + γ̃Es′|s,a[V (s′)]

Then by Lemma B.6 in Appendix B, we can rewrite the regret as

λ
(
Ṽ ∗(d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
Ṽ ∗(dπ)− Ṽ π(dπ)

)
= Eρπ(d0)

[ ∞∑
t=0

γt
(
Ṽ ∗(st)− (B̃Ṽ ∗)(st, at)

)]

Notice the equivalence Ṽ ∗(s)− (B̃Ṽ ∗)(s, a) = −Ã∗(s, a). This concludes the proof.

A.3 Proof of Proposition 4.2

Proposition 4.2. Reshaping the MDP as in (1) preserves the following characteristics: 1) If
h(s) ∈ [0, 1

1−γ ], then Ṽ π(s) ∈ [0, 1
1−γ ] for all π and s ∈ S. 2) If M̃ is a linear MDP with

feature vector φ(s, a) (i.e. r(s, a) and Es′|s,a[g(s′)] for any g can be linearly parametrized in
φ(s, a)), then M̃ is also a linear MDP with feature vector φ(s, a).

For the first statement, notice r̃(s, a) ∈ [0, 1 + (1−λ)γ
1−γ ]. Therefore, we have Ṽ π(s) ≥ 0 as well as

Ṽ π(s) ≤ 1

1− λγ

(
1 +

(1− λ)γ

1− γ

)
=

1

1− λγ
1− γ + (1− λ)γ

1− γ
=

1

1− γ

For the second statement, we just need to show the reshaped reward r̃(s, a) is linear in φ(s, a). This
is straightforward because Es′|s,a[h(s′)] is linear in φ(s, a).

A.4 Proof of Corollary 4.1

Corollary 4.1. If infb∈R ‖h+ b− V ∗‖∞ ≤ ε, then Bias(h, λ, π) ≤ (1−λγ)2
(1−γ)2 ε.

By Theorem 4.1, we know that Bias(h, λ, π) = Bias(h+b, λ, π) for any b ∈ R. Now consider b∗ ∈ R
such that ‖h+ b∗−V ∗‖∞ ≤ ε. Then by Lemma B.5, we have also ‖h+ b∗− Ṽ π∗‖∞ ≤ ε+ (1−λ)γε

1−λγ .

Therefore, by Proposition 4.3, we can derive with definition of the bias,

Bias(h, λ, π) = Bias(h+ b∗, λ, π)

≤ (1− λ)γ
(
C(π∗, V ∗ − h− b∗, λγ) + C(π, h+ b∗ − Ṽ ∗, γ)

)
≤ (1− λ)γ

(
C(π∗, V ∗ − h− b∗, λγ) + C(π, h+ b∗ − Ṽ π

∗
, γ)
)

≤ (1− λ)γ

(
ε

1− λγ
+

1

1− γ
(ε+

(1− λ)γε

1− λγ
)

)
≤ (1− λ)γ

(
ε

1− γ
+

1

1− γ
(ε+

(1− λ)γε

1− γ
)

)
=

2(1− λ)γε

1− γ
+

(1− λ)2γ2ε

(1− γ)2
≤ (1− λγ)2

(1− γ)2
ε
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A.5 Proof of Proposition 4.3

Proposition 4.3. For g : S → R and η ∈ [0, 1], define C(π, g, η) := Eρπ(d0)
[∑∞

t=1 η
t−1g(st)

]
.

Then Bias(h, λ, π) ≤ (1− λ)γ(C(π∗, V ∗ − h, λγ) + C(π, h− Ṽ ∗, γ)).

Recall the definition of bias:

Bias(h, λ, π) =
(
V ∗(d0)− Ṽ ∗(d0)

)
+
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a

[
h(s′)− Ṽ ∗(s′)

]
For the first term, we can derive by performance difference lemma (Lemma B.1) and Lemma B.4

V ∗(d0)− Ṽ ∗(d0) ≤ V ∗(d0)− Ṽ π
∗
(d0)

= (1− λ)γEρπ∗ (d0)

[ ∞∑
t=1

(λγ)t−1(V ∗(st)− h(st))

]
= (1− λ)γC(π, V ∗ − f, λγ)

For the second term, we can rewrite it as

γ(1− λ)

1− γ
Es,a∼dπEs′|s,a

[
h(s′)− Ṽ ∗(s′)

]
= γ(1− λ)Eρπ(d0)

[ ∞∑
t=1

γt−1(h(st)− Ṽ ∗(st))

]
= (1− λ)γC(π∗, f − Ṽ ∗, γ)

A.6 Proof of Proposition 4.4

Proposition 4.4. If h is improvable with respect toM, then Ṽ ∗(s) ≥ h(s), for all λ ∈ [0, 1].

Let dπt (s; s0) denote the state distribution at the tth step after running π starting from s0 ∈ S inM
(i.e. dπ0 (s; s0) = 1{s = s0}). Define the mixture

d̃πs0(s) := (1− γ̃)

∞∑
t=0

γ̃tdπt (s; s0) (5)

where we recall the new discount γ̃ = γλ By performance difference lemma (Lemma B.1), we can
write for any policy π and any s0 ∈

Ṽ π(s0)− h(s0) =
1

1− λγ
Ed̃πs0

[(B̃h)(s, a)− h(s)]

Notice that

(B̃h)(s, a) = r̃(s, a) + γ̃Es′|s,a[h(s′)]

= r(s, a) + (1− λ)γEs′|s,a[h(s′)] + λγEs′|s,a[h(s′)]

= r(s, a) + γEs′|s,a[h(s′)] = (Bh)(s, a)

Let π denote the greedy policy of arg maxa(Bh)(s, a). Then we have, by the improvability assump-
tion we have (Bh)(s, π)− h(s) ≥ 0 and therefore,

Ṽ ∗(s0) ≥ Ṽ π(s0) = h(s0) +
1

1− λγ
Ed̃πs0

[(B̃h)(s, a)− h(s)]

= h(s0) +
1

1− λγ
Ed̃πs0

[(Bh)(s, a)− h(s)]

≥ h(s0)

Since s0 is arbitrary above, we have the desired statement.

A.7 Proof of Proposition 4.5

Proposition 4.5. Suppose h(s) = Q(s, π′) for some policy π′ and function Q : S × A → R such
that Q(s, a) ≤ (Bh)(s, a), ∀s ∈ S, a ∈ A. Then h is improvable and f(s) ≤ V π′(s) for all s ∈ S.
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The proof is straightforward: We have maxa(Bh)(s, a) ≥ (Bh)(s, π) ≥ Q(s, π) = h(s), which
is the definition of h being improvable. For the argument of uniform lower bound, we chain the
assumption Q(s, a) ≤ (Bh)(s, a):

h(s) = Q(s, π′) = r(s, π′) + γEs′|s,π′ [h(s′)]

≤ r(s, π′) + γ
(
r(s′, π′),+γEs′′|s′,π′ [h(s′′)]

)
≤ V π

′
(s)

B Technical Lemmas

B.1 Lemmas of Performance Difference

Here we prove a general performance difference for the λ-weighting used in the reshaped MDPs.

Lemma A.1 (General Performance Difference Lemma). Consider the reshaped MDP M̃ defined by
some f : S → R and λ ∈ [0, 1]. For any policy π, any state distribution d0 and any V : S → R, it
holds that

V (d0)− V π(d0) =
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a [h(s′)− V (s′)]

+ λ
(
V (d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
V (dπ)− Ṽ π(dπ)

)
Our new lemma includes the two below performance difference lemmas in the literature as special
cases. Lemma B.2 can be obtained by setting V = f ; Lemma B.1 can be obtained by further
setting λ = 0 (that is, Lemma B.1 is a special case of Lemma B.2 with λ = 0; and Lemma A.1
generalizes both). The proofs of these existing performance difference lemmas do not depend on the
new generalization in Lemma A.1, please refer to [17, 55] for details.
Lemma B.1 (Performance Difference Lemma [17, 55] ). For any policy π, any state distribution d0
and any V : S → R, it holds that

V (d0)− V π(d0) =
1

1− γ
Edπ [V (s)− (BV )(s, a)]

Lemma B.2 (λ-weighted Performance Difference Lemma [17]). For any policy π, λ ∈ [0, 1], and
f : S → R, it holds that

f(d0)− V π(d0) = λ
(
f(d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
f(dπ)− Ṽ π(dπ)

)
B.1.1 Proof of Lemma A.1

First, we use the standard performance difference lemma (Lemma B.1) in the original MDP and
Lemma B.3 for the first and the last steps below,

V (d0)− V π(d0) =
1

1− γ
Edπ [V (s)− (BV )(s, a)]

=
1

1− γ
Edπ

[
(B̃V )(s, a)− (BV )(s, a)

]
+

1

1− γ
Edπ

[
V (s)− (B̃V )(s, a)

]
=
γ(1− λ)

1− γ
Es,a∼dπEs′|s,a [h(s′)− V (s′)] +

1

1− γ
Es,a∼dπ

[
V (s)− (B̃V )(s, a)

]
Finally, substituting the equality in Lemma B.6 into the above equality concludes the proof.

B.2 Properties of reshaped MDP

The first lemma is the difference of Bellman backups.
Lemma B.3. For any V : S → R,

(BV )(s, a)− (B̃V )(s, a) = (1− λ)γEs′|s,a[V (s′)− h(s′)]
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Proof. The proof follows from the definition of the reshaped MDP:

(BV )(s, a)− (B̃V )(s, a)

= r(s, a) + γEs′|s,a[V (s′)]− r(s, a)− (1− λ)γEs′|s,a[h(s′)]− γλEs′|s,a[V (s′)]

= (1− λ)γEs′|s,a[V (s′)− h(s′)]

�

This lemma characterizes, for a policy, the difference in returns.

Lemma B.4. For any policy π and h : S → R,

V π(s)− Ṽ π(s) = (1− λ)γEρπ(s)

[ ∞∑
t=1

(λγ)t−1(V π(st)− h(st))

]

Proof. The proof is based on performance difference lemma (Lemma B.1) applied in the reshaped
MDP and Lemma B.3. Recall the definition d̃πs0(s) in (5) and define d̃πs0(s, a) = d̃πs0(s)π(a|s). For
any s0 ∈ S,

V π(s0)− Ṽ π(s0) =
1

1− γλ
Es,a∼d̃πs0

[V π(s)− B̃V π(s, a)]

=
1

1− γλ
Es,a∼d̃πs0

[(BV π)(s, a)− (B̃V π)(s, a)]

=
(1− λ)γ

1− γλ
Es,a∼d̃πs0

Es′|s,a[V π(s′)− h(s′)]

Finally, substituting the definition of d̃πs0 finishes the proof. �

A consequent lemma shows that h and Ṽ π are close, when h and V π are.

Lemma B.5. For a policy π, suppose −εl ≤ h(s)− V π(s) ≤ εu. It holds

−εl −
(1− λ)γεu

1− λγ
≤ h(s)− Ṽ π(s) ≤ εu +

(1− λ)γεl
1− λγ

Proof. We prove the upper bound by Lemma B.4; the lower bound can be shown by symmetry.

h(s)− Ṽ π(s) ≤ εu + V π(s)− Ṽ π(s)

= εu + (1− λ)γEρπ(s)

[ ∞∑
t=1

(λγ)t−1(V π(st)− h(st))

]

≤ εu +
(1− λ)γεl

1− λγ

�

The next lemma relates online Bellman error to value gaps.

Lemma B.6. For any π and V : S → R,

1

1− γ

(
Edπ

[
V (s)− (B̃V )(s, a)

])
= λ

(
V (d0)− Ṽ π(d0)

)
+

1− λ
1− γ

(
V (dπ)− Ṽ π(dπ)

)
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Proof. We use Lemma B.3 in the third step below.

Edπ
[
V (s)− (B̃V )(s, a)

]
= Edπ

[
V (s)− (B̃Ṽ π)(s, a)

]
+ Edπ

[
B̃Ṽ π(s, a)− (B̃V )(s, a)

]
= Edπ

[
V (s)− Ṽ π(s)

]
+ Edπ

[
(B̃Ṽ π)(s, a)− (B̃V )(s)

]
= Edπ

[
V (s)− Ṽ π(s)

]
− λγEs,a∼dπEs′|s,a

[
Ṽ π(s′)− V (s′)

]
= (1− γ)Eρπ(d0)

[ ∞∑
t=0

γt(V (st)− Ṽ π(st))− λγt+1(Ṽ π(st+1)− V (st+1))

]

= (1− γ)λ(V (d0)− Ṽ π(d0)) + (1− γ)(1− λ)Eρπ(d0)

[ ∞∑
t=0

γt(V (st)− Ṽ π(st))

]
�

C Experiments

C.1 Details of the MuJoCo Experiments

We consider four dense reward MuJoCo environments (Hopper-v2, HalfCheetah-v2, Humanoid-v2,
and Swimmer-v2) and a sparse reward version of Reacher-v2.

In the sparse reward Reacher-v2, the agent receives a reward of 0 at the goal state (defined as
‖g(s)− e(s)‖ ≤ 0.01 and −1 elsewhere, where g(s) and e(s) denote the goal state and the robot’s
end-effector positions, respectively. We designed a heuristic h(s) = r(s, a)− 100‖e(s)− g(s)‖, as
this is a goal reaching task. Here the policy is randomly initialized, as no prior batch data is available
before interactions.

In the dense reward experiments, we suppose that a batch of data collected by multiple behavioral
policies are available before learning, and a heuristic is constructed by an offline policy evaluation
algorithm from the batch data; in the experiments, we generated these behavioral policies by running
SAC from scratch and saved the intermediate policies generated in training. We designed this
heuristic generation experiment to simulate the typical scenario where offline data collected by
multiple policies of various qualities is available before learning. In this case, a common method for
inferring what values a good policy could get is to inspect the realized accumulated rewards in the
dataset. For simplicity, we use basic Monte Carlo regression to construct heuristics, where a least
squares regression problem was used to fit a fully connected neural network to predict the empirical
returns on the trajectories in the sampled batch of data.

Specifically, for each dense reward Mujoco experiment, we ran SAC for 200 iterations and logged
the intermediate policies for every 4 iterations, resulting in a total of 50 behavior policies. In each
random seed of the experiment, we performed the following: We used each behavior policy to collect
trajectories of at most 10,000 transition tuples, which gave about 500,000 offline data points over
these 50 policies. These data were used to construct the Monte-Carlo regression data, which was done
by computing the accumulated discounted rewards along sampled trajectories. Then we generated
the heuristic used in the experiment by fitting a fully connected NN with (256,256)-hidden layers
using default ADAM with step size 0.001 and minibatch size 128 for 30 epochs over this randomly
generated dataset of 50 behavior policies.

For the dense reward Mujoco experiments, we also use behavior cloning (BC) with `2 loss to warm
start RL agents based on the same batch dataset of 500,000 offline data points. The base RL algorithm
here is SAC, which is based on the standard implementation of Garage (MIT License) [37]. The
policy and the value networks are fully connected neural networks, independent of each other. The
policy is Tanh-Gaussian and the value network has a linear head.

Algorithms. We compare the performance of different algorithms below. 1) BC 2) SAC 3) SAC
with BC warm start (SAC w/ BC) 4) HuRL with a zero heuristic and BC warm start (HuRL-zero)
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5) HuRL with the Monte-Carlo heuristic and BC warm start (HuRL-MC). For the HuRL algorithms,
the mixing coefficient λn is scheduled as

λn = λ0 + (1− λ0) tanh

(
n− 1

αN − 1
× arctan(0.99)

)
/0.99

=: λ0 + (1− λ0)cω tanh(ω(n− 1))

for n = 1, . . . , N , where λ0 ∈ [0, 1] is the initial λ and α > 0 controls the increasing rate. This
schedule ensures that λN = 1 when α = 1. Increasing α from 1 makes λn converge to 1 slower.

We chose these algorithms to illustrate the effect of each additional warm-start component (BC and
heuristics) added on top of the base algorithm SAC. HuRL-zero is SAC w/ BC but with an extra
λ schedule described above that further lowers the discount, whereas SAC and SAC w/ BC keep a
constant discount factor.

Evaluation and Hyperparameters. In each iteration, the RL agent has a fixed sample budget for
environment interactions, and its performance is measured in terms of the undiscounted accumulated
rewards (estimated by 10 rollouts) of the deterministic mean policy extracted from SAC. The
hyperparameters used in the algorithms above were selected as follows. The selection was done by
uniformly random grid search7 over the range of hyperparameters in Table 1 to maximize the AUC of
the training curve.

Polcy step size [0.00025, 0.0005, 0.001, 0.002]
Value step size [0.00025, 0.0005, 0.001, 0.002]
Target step size [0.005, 0.01, 0.02, 0.04]

γ [0.9, 0.99, 0.999]
λ0 [0.90, 0.95, 0.98, 0.99]
α [10−5, 1.0, 105]

Table 1: HuRL’s hyperparameter value grid for the MuJoCo experiments.

First, the learning rates (policy step size, value step size, target step size) and the discount factor of
the base RL algorithm, SAC, were tuned for each environment to maximize the performance. This
tuned discount factor is used as the de facto discount factor γ of the original MDPM. Fixing the
hyperparameters above, λ0 and α for the λ schedule of HuRL were tuned for each environment and
each heuristic. The tuned hyperparameters and the environment specifications are given in Tables 2
and 3 below. (The other hyperparameters, in addition to the ones tuned above, were selected manually
and fixed throughout all the experiments).

Finally, after all these hyperparameters were decided, we conducted additional testing runs with 30
different random seeds and report their statistics here. The randomness include the data collection
process of the behavioral policies, training the heuristics from batch data, BC, and online RL, but the
behavioral policies are fixed.

While this procedure takes more compute (the computation resources are reported below; tuning the
base SAC takes the most compute), it produces more reliable results without (luckily or unluckily)
using some hand-specified hyperparameters or a particular way of aggregating scores when tuning
hyperparameters across environments. Empirically, we also found using constant λ around 0.95 ∼
0.98 leads to good performance, though it may not be the best environment-specific choice.

Resources. Each run of the experiment was done using an Azure Standard_H8 machine (8 Intel
Xeon E5 2667 CPUs; memory 56 GB; base frequency 3.2 GHz; all cores peak frequency 3.3 GHz;
single core peak frequency 3.6 GHz). The Hopper-v2, HalfCheetah-v2, Swimmer-v2 experiments
took about an hour per run. The Humanoid-v2 experiments took about 4 hours. No GPU was used.

Extra Experiments with VAE-based Heuristics. We conduct additional experiments of HuRL
using a VAE-filtered pessimistic heuristic. This heuristic is essentially the same as the Monte-Carlo

7We ran 300 and 120 randomly chosen configurations from Table 1 with different random seeds to tune
the base algorithm and the λ-scheduler, respectively. Then the best configuration was used in the following
experiments.
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Environment Sparse-Reacher-v2
Obs. Dim 11

Action Dim 2
Evaluation horizon 500

γ 0.9
Batch Size 10000

Policy NN Architecture (64,64)
Value NN Architecture (256,256)

Polcy step size 0.00025
Value step size 0.00025
Target step size 0.02
Minibatch Size 128

Num. of Grad. Step per Iter. 1024
HuRL λ0 0.5

HuRL-MC α 105

Table 2: Sparse reward MuJoCo experiment configuration details. All the values other than λ-
scheduler’s (i.e. those used in SAC) are shared across different algorithms in the comparison. All
the neural networks here fully connected and have tanh activation; the numbers of hidden nodes are
documented above. Note that when α = 105, effectively λn = λ0 in the training iterations; when
α = 10−5, λn ≈ 1 throughout.

Environment Hopper-v2 HalfCheetah-v2 Swimmer-v2 Humanoid-v2
Obs. Dim 11 17 8 376

Action Dim 3 6 2 17
Evaluation horizon 1000 1000 1000 1000

γ 0.999 0.99 0.999 0.99
Batch Size 4000 4000 4000 10000

Policy NN Architecture (64,64) (64,64) (64,64) (256,256)
Value NN Architecture (256,256) (256,256) (256,256) (256,256)

Polcy step size 0.00025 0.00025 0.0005 0.002
Value step size 0.0005 0.0005 0.0005 0.00025
Target step size 0.02 0.04 0.0100 0.02

Num. of Behavioral Policies 50 50 50 50
Minibatch Size 128 128 128 128

Num. of Grad. Step per Iter. 1024 1024 1024 1024
HuRL-MC λ0 0.95 0.99 0.95 0.9
HuRL-MC α 105 105 1.0 1.0

HuRL-zero λ0 0.98 0.99 0.99 0.95
HuRL-zero α 10−5 105 1.0 10−5

Table 3: Dense reward MuJoCo experiment configuration details. All the values other than λ-
scheduler’s (i.e. those used in SAC) are shared across different algorithms in the comparison. All
the neural networks here fully connected and have tanh activation; the numbers of hidden nodes are
documented above. Note that when α = 105, effectively λn = λ0 in the training iterations; when
α = 10−5, λn ≈ 1 throughout.

regression-based heuristic we discussed, except that an extra VAE (variational auto-encoder) is
used to classify states into known and unknown states in view of the batch dataset, and then the
predicted values of unknown states are set to be the lowest empirical return seen in the dataset. In
implementation, this is done by training a state VAE (with a latent dimension of 32) to model the
states in the batch data, and then a new state classified as unknown if its VAE loss is higher than 99-th
percentile of the VAE losses seen on the batch data. The implementation and hyperparameters are
based on the code from Liu et al. [31]. We note, however, that this basic VAE-based heuristic does
not satisfy the assumption of Proposition 4.5.

These results are shown in Fig. 3, where HuRL-VAEMC denotes HuRL using this VAE-based
heuristic. Overall, we see that such a basic pessimistic estimate does not improve the performance
from the pure Monte-Carlo version (HuRL-MC); while it does improve the results slightly in
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HalfCheetah-v2, it gets worse results in Humanoid-v2 and Swimmer-v2 compared with HuRL-MC.
Nonetheless, HuRL-VAEMC is still better than the base SAC.

(a) Hopper-v2 (b) Humanoid-v2 (c) Swimmer-v2 (d) HalfCheetah-v2

Figure 3: Extra experimental results of different MuJoCo environments. The plots show the 25th, 50th, 75th
percentiles of each algorithm’s performance over 30 random seeds.

C.2 Procgen Experiments

In addition to MuJoCo environments, where the agent has direct access to the true low-dimensional
system state, we conducted experiments on the Procgen benchmark suite [33, 56]. The Procgen
suite consists of 16 procedurally generated Atari-like game environments, whose main conceptual
differences from MuJoCo environments are partial observability and much higher dimensionality of
agents’ observations (RGB images). The 16 games are very distinct structurally, but each game has
an unlimited number of levels8 that share common characteristics. All levels of a given game are
situated in the same underlying state space and have the same transition function but differ in terms of
the regions of the state space reachable within each level and in their observation spaces. We focus on
the sample efficiency Procgen mode [33]: in each RL episode the agent faces a new game level, and
is expected to eventually learn a single policy that performs well across all levels of the given game.

Besides the differences in environment characteristics between MuJoCo and Procgen, the Procgen
experiments are also dissimilar in their design:

• In contrast to the MuJoCo experiments, where we assumed to be given a batch of data from
which we constructed a heuristic and a warm-start policy, in the Procgen experiments we
simulate a scenario where we are given only the heuristic function itself. Thus, we don’t
warm-start the base algorithm with a BC policy when running HuRL.

• In the Procgen experiments, we share a single set of all hyperparameters’ values – those of
the base algorithm, those of HuRL’s λ-scheduling, and those used for generating heuristics –
across all 16 games. This is meant to simulate a scenario where HuRL is applied across a
diverse set of problems using good but problem-independent hyperparameters.

Algorithms. We used PPO [36] implemented in RLlib (Apache License 2.0) [57] as the base
algorithm. We generated a heuristic for each game as follows:

• We ran PPO for 8M environment interaction steps and saved the policy after every 500K
steps, for a total of 16 checkpoint policies.

• We ran the policies in a random order by executing 12000 environment interaction steps
using each policy. For each rollout trajectory, we computed the discounted return for each
observation in that trajectory, forming 〈observation, return〉 training pairs.

• We used this data to learn a heuristic via regression. We mixed the data, divided it into
batches of 5000 training pairs and took a gradient step w.r.t. MSE computed over each batch.
The learning rate was 10−4.

Our main algorithm, a HuRL flavor denoted as PPO-HuRL, is identical to the base PPO but uses the
Monte-Carlo heuristic computed as above.

8In Procgen, levels aren’t ordered by difficulty. They are merely game variations.

23



Hyperparameters and evaluation The base PPO’s hyperparameters in RLlib were chosen to
match PPO’s performance reported in the original Procgen paper [56] for the "easy" mode as closely
as possible across all 16 games (Cobbe et al. [56] used a different PPO implementation with a
different set of hyperparameters). As in that work, our agent used the IMPALA-CNN×4 network
architecture [56, 58] without the LSTM. The heuristics employed the same architecture as well. We
used a single set of hyperparameter values, listed in Table 4, for all Procgen games, both for policy
learning and for generating the checkpoints for computing the heuristics.

Impala layer sizes 16, 32, 32
Rollout fragment length 256

Number of workers 0 (in RLlib, this means 1 rollout worker)
Number of environments per worker 64

Number of CPUs per worker 5
Number of GPUs per worker 0

Number of training GPUs 1
γ 0.99

SGD minibatch size 2048
Train batch size 4000

Number of SGD iterations 3
SGD learning rate 0.0005

Framestacking off
Batch mode truncate_episodes

Value function clip parameter 10.0
Value function loss coefficient 0.5

Value function share layers true
KL coefficient 0.2

KL target 0.01
Entropy coefficient 0.01

Clip parameter 0.1
Gradient clip null
Soft horizon False

No done at end: False
Normalize actions False
Simple optimizer False

Clip rewards False
GAE λ 0.95

PPO-HuRL λ0 0.99
PPO-HuRL α 0.5

Table 4: Procgen experiment configuration details: RLlib PPO’s and HuRL’s hyperparameter values.
All the values were shared across all 16 Procgen games.

λ0 [0.95, 0.97, 0.985, 0.98, 0.99]
α [0.5, 0.75, 1.0, 3.0, 5.0]

Table 5: HuRL’s hyperparameter value grid for the Procgen experiments.

In order to choose values for PPO-HuRL’s hyperparameters α and λ0, we fixed all of PPO’s hyper-
parameters, took the pre-computed heuristic for each game, and did a grid search over α and λ0’s
values listed in Table 5 to maximize the normalized average AUC across all games. To evaluate
each hyperparameter value combination, we used 4 runs per game, each run using a random seed
and lasting 8M environment interaction steps. The resulting values are listed in Table 4. Like PPO’s
hyperparameters, they were kept fixed for all Procgen environments.

To obtain experimental results, we ran PPO and PPO-HuRL with the aforementioned hyperparameters
on each of 16 games 20 times, each run using a random seed and lasting 8M steps as in Mohanty
et al. [33]. We report the 25th, 50th, and 75th-percentile training curves. Each of the reported training
curves was computed by smoothing policy performance in terms of unnormalized game scores over
the preceding 100 episodes.
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Resources. Each policy learning run used a single Azure ND6s machine (6 Intel Xeon E5-2690
v4 CPUs with 112 GB memory and base core frequency of 2.6 GHz; 1 P40 GPU with 24 GB
memory). A single PPO run took approximately 1.5 hours on average. A single PPO-HuRL run took
approximately 1.75 hours.

Results. The results are shown in Fig. 4. They indicate that, HuRL helps despite the highly
challenging setup of this experiment: a) environments with a high-dimensional observation space;
a) the chosen hyperparameter values being likely suboptimal for individual environments; c) the
heuristics naively generated using Monte-Carlo samples from a mixture of policies of wildly varying
quality; and d) the lack of policy warm-starting. We hypothesize that PPO-HuRL’s performance can
be improved further with environment-specific hyperparameter tuning and a scheme for heuristic-
quality-dependent adjustment of HuRL’s λ-schedules on the fly.

Figure 4: PPO-HuRL’s results on Procgen games. PPO-HuRL yields gains on half of the games and performs
at par with PPO on most of the rest. Thus, on balance, PPO-HuRL helps despite the highly challenging setup of
this experiment, but tuning HuRL’s λ-schedule on the fly depending on the quality of the heuristic can potentially
make HuRL’s performance more robust in settings like this.
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