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Abstract

Accurate data on disease case counts over time
is essential for training reliable disease fore-
casting models. However, such data is often
locked in non-machine-readable formats, most
commonly as epidemic curve (epicurve) im-
ages—charts that depict case counts of a given
disease over time, for a given location. Dig-
itizing these charts would greatly expand the
data available for forecasting models, improving
their accuracy. Manual digitization, though, is
very time-consuming, and existing automated
methods struggle with real-world epicurves due
to dense datapoints, overlapping series, and var-
ied visual styles. To address this, we present
EpiCurveBench, a benchmark of 100 manu-
ally curated and annotated epicurve images
collected from diverse sources. The dataset
spans a wide range of chart styles, from sim-
ple to highly complex. We also introduce Epi-
Curve Similarity (ECS), a new evaluation met-
ric that captures the temporal structure of epi-
curves, handles series of varying lengths, and
remains stable in the presence of incomplete
data. Using this metric, we evaluate state-of-
the-art chart data extraction methods on Epi-
CurveBench and find substantial room for im-
provement, with the best model achieving an
ECS of only 42.9%. We release the dataset
and evaluation pipeline to accelerate progress
in epicurve extraction. More broadly, the dif-
ficulty of EpiCurveBench compared to existing
chart extraction benchmarks provides a rigor-
ous testbed for advancing chart data extraction
methods beyond disease forecasting.
Keywords: Dataset, Vision-Language Models,
Chart Data Extraction, Epidemiology

Data and Code Availability We collect openly
licensed epidemic curve images from the web and an-
notate them. All images, annotations, and metadata
are publicly available at https://huggingface.co/
datasets/tberkane/EpiCurveBench, and accompa-
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Figure 1: Sample images from EpiCurveBench. Parts
of the images, including axes, are truncated for space.

nying code is released at https://github.com/
tberkane/EpiCurveBench.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

Models that forecast disease case counts over time
can reduce disease burden (Brooks et al., 2015), but
require historical temporal case data, often sourced
from disease outbreak reports. Much of this data ex-
ists only as epidemic curve (epicurve) images—charts
showing case counts over time for a given disease in a
given location—and is thus effectively “locked away.”
Epicurves are commonly produced by health agen-
cies in regions experiencing endemicity or epidemics,
but their non—machine-readable format limits their
use for training forecasting models that guide out-
break response, surveillance, and resource allocation.
As a result, public health officials are often asked to
compile and format such data on demand—a burden-
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some, inefficient process—highlighting the need for
scalable methods to automatically extract and struc-
ture epicurve data.

Improved access to historical epicurve data could
directly strengthen epidemic forecasting models,
which rely on high-quality time-series data for train-
ing and calibration. Unlocking data currently
trapped in image form could help enable earlier detec-
tion of outbreak trends, better situational awareness,
and more informed public-health decision making.

Currently, manual tools like WebPlotDigitizer (Ro-
hatgi) are used to digitize epicurves, but extracting
data from a single complex image can take hours.
Automated chart data extraction aims to recover
the underlying numerical data from chart images.
Early methods relied on traditional computer vision
and optical character recognition (Farahani et al.,
2023). Recently, large vision-language models have
achieved stronger performance (Han et al., 2023; Xia
et al., 2025). However, these models still strug-
gle with complex, real-world charts. Most existing
datasets (Methani et al., 2020; Masry et al., 2022;
Xia et al., 2025) consist of synthetic charts with low
variety. A notable exception, ChartQA (Masry et al.,
2022), includes real-world charts, but they come from
only four platforms and are generally simple—Dbasic
infographics, pie charts, or bar charts with a low vol-
ume of datapoints and clearly printed numbers. The
lack of varied, challenging benchmarks has limited
progress on more robust extraction methods.

To address this, we introduce EpiCurveBench, a
benchmark designed to advance automated epicurve
data extraction and benefit the broader chart data
extraction community. EpiCurveBench contains 100
carefully curated, hand-annotated epicurve images
from diverse sources, spanning a wide range of dis-
eases, locations, time periods, and styles. It includes
30 simpler epicurves for a smooth transition into the
task and 70 challenging ones selected for variety and
difficulty. These test a data extraction method’s
ability to generalize, with many featuring unique vi-
sual formats. In particular, extracting data from the
challenging subset requires fine-grained visual under-
standing and adaptability, as epicurves often include
dense datapoints, overlapping series, rotated or tiny
text, low-resolution images, thin bars, low contrast,
and overlaid text. Even human annotators found the
task difficult: some epicurves required up to three
hours to digitize using tools like WebPlotDigitizer.

Existing evaluation metrics for chart data extrac-
tion are poorly suited for epicurves, as they ignore

temporal structure, overpenalize small shifts, and fail
to distinguish missing values from incorrect ones.
To address this, we introduce EpiCurve Similarity
(ECS), a measure based on Edit Distance with Real
Penalty (Chen and Ng, 2004), which aligns two time
series through minimal-cost matching while explicitly
handling gaps and temporal misalignments, critical
for accurate epicurve evaluation.

We evaluate multiple state-of-the-art automated
chart data extraction methods, including frontier
vision-language models, on EpiCurveBench using this
new metric. Results show that EpiCurveBench is
highly challenging: current state-of-the-art meth-
ods leave substantial room for improvement, unlike
other chart benchmarks that are nearing saturation.
EpiCurveBench highlights significant gaps in current
methods and lays the groundwork for improving both
epidemic forecasting and chart data extraction, ad-
vancing visual reasoning in foundation models.

Contributions. (1) EpiCurveBench, a challeng-
ing, real-world benchmark for epicurve data extrac-
tion. (2) ECS, a metric tailored to time series extrac-
tion. (3) A comprehensive evaluation of state-of-the-
art methods. (4) Open-source data and evaluation
code to support development of new methods.

2. EpiCurveBench

2.1. Data collection

We collect epicurve images from diverse sources to
capture a wide range of styles and formats. We crawl
directory pages from organizations such as the World
Health Organization (WHO) regional offices, the Pan
American Health Organization (PAHO), and the US
Centers for Disease Control and Prevention (CDC),
scraping images from webpages and linked outbreak
report PDFs. We also run targeted Google Image
searches to capture additional images.

This yields 1,397 epicurve images, from which we
manually curate 100 that are openly licensed, prior-
itizing those that are most varied and challenging.
These form two subsets: 30 Basic epicurves (no more
than two series per chart and < 30 points per series)
and 70 Advanced epicurves with maximal stylistic va-
riety and difficulty. The Basic subset provides an eas-
ier entry point for method development.

Appendix A shows the distribution of sources for
the curated dataset.
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2.2. Data annotation

We manually annotate all epicurve images using Web-
PlotDigitizer. After calibrating both axes with two
known points, the annotator clicks each datapoint to
record its x and y values. Each epicurve yields a CSV
with x-axis values and one or more columns for series
values, using original axis labels and series names for
consistency. When multiple series are present, we ex-
tract all of them, including any non-case-count data
such as deaths or rainfall. Appendix B describes how
ambiguous cases are handled, and the same instruc-
tions are given to evaluated models for consistency
between human and automated outputs.

A single annotator completes the initial annota-
tions. To assess reliability, a second annotator in-
dependently annotates 20 randomly selected curves
from the 70 Advanced epicurves, yielding an inter-
annotator ECS of 94.51% (see Section 2.4).

Annotation times range from 2 to 179 minutes,
with a mean of 23.7 minutes, a median of 16 min-
utes, and a standard deviation of 24.7 minutes.

2.3. Dataset characteristics

Figure 1 shows sample epicurves. The first row con-
tains three examples from the Basic subset, while the
remaining rows show Advanced epicurves, illustrat-
ing varied styles and formats. Challenges include
thin bars, low resolution, heavy text overlays, stacked
bars with similar colors, and lower-resolution histor-
ical plots with sub-legible values.

The benchmark includes 57 bar charts, 14 line
charts, and 29 mixed charts. Series per image range
from 1 to 14 (mean 2.8, median 2, SD 2.4). Series
lengths range from 5 to 742 points (mean 95, me-
dian 50, SD 130). Charts span 36 countries and the
years 1849-2025. Image widths range from 334-1650
pixels and heights from 148-1434 pixels. This va-
riety of chart types, time periods, and visual styles
makes EpiCurveBench especially challenging, requir-
ing models to generalize across highly variable condi-
tions for robust performance.

2.4. Metric

Two metrics are commonly used for evaluating chart
data extraction: Relative Mapping Similarity (Liu
et al., 2023, RMS) and Structuring Chart-oriented
Representation Metric (Xia et al., 2024, SCRM).
We depart from these metrics because they are
poorly suited for evaluating epicurve extraction.

Both treat extracted points as unordered mappings
between x-axis labels and their corresponding values,
thereby ignoring the temporal structure of an epi-
curve, i.e., case counts over time. Indeed, extracted
curves often exhibit temporal shifts between x-axis
labels and series values (e.g., values are correct but
labels are offset by a few days, causing misalignment),
or contain gaps relative to the ground truth (e.g.,
missing the first or last few points of the curve). Un-
der existing metrics, such misalignments are penal-
ized as harshly as completely incorrect extractions,
since the x-axis labels and values no longer align ex-
actly. For example, a curve shifted by only a few days
would be judged as being entirely wrong, even though
it preserves the overall temporal trend. In practice,
forecasters can often realign such curves with min-
imal preprocessing, meaning that a slight temporal
offset still yields a usable signal.

A more appropriate evaluation should accommo-
date local shifts and missing values, penalizing them
while still recognizing partial temporal correspon-
dence. Moreover, existing metrics typically align ex-
tracted and ground-truth x-axis labels using textual
similarity. This is problematic because epicurve axes
are often sparsely labeled, and mismatches can—for
instance—occur simply due to differences in date for-
mats. Robust evaluation therefore requires metrics
that can handle temporal misalignments and differ-
ing series lengths without depending on text-based
matching of x-axis labels.

To address these limitations, we introduce Epi-
Curve Similarity (ECS), a metric specifically designed
for evaluating epicurve extraction. ECS builds on
Edit Distance with Real Penalty (Chen and Ng, 2004,
ERP), which uses dynamic programming to align se-
ries while accounting for gaps and unmatched re-
gions. Like ERP, ECS supports insertions, deletions,
and substitutions, and applies real-valued penalties
to quantify differences between matched points.

Since epicurve images often contain multiple time
series, we first match each automatically extracted
series (extraction methods are introduced in Section
3.1) to its ground-truth, annotated counterpart. Let
E = {e1,...,en} denote the set of extracted series
from an image and T = {t1,...,t,} the correspond-
ing set of ground-truth series for that image. Follow-
ing Liu et al. (2023); Furkan Biten et al. (2019), we
perform matching using the Normalized Levenshtein
Distance (NLD), which measures textual similarity
(ranging from 0 to 1) between the labels of extracted
and ground-truth series (e.g., from chart legends).
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Two series are matched if their NLD is greater than
0.5. Extracted series with no matching ground-truth
are ignored, while unmatched ground-truth series are
assigned a score of zero.

For each matched pair of series p = (p1,...,pp)
and t = (t1,...,tr), where 7 and j index values in the
predicted and ground-truth series respectively, the
ERP distance is computed by evaluating the follow-
ing recurrence relation for 0 <i < Pand 0 < j < T,
using dynamic programming:

C(i=1,j=1)+ Do(porty) (match)
C(i,7) =min< C(i—1,5) + A (insertion)
Ci,j—1)+ A (deletion)

with boundary conditions C(0,0) = 0, C(,0) =
i- A and C(0,7) = j-A. We fix the gap penalty at
A =1 (as in Liu et al. (2023)).

Intuitively, ERP aligns two series by finding the
least-cost path that makes them match. At each step
(4,7), it decides whether to: (1) match the two points
(pi,t;) and pay a cost for their difference; (2) skip
a point in the predicted series (an insertion) with a
fixed cost A; or (3) skip a point in the ground-truth
series (a deletion) with a fixed cost A. The algorithm
fills a dynamic programming grid with these cumu-
lative costs and selects the minimum-cost path over
all possibilities, thereby measuring the similarity be-
tween two curves while allowing for gaps and local
temporal shifts.

The distance between two matched points is de-
fined using a relative distance function, normalized
by the range of the series’ y-axis:

(Sij, if (Sij < 9,
Dy(pi,t;) = ]
1,  otherwise.
where
s
5” — |p74 .]l .
Ymax — Ymin

Here, 0;; denotes the relative difference between the
predicted value p; and the target value t;. ymax and
Ymin denote respectively the maximum and minimum
values on the y-axis from which the series values are
read, and are collected during the annotation process.
The threshold 8 = 0.01 controls sensitivity: we only
tolerate discrepancies within this margin. That is,
differences smaller than 1% of the y-axis magnitude
are penalized proportionally to their relative magni-
tude, whereas larger differences are treated as entirely
incorrect and assigned the maximum distance of 1.

The ERP distance between two series is then
C(P,T), representing the minimum cumulative cost
of transforming p into ¢.

The EpiCurve Similarity (ECS) metric normalizes
this cost to yield a similarity score between 0 and 1:

ERP(p,t)
#matches + #gaps’
where #gaps = Finsertions + #deletions.

For each image, we compute the mean ECS across
all matched series, assigning a score of zero to any un-
matched ground-truth series. The final performance
measure is then obtained by averaging these image-
level scores across the entire dataset.

ECS(p,t) =1—

3. Baseline performance

3.1. Methods evaluated

We evaluate several methods on EpiCurveBench,
including two state-of-the-art vision-language mod-
els (VLMs) specialized in chart data extraction:
OneChart (Chen et al., 2024) and TinyChart (Zhang
et al., 2024). We also test three frontier VLMs: GPT-
5, Claude Sonnet 4.5, and Gemini 2.5 Pro, each under
three configurations: minimal reasoning effort, high
reasoning effort, and high reasoning effort with access
to a code interpreter tool. For frontier VLMs, we use
the prompt in Appendix C.

3.2. Results

Table 1 reports ECS scores for both the Basic and Ad-
vanced epicurve subsets and the total inference costs
for processing the 100 images.

The results show that EpiCurveBench is challeng-
ing for all tested approaches. The best-performing
models reach an ECS of only 70.2% on the Basic
subset (Gemini 2.5 Pro Minimal) and 42.9% on the
Advanced subset (Gemini 2.5 Pro High).

OneChart frequently misreads series or axis labels,
limiting performance, while TinyChart handles labels
better but still produces inaccurate values.

Among frontier VLMs, Gemini 2.5 Pro performs
best on both subsets, followed by Claude Sonnet 4.5
and then GPT-5. Across models, the minimal reason-
ing configuration performs unexpectedly well, out-
performing other variants on the Basic subset and
yielding the best Advanced subset performance for
GPT-5. This suggests that limiting reasoning steps
can sometimes prevent errors introduced by reason-
ing. Adding the code interpreter has mixed effects:
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Table 1: Performance of all evaluated methods on
EpiCurveBench. Results are reported as ECS scores
(%) for the Basic and Advanced subsets, along with
total inference costs (USD) for the 100 images.

Model Basic (%) Advanced (%) Cost
OneChart 40.3 5.8 -

TinyChart 39.9 8.6 -

GPT-5 Minimal 58.6 28.0 $0.85
GPT-5 High 55.6 22.4 $8.50
GPT-5 High+Code 58.0 24.1 $8.13
Claude Minimal 68.5 33.0 $1.54
Claude High 65.4 35.5 $8.43
Claude High+Code 64.5 34.5 $30.12
Gemini Minimal 70.2 40.9 $2.56
Gemini High 68.1 42.9 $7.24
Gemini High+Code 67.9 35.9 $9.17

it slightly improves GPT-5 while reducing cost, but
reduces accuracy and increases cost for other models.

Figure 2 shows the breakdown of error types across
frontier VLMs. Numerical errors—imprecise extrac-
tion of series values—are the most common. Sur-
plus datapoints (insertions), missed datapoints (dele-
tions), label mismatches, and missed series are less
frequent overall but more common in the Advanced
set. Notably, missed datapoints often arise when
models extract at a coarser temporal resolution than
the chart. For the Advanced set, all models, espe-
cially under High reasoning effort, show a notable
rate of refusals, where the model declines to extract
data because it is insufficiently confident. This be-
havior is most pronounced for GPT-5. The preva-
lence of numerical errors highlights a broader limita-
tion of multimodal models: difficulty distinguishing
fine-grained visual elements (Liu et al., 2025; Razeghi
et al., 2024), making dense time-series extraction an
open challenge.

4. Limitations and future work

EpiCurveBench currently includes only 100 manually
annotated images, limiting the diversity of epicurve
formats, and annotations were produced by a single
annotator, introducing potential labeling noise. We
plan to expand the dataset in future work. Further,
we plan to evaluate the downstream impact of ex-
tracting data from historical epicurves on epidemic
forecasting. For example, CDC Emerging Infectious
Diseases reports include epicurves dating back to
1995. Digitizing these historical curves will allow us

Label Mismatch
Missed Series

Correct Refusal

Numerical Error

Surplus Datapoints
Missed Datapoints

Basic Set

100%

80%

60%

40%

Percentage
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100% Advanced Set

80%

60%

Percentage

40%

20%
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Figure 2: Error types observed during epicurve ex-
traction by frontier VLMs. Percentages indicate the
proportion of total ECS loss attributable to each error
type. Numerical Error: distance between matched
points; Surplus Datapoints: insertions in the pre-
dicted series; Missed Datapoints: deletions in the pre-
dicted series; Label Mismatch: extracted series label
does not correspond to any ground-truth (GT) label;
Missed Series: series present in the GT but not ex-
tracted; Refusal: model declined to extract.

to quantify how extraction quality affects retrospec-
tive forecasting performance, a central task in pub-
lic health preparedness. Finally, we see potential for
extending our framework beyond epicurves to other
kinds of health-related charts, such as histograms of
chronic illness prevalence and biometric time series.

5. Conclusion

We introduce EpiCurveBench, a challenging bench-
mark for epicurve extraction, along with a new metric
for extraction evaluation and an open-source evalua-
tion pipeline. Our evaluation of state-of-the-art mod-
els reveals a significant gap between current methods
and the complexity of real-world epicurves. We aim
to drive the development of generalizable extraction
methods to support better epidemic forecasting.
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Appendix A. Distribution of sources

Publication 27
EMRO 18
WHO 15
DON 14
AFRO 12
PAHO 6
Other 4
MMWR 2
Government 2

0 5 10 15 20 25
Number of images

Source

Figure 3: Distribution of EpiCurveBench sources by
origin. There are 12 unique source types. The
“Other” category includes sources that appear only
once. Most publication sources come from ScienceDi-
rect and ResearchGate.

Appendix B. Handling Annotation
Ambiguities
e Only data that is visually present and clearly

labeled is annotated. No assumptions are made
about missing or implied data.

e Each visible segment in a stacked bar chart is
annotated as a separate time series if the figure
includes distinct segment labels in the legend or
directly on the chart.

e If segment labels are missing, incomplete, or vi-
sually indistinguishable, only the aggregate total
(height of the full stack) is annotated.

Appendix C. Frontier VLM Prompt

Here is an image of a chart. Please extract the
numerical data it represents and return it in
CSV format with appropriate headers. Copy
the headers exactly as they are in the image.
Make sure to extract data for all x axis values,
even those not written on the image, without
leaving any gaps. Remember: The sole output
should be the CSV table. Nothing else.
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