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Abstract

Using machine learning to solve combinatorial optimization (CO) problems is1

challenging, especially when the data is unlabeled. This work proposes an unsu-2

pervised learning framework for CO problems. Our framework follows a standard3

relaxation-plus-rounding approach and adopts neural networks to parameterize4

the relaxed solutions so that simple back-propagation can train the model end-to-5

end. Our key contribution is the observation that if the relaxed objective satisfies6

entry-wise concavity, a low optimization loss guarantees the quality of the final7

integral solutions. This observation significantly broadens the applicability of a8

previous framework inspired by Erdos’ probabilistic method [1]. In particular, this9

observation can guide the design of objective models in the applications where10

the objectives are not given explicitly while requiring being modeled in prior. We11

evaluate our framework by solving a synthetic graph optimization problem, and12

two real-world applications including resource allocation in circuit design and13

approximate computing. Our framework largely outperforms the baselines based14

on naïve relaxation, reinforcement learning and Gumbel-softmax tricks.15

1 Introduction16

Combinatorial optimization (CO) with the goal of finding the optimal solution from a discrete space is17

a fundamental problem in many scientific and engineering applications [2–4]. Most CO problems are18

NP-complete. Traditional methods efficient in practice often use heuristics or produce approximation19

solutions. Designing these approaches requires considerable insights into the problem. Recently,20

machine learning has revolutionized this traditional way to develop CO algorithms by leveraging21

neural networks (NNs) to extract heuristics from the data [5–7]. Several learning for CO (LCO)22

approaches have already been developed for SAT [8–10], mixed integer linear programming [11–13],23

vertex covering [14, 15] and routing problems [16–23].24

Another promising, if not more promising usage of machine learning techniques is to assist the25

applications where the evaluation of the CO objective for each tentative solution could be expensive26

and time-consuming [24–27]. For example, in hardware/system design, the actual computation27

latency, power efficiency [28], and resource consumption [29–31] are unavailable before running28

complex simulators. Also, in molecule design, the desired properties such as protein fluorescence or29

DNA binding may only get evaluated via costly simulations or living experiments [32–34]. Therefore,30

proxies of their objectives often need to be learned at first. And then, these Proxy-based CO (PCO)31

can be solved further by following traditional LCO schemes [31]. Note that learning for PCO is even32

in greater need compared to traditional CO problems because commercial CO solvers such as Gurobi33

can never be applied in PCO due to the in-availability of closed-form objectives. Generic solvers34

such as simulated annealing [35] may be applied while they could be extremely slow.35
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Figure 1: The pipeline and an example. The optimization objective f(X;C), X ∈ {0, 1}n is relaxed
to fr(X̄;C), X̄ ∈ [0, 1]n. Here, C is the problem configuration such as an attributed graph in a graph
optimization problem. The entry-wise concave structure of fr provides a performance guarantee in
our deterministic rounding procedure (in Def. 1). When f(X;C) is not explicitly given, fr will be
modeled as NNs and learned. In the toy example, we first learn f(X̄;C) by proxies with or without
the entry-wise concave constraint. We compare their landscapes in the top-right figure. We further
optimize both proxies and round the obtained soft solutions to integral solutions. The bottom-right
figure shows the optimum-recovery probabilities of different methods under different C’s.

In this work, we are to propose an unsupervised LCO framework. Our findings are applied to general36

CO problems while exhibiting extraordinary promise for PCO problems. Unsupervised LCO has37

recently attracted great attentions [1,9,20,36,37]. Compared to supervised learning that gets criticized38

for the dependence on huge amounts of labeled data [38], and reinforcement learning (RL) that39

suffers from notoriously unstable training [39], unsupervised LCO has shown great advantages due to40

its faster training, good generalization via accessing large unlabeled data, and its capability of dealing41

with large-scale problems [1]. Though with those advantages, unsupervised learning has never been42

investigated for PCO problems. Previous works for PCO problems, e.g., hardware design [30, 31],43

were all based on RL. This work provides the first unsupervised framework for PCO problems.44

Our framework follows a relaxation-plus-rounding approach. We optimize a carefully-designed45

continuous relaxation of the cost model (penalized with constraints if any) and obtain a soft solution.46

Then, we decode the soft assignment to have the final discrete solution. This follows a common47

approach in traditional approximation algorithm design [40, 41]. However, the soft assignments48

here is given by a NN model optimized based on the historical (unlabeled) data via gradient descent.49

Learning from historical data is expected to facilitate the model understanding the data distribution,50

which helps with extracting heuristics, avoiding local minima and achieving fast inference. An51

illustration of the framework with a toy-example is shown in Fig. 1.52

Our method shares a similar spirit with [1] while making the following significant contributions.53

We abandon the probabilistic guarantee in [1], because it is hard to use when we have general54

or proxy-based objectives. Instead, we design a deterministic objective relaxation principle that55

gives performance guarantee. We prove that if the objective relaxation is entry-wise concave w.r.t.56

the binary optimization variables, a low-cost soft solution plus deterministic sequential decoding57

guarantees generating a valid and low-cost integral solution. This principle significantly broadens the58

applicability of this unsupervised learning framework. In particular, it guides the design of model59

architectures to learn the objectives in PCO problems. We further justify the wide applicability of the60

entry-wise concave principle in both theory and practice.61

We evaluate our framework over three PCO applications including feature-based edge covering & node62

matching problems, and two real-world applications, including imprecise functional unit assignment63

in approximate computing (AxC) [42–46] and resource allocation in circuit design [24, 30]. In all64

three applications, our framework achieves a significant performance boost compared to previous65

RL-based approaches and relaxed gradient approaches based on the Gumbel-softmax trick [47–49].66

1.1 Further Discussion on Related Works67

Most previous LCO approaches are based on RL [13,14,16–18,22,50–52] or supervised learning [11,68

12, 38], as these two frameworks do not hold much constraints on the formulation of CO problems.69

2



However, they often suffer from the issues of training instability and subpar generalization. Previous70

works on unsupervised learning for CO have studied satisfaction problems [9, 36], while applying71

them to general CO problems requires problem reductions. Others have considered max-cut [37] and72

TSP problems [20], while these works depend on carefully selected problem-specific objectives. The73

work most relevant to ours is [1] and we give detailed comparison in Sec. 3. Note that all previous74

works on unsupervised learning for CO do not apply to PCO as they need an explicit objective to75

manipulate. For PCO problems, previous studies focus on how to learn more generalizable proxies of76

the costs, such as via Bayesian learning [53, 54] and adverserial training [55, 56]. Once proxies are77

learned, direct objective relaxation [55] or RL [30, 31] is often adopted. Studying generalization of78

proxies is out of the scope of this work while entry-wise concave proxies seem smoother than those79

without constraints (See Fig. 1) and thus have the potential to be more generalizable.80

2 Preliminaries and Problem Formulation81

In this section, we define several useful concepts and notations.82

Combinatorial Optimization (CO). Let C ∈ C denote a data-based configuration such as a graph83

with weighted edges. Let Ω be a finite set of all feasible combinatorial objects and each object has a84

binary vector embedding X = (Xi)1≤i≤n ∈ {0, 1}n. For example, in the node matching problem,85

each entry of X corresponds to an edge to denote whether this edge is selected or not. Note that86

such binary embeddings are applicable even when the choice is not naturally binary: Choosing at87

most one element from a tuple (1, 2, 3) can be represented as a 3-dim binary vector (X1, X2, X3)88

with the constraint X1 +X2 +X3 ≤ 1. W.l.o.g, we assume an algebraic form of the feasible set89

Ω ≜ {X ∈ {0, 1}n : g(X;C) < 1} where g(X;C) ≥ 0 for all X ∈ {0, 1}n 1. For notational90

simplicity, we only consider one inequality constraint while our later discussion in Sec. 3 and our91

case studies in Sec. 4 may contain multiple inequalities. Given a configuration C and a constraint Ω,92

a combinatorial optimization (CO) is to minimize a cost f(·;C) by solving93

min
X∈{0,1}n

f(X;C), s.t. g(X;C) < 1. (1)

Proxy-based CO (PCO). In the many applications, the cost or the constraint may not be cheaply94

evaluated. Some proxies of the cost f or the constraint g often need to be learned from the historical95

data. With some abuse of notations, we interchangably use f (g, resp.) to denote the objective (the96

constraint, resp.) and its proxy.97

Learning for CO/PCO (LCO). A LCO problem is to learn an algorithm Aθ(·) : C → {0, 1}n, say98

a neural network (NN) parameterized by θ to solve CO or PCO problems. Given a configuration99

C ∈ C, we expect Aθ to (a) generate a valid solution X̂ = Aθ(C) ∈ Ω and (b) minimize f(X̂;C).100

There are different approaches to learn Aθ. Our focus is unsupervised learning approaches where101

given a configuration C, the ground-truth solution X∗ is not accessible during the training. θ can102

only be optimized based on the knowledge of the cost and the constraint, or their proxies.103

Erdős’ Probabilistic Method (EPM). The EPM has recently been brought for LCO [1]. Specifi-104

cally, The EPM formulates Aθ(C) as a randomized algorithm that essentially gives a probabilistic105

distribution over the solution space {0, 1}n, which solves the optimization problem:106

min
θ

E [l(X;C)] , where l(X;C) ≜ f(X;C) + β1g(X;C)≥1, X ∼ Aθ(C) and β > 0 . (2)

Karalias & Loukas proved that with β > maxX∈Ω f(X;C) and a small expected loss E [l(X,C)] <107

β, sampling a sufficiently large number of X̂ ∼ Aθ(C) guarantees the existance of a feasible X̂ ∈ Ω108

that achieves the cost f(X̂;C) ≤ E [l(X,C)] [1]. Although this guarantee makes EPM intriguing,109

applying EPM in practice is non-trivial. We will explain the challenge in Sec. 3.1, which inspires our110

solutions and further guides the objective design for general CO and PCO problems.111

1Normalization (g(·;C) − gmin)/(g
+
min − gmin) where g+min = minX∈{0,1}n\Ω g(X;C) and gmin =

minX∈{0,1}n g(X;C) always satisfies the property. g+min, gmin often can be easily estimated in practice.
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3 The Relaxation Principle for Unsupervised LCO112

In this section, we start with the practical issues of EPM. Then, we introduce our solutions by113

proposing a relaxation principle of the objectives, which gives performance guarantee for general114

practical unsupervised LCO.115

3.1 Motivation: The Practical Issues of EPM116

Applying EPM in practice has two fundamental difficulties. First, optimizing θ in Eq.(2) is generally117

hard as the gradient dX
dθ does not generally exist so the chain rule cannot be used. We discuss the118

potential solutions to this problem in Sec. 3.4. Second, EPM needs to sample a large number of119

X ∼ Aθ(C) for evaluation to achieve the performance guarantee in [1]. This is not acceptable where120

the evaluation per sample is time-consuming and expensive.121

So, in practice, Karalias & Loukas consider a deterministic method. They view Aθ(C) ∈ [0, 1]n as122

the parameters of Bernouli distributions to generate the entries of X so E[X] = Aθ(C). First, they123

optimize minθ l(Aθ(C), C) instead of minθ E[l(X,C)], and then, sequentially round the probability124

Aθ(C) to discrete X ∈ {0, 1}n by comparing conditional expectations, e.g., E[l(X,C)|X1 = 0] v.s.125

E[l(X,C)|X1 = 1] to decide X1. However, such conditional expectations for general l cannot be126

efficiently computed unless one uses Monte-Carlo sampling. The two special cases in [1] on the127

max-clique and graph-partition problems seem to have special structures. This blocks the applicability128

of this framework, especially for the PCO problems where the objectives l are learned as models.129

3.2 Our Approach: Relaxation plus Rounding, and Performance Guarantee130

Our solution does not use the probabilistic modeling but directly adopts a relaxation-plus-rounding131

approach. We optimize a relaxation of the objective lr and obtain a soft solution X̄ ∈ [0, 1]n. Then,132

we deterministically round the entries in X̄ to a solution in the discrete space {0, 1}n. The question133

is whether the obtained solutions may still achieve the guarantee as EPM does. Our key observation134

is that such success essentially depends on how to relax the objective l.135

Therefore, our first contribution beyond [1] is to propose the principle (Def. 2) to relax general costs136

and constraints. With this principle, the unsupervised LCO framework can deterministically yield137

valid and low-cost solutions (Thm. 1) as the EPM guarantees, and is applied to any objective l.138

First, we introduce the pipeline. Consider a relaxation of a deterministic upper bound of Eq.(2):139

min
θ

lr(θ;C) ≜ fr(X̄;C) + βgr(X̄;C), where X̄ = Aθ(C) ∈ [0, 1]n , β > 0. (3)

Here fr(·;C) : [0, 1]n → R is the relaxation of f(·;C), which satisfies fr(X;C) = f(X;C) for140

X ∈ {0, 1}n. The relation between gr and g is similar, i.e., gr(X;C) = g(X;C) for X ∈ {0, 1}n.141

Here, we also use the fact that gr(X;C) provides a natural upper bound 1g(X;C)≥1 ≤ gr(X;C) for142

X ∈ {0, 1}n given the normalization of g(X;C) adopted in Sec. 2.143

Now, suppose the parameter θ gets optimized so that lr(θ;C) is small. Further, we adopt the144

sequential rounding in Def. 1 to adjust the continuous solution X̄ = Aθ(C) to discrete solution X .145

Definition 1 (Rounding). Given a continuous vector X̄ ∈ [0, 1]n and an arbitrary order of the146

entries, w.o.l.g., i = 1, 2, ..., n, round X̄i into 0 or 1 and fix all the other variables un-changed. Set147

Xi = argminj=0,1 fr(X1, ..., Xi−1, j, X̄i+1, ..., X̄n;C) + βgr(X1, ..., Xi−1, j, X̄i+1, ..., X̄n;C),148

replace X̄i with Xi and repeat the above procedure until all the variables become discrete.149

Note that our rounding procedure does not need to evaluate any conditional expectations150

E[l(X;C)|X1] which EPM in [1] requires. Instead, we ask both relaxations fr and gr to sat-151

isfy the principle in Def. 2. With this principle, the pipeline allows achieving a valid and low-cost152

solution X , as proved in Theorem 1. We leave the proof in Appendix A.1.153

Definition 2 (The Entry-wise Concave Principle). For any C ∈ C, hr(·;C) : [0, 1]n → R is154

entry-wise concave if for any γ ∈ [0, 1] and any X̄, X̄ ′ ∈ [0, 1]n that are only different in one entry,155

γhr(X̄;C) + (1− γ)hr(X̄
′;C) ≤ hr(γX̄ + (1− γ)X̄ ′;C).

4



Note that entry-wise concavity is much weaker than concavity. For example, the function156

hr(X̄1, X̄2) = −Relu(X̄1X̄2), X̄1, X̄2 ∈ R is entry-wise concave but not concave.157

Theorem 1 (Performance Guarantee). Let β > maxX∈Ω f(X;C) and minX∈Ω f(X;C) ≥ 0 in158

Eq.(3). Suppose the relaxed cost fr and constraint gr are entry-wise concave, and the learned159

parameter θ achieves lr(θ;C) < β. Then, rounding (Def. 1) the relaxed solution X̄ = Aθ(C)160

generates a valid discrete solution X ∈ Ω such that f(X;C) < lr(θ;C).161

When there are multiple normalization constraints g(j)(X;C) < 1 for j = 1, 2, ..., we may use162

relaxation β
∑

j g
(j)
r (X;C) as the penalty term in Eq.(3), where g(j)r is a relaxation of g(j). It can be163

shown that if
∑

j g
(j)
r satisfies the entry-wise concave condition, the guarantee of Thm. 1 still applies.164

3.3 The Wide Applicability of Entry-wise Concave Relaxations165

We have introduced the entry-wise concave principle to relax the objective to associate our framework166

with performance guarantee. The question is how widely applicable this principle could be.167

Actually, every function with binary inputs can be relaxed as an entry-wise affine function with the168

exactly same values at the discrete inputs, as shown in Theorem 2. Note that entry-wise affinity is a169

special case of entry-wise concavity. In Sec. 4, we will provide the design of NN architecture (for170

PCO) and math derivation (for CO) that guarantee formulating an entry-wise concave function.171

Theorem 2 (Wide Applicability). For any binary-input function h(·) : {0, 1}n → R, there exists a172

relaxation hr(·) : [0, 1]n → R such that (a) hr(X) = h(X) for X ∈ {0, 1}n and (b) hr is entry-wise173

affine, i.e., for any γ ∈ [0, 1] and any X̄, X̄ ′ ∈ [0, 1]n that are only different in one entry,174

γhr(X̄) + (1− γ)hr(X̄
′) = hr(γX̄ + (1− γ)X̄ ′).

Proof sketch. Set hr(X̄) =
∑

X∈{0,1}n h(X)
∏n

j=1 X̄
Xj

j (1−X̄j)
(1−Xj), which satisfies (a) and (b).175

Note that we suppose that X̄0
j = 1 for any X̄j ∈ [0, 1]. The detailed proof is in Appendix A.2.176

Although Theorem 2 shows the existence of entry-wise affine relaxations, the constructed representa-177

tion in the proof depends on higher-order moments of the input entries, which make it often intractable178

to implement, especially via a NN architecture. Therefore, we also propose to use entry-wise concave179

functions to implicitly generate higher-order moments. For example, when n = 2, we could use180

the composition of −Relu(·) and affine operators (only 1st-order moments) to achieve universal181

representation (See Prop. 1 and the proof in Appendix A.3). For general n, we leave as a future study.182

Proposition 1. For any binary-input function h(X1, X2), there exists parameters {wij} such that183

an entry-wise concave function hr(X̄1, X̄2) = w00 −
∑3

i=1 Relu(wi1X̄1 + wi2X̄2 + wi0) satisfies184

hr(X1, X2) = h(X1, X2) for any X1, X2 ∈ {0, 1}.185

3.4 Discussion: Methods to Directly Optimize the Randomized Objective in EPM Eq.(2)186

RL Gumbel-softmax Ours

Objective No Limit No Limit Entry-wise Concave
Optimizer Log Trick Gumbel Trick No Limit
Inference Sampling Sampling Deter. Rounding

Train. Time Slow Fast Fast
Convergence Hard Medium Easy
Infer. Time Slow Slow Fast

Table 1: The comparison among RL (policy gradi-
ent), Gumbel-softmax methods and our principled
objective relaxation. Our methods are in need of
much less training time and inference time.

The naïve way to optimize the randomized187

objective in Eq.(2) without worrying about188

the specific form of the objective l is based189

on the policy gradient in RL via the loga-190

rithmic trick, i.e., estimating the gradient dl
dθ191

via (f(X;C)+β1g(X;C)≥1) logP(X) by sam-192

pling X ∼ Aθ(C). However, the policy gradi-193

ent suffers from notoriously large variance [39]194

and makes RL hard to converge. Therefore,195

methods such as actor critic [57] or subtracting196

some baselines l(X;C)− b [58] have been proposed.197

Another way to solve Eq.(2) is based on reparameterization tricks to reduce the variance of gradi-198

ents [59, 60]. Specifically, we set the entries of output X̄ = Aθ(C) ∈ [0, 1]n as the parameters199

of Bernoulli distributions to generate X , i.e., Xi ∼ Bern(X̄i), for 1 ≤ i ≤ n. To make dXi/dX̄i200
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computable, we may use the Gumble-softmax trick [47–49]. However, this approach suffers from two201

issues. First, the estimation of the gradient is biased. Second, as Aθ(C) is essentially a randomized202

algorithm, sampling sufficiently many X ∼ Aθ(C) is needed to guarantee a valid and low-cost203

solution. However, such evaluation is costly as discussed in Sec. 3.1. We compare different aspects204

of RL, Gumbel-softmax tricks and our relaxation approach in Table 1.205

4 Applying Our Relaxation Principle to Learning for PCO206

In this section, we apply our relaxation principle to three PCO applications: (I) feature-based edge207

covering & node matching, (II) resource allocation in circuit design, and (III) imprecise functional208

unit assignment in approximate computing. All the applications have graph-based configurations C.209

So later, we first introduce how to use graph neural networks (GNNs) to build proxies that satisfy210

our relaxation principle. Such GNN-based proxies will be used as the cost function relaxation fr211

in all the applications. Our principle can also guide the relaxation of explicit CO objectives. The212

constraints in applications (I)(III) are explicit and their relaxation can be written into the entry-wise213

affine form. The constraint in (II) needs another GNN-based entry-wise concave proxy to learn.214

4.1 GNN-based Entry-wise Concave Proxies215

We consider the data configuration C as an attributed graph (V,E,Z) where V is the node set,216

E ⊆ V ×V is the edge set and Z is the node attributes. We associate each node with a binary variable217

and group them together X :∈ {0, 1}|V |. where for each v ∈ V , Xv = 1 indicates the choice of the218

node v. Note that our approach can be similarly applied to edge-level variables (see Appendix C.2),219

which is used in application (I). Let X̄ still denote the relaxation of X .220

To learn a discrete function h : {0, 1}|V | × C → R, we adopt a GNN as the relaxed proxy of h. We221

first define a latent graph representation in RF whose entries are all entry-wise affine mappings of X .222

Latent representation: ϕ(X̄;C) = W +
∑
v∈V

UvX̄1 +
∑

v,u∈V,(v,u)∈E

Qv,uX̄vX̄u (4)

where W is the graph representation, Uv’s are node representations and Qv,u are edge representations.223

These representations do not contain X and are given by GNN encoding C. Here, we consider at224

most 2nd-order moments based on adjacent nodes as they can be easily implemented via current225

GNN platforms [61, 62]. Then, we use ϕ to generate entry-wise affine & concave proxies as follows.226

Entry-wise Affine Proxy (AFF): ha
r(X̄;C) = ⟨wa, ϕ(X̄;C)⟩. (5)

Entry-wise Concave Proxy (CON): hc
r(X̄;C) = ⟨wc,−Relu(ϕ(X̄;C))⟩+ b. (6)

where wa, wc ∈ RF , b ∈ R are learnt parameters and wc ≥ 0 guarantees entry-wise concavity.227

4.2 The Setting up of the Experiments228

Baseline fr ,gr Aθ Inference

Naïve + R no limit no limit rounding
RL no limit RL sampling

GS-Tr+S no limit GS sampling
GS-Tr+R no limit GS rounding

Table 2: The baselines in the paper.

Training & Evaluation Pipeline. In all the applications, we229

adopt the following training & evaluation pipeline. First, we230

have a set of observed configurations D1 ⊂ C. Each C ∈ D1 is231

paired with one X ∈ {0, 1}n. We use the costs f(X,C) (and232

constraints g(X,C)) to train the relaxed proxies fr(X,C) (and233

gr(X,C), if cannot be derived explicitly), where the relaxed proxies follow either Eq.(5) (named234

AFF) or Eq.(6) (named CON). Then, we parameterize the LCO algorithm Aθ(C) ∈ [0, 1]n via another235

GNN. Based on the learned (or derived) fr and gr, we optimize θ by minimizing
∑

C∈D1
lr(θ;C),236

where lr is defined according to Eq.(3). We will split D1 into a training set and a validation set for237

hyperparameter-tuning of proxies and Aθ. We have another set of configurations D2 ⊂ C used for238

testing. For each C ∈ D2, we use the relaxation X̄ = Aθ(C) plus our rounding to evaluate the239

learned algorithm Aθ(·). We follow [1] and do not consider fine-tuning Aθ over the testing dataset240

D2 to match the potential requirement of the fast inference.241

Baselines. We consider 4 common baselines that is made up of different learnable relaxed proxies242

fr, gr, algorithms Aθ and inference approaches as shown in Table 2. For the proxies fr, gr for243
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baselines, we apply GNNs without the entry-wise concave constraint and use X as one node attribute244

while keeping all other hyper-parameters exactly the same as ours (See details in Appendix. C); For the245

algorithm Aθ, we provide the Gumbel-softmax trick based methods (GS-Tr) [48, 49], the actor-critic-246

based RL method [57] (RL) and the naïve relaxation method (Naïve); For the inference approaches,247

we consider Monte Carlo sampling (S) and our proposed rounding (R) procedure. Although the248

baselines adopt proxies that are different from ours, we guarantee that their proxies approximate249

the ground-truth f, g over the validation dataset at least no worse than ours. In application II, we250

also consider two non-learnable algorithms to optimize the proxies without relaxation constraints,251

simulated annealing (SA) [35] and genetic algorithms (GA) [63, 64]. In application III, we put252

all of the required AxC units either close to the input (C-In) or close to the output (C-Out) of the253

approximating computing circuit as additional baselines. More details of the experiments setups and254

hyperparameter tuning can be found in Appendix C. We also obtain the optimal solutions (OPT) for255

applications I and III via brute-force search for comparison.256

4.3 Application I: Feature-based Edge Covering & Node Matching in Graphs257

This application is inspired by [65]. Here, each configuration C is a 4× 4 grid graph whose node258

attributes are two-digit images generated by random combinations of the pictures in MNIST [66].259

We associated each edge with variables X ∈ {0, 1}|E|. The objective is the sum of edge weights260

f(X;C) =
∑

e∈E weXe where we is unknown in prior and needed to be learned. The ground truth261

of we is a multiplication of the numbers indicated by the images on the two adjacent nodes. We adopt262

ResNet-50 [67] (to refine node features) plus GraphSAGE [68] to encode C. We consider using both263

Eq.(5) and Eq.(6) to formulate the relaxed cost fr(X̄;C). Training and validating fr are based on264

100k randomly sampled C paired with randomly sampled X . Note that 100k is much smaller than265

the entire space {0, 1}|E| × C is of size 224 × 10016.266

Next, as the constraint here is explicit, we can derive the relaxation of the constraints for this267

application. First, the constraint relaxation of the edge covering problem can be written as268

Edge Covering Constraint: gr(X̄;C) =
∑
v∈V

∏
e:v∈e

(1− X̄e). (7)

Each production term in Eq.(7) indicates that for each node, at least one edge is selected. We can269

easily justify that gr is entry-wise affine and Ω = {X ∈ {0, 1}|E| : gr(X;C) < 1} exactly gives the270

feasible solutions to the edge covering problem.271

Similarly, we can derive the constraint for node matching by adding a further term to Eq.(7).272

Node Matching Constraint: gr(X̄;C) =
∑
v∈V

[
∏
e:v∈e

(1− X̄e) +
∏

e1,e2:v∈e1,e2,e1 ̸=e2

X̄e1X̄e2 ]. (8)

Here, the second term indicates that no two edges adjacent to the same node can be selected. We can273

easily justify that gr is entry-wise affine and Ω = {X ∈ {0, 1}|E| : gr(X;C) < 1} groups exactly274

the feasible solutions to the node matching problem.275

Note that our above derivation also generalizes the node-selection framework in [1] to edge selection.276

With the learned fr and the derived gr, we further train and validate Aθ over the 100k sampled277

(X,C)’s and test on another 500 randomly sampled C’s.278

Method Edge covering Node matching

Naive+R 68.52 429.12
RL 51.29 426.97

GS-Tr+S 63.36 -
GS-Tr+R 46.91 429.39

CON(ours) 49.59 422.47
AFF(ours) 44.55 418.96
OPT(gt) 42.69 416.01

Table 3: Performance on application I
(graph optimization).

Evaluation. Table 3 shows the evaluation results. In the279

GS-Tr+S method, the number of sampling is set to 120280

(about 2.5 times the inference time of our deterministic281

rounding). Note that for node matching, GS-Tr+S could282

hardly sample a feasible node matching solution within283

120 samples. The experiment results show that our284

principled proxy design exceeds the other baselines on285

both tasks. Also, we observe that AFF outperforms286

CON, which results from the fact that f(X;C) in these287

two problems are naturally in entry-wise affine forms288
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A plain picture

(a) One Config.

OPT score: 321.03543364590644

(b) Optimal X∗

AFF score: 323.52710031257317

(c) AFF (Ours)

GS-Tr+R score: 353.09793364590644

(d) GS Trick + R
Figure 2: The visualization for node matching in Application I. Our method avoids large multiplica-
tions 87 ∗ 96 and 94 ∗ 82 where GS-Trick cannot, and generate a solution different but close to OPT.
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Figure 3: Comparing different proxies for learning DSP usage. Left, no constraint; Middle, entry-wise
affine constraint (Eq. (5)); Right, entry-wise concave constraint (Eq.(6))

with low-order (1st-order) moments. One instance of node matching randomly selected from the test289

set is shown in Fig. 2. More visualization results can be found in Fig. 5 in the appendix.290

4.4 Application II: Resource Allocation in Circuit Design291

Resource allocation in field-programmable gate array (FPGA) design is a fundamental problem which292

can lead to largely varied circuit quality after synthesis, such as area, timing, and latency. In this293

application, we follow the problem formulation in [24, 30], where the circuit is represented as a data294

flow graph (DFG), and each node represents an arithmetic operation such as multiplication or addition.295

The goal is to find a resource allocation for each node to be either digital signal processor (DSP) or296

look-up table (LUT), such that the final circuit area (i.e., actual DSP and LUT usage) after synthesis297

is minimized. Notably, different allocation solutions result in greatly varied DSP/LUT usage due to298

complicated synthesis process, which cannot be simply summed up over each node. To obtain precise299

DSP/LUT usage, one must run high-level synthesis (HLS) [69] and place-and-route [70] tools, which300

can take up to hours [24, 30].301

In this application, each configuration C is a DFG with > 100 nodes, where each node is allocated302

to either DSP or LUT. Node attributes include operation type (i.e., multiplication or addition) and303

data bitwidth. More details about the dataset can be found in Appendix C.4. Let X ∈ {0, 1}|V |304

denote the mapping to DSP or LUT. Let fr and gr denote the proxies of actual LUT and actual DSP305

usage, respectively. Note that given different constraints on the DSP usage, we will normalize gr as306

introduced in Sec. 2. We train and validate fr, gr,Aθ on 8, 000 instances that consist of 40 DFGs307

(C), each DFG with 200 different mappings (X), and test Aθ over 20 DFGs. Note that the actual308

LUT and DSP usages of each training instance has been collected by running HLS in prior. We also309

run HLS to evaluate the actual LUT and DSP usages for the testing cases given the learned mappings.310

Evaluation. We rank each method’s best actual LUT usage under the constraint of different percent-311

ages (40% - 70%) of the maximum DSP usage in each testing instance, then calculate the averaged312

ranks. Fig. 4 shows the results. Our entry-wise concave proxy achieves the best performance.313

GS-Tr+R is slightly better than RL, and both of them exceed SA and GA. We do not include our314

entry-wise affine proxy in the ranking list, because the affine proxy could be much less accurate315

than the proxy without constraints and the entry-wise concave proxy. The comparison between316

these proxies on learning DSP usage (& LUT usage) is shown in Fig. 3 (& Fig. 7 in the appendix,317

respectively). The gap between different proxies indicates the FPGA circuit contains high-order318

moments of the input optimization variables and 2-order entry-wise affine proxy cannot model well.319

We do not include the result of GS-Tr+S and Naive+R, because these methods perform poor and320

could hardly generate feasible solutions given a constraint of DSP usage. We leave their results in321

Table. 6 in the appendix. Moreover, we compare the training time between different methods. To322
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DSP usage 40% 45% 50% 55% 60% 65% 70% rank-avg

SA 3.50 3.25 3.42 3.17 3.50 4.08 4.00 3.56

GA 2.70 2.92 3.17 3.08 3.42 3.25 3.25 3.11

RL 3.20 3.67 3.67 3.17 2.83 2.58 2.33 3.06

GS-Tr+R 3.50 3.00 2.50 3.08 2.17 2.50 2.75 2.79

CON 2.10 2.17 2.25 2.25 3.00 2.50 2.50 2.40 2500 3000 3500 4000 4500
Actual LUT Usage

20

30

40

50

60

70

Ac
tu

al
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SP
 U
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HLS
SA
GA
RL
GS-Tr+R
CON

Figure 4: The left table shows averaged ranks of the LUT usage given by different methods with the
constraint of different percentage of DSP usage in Application II (resource allocation). The right
figure shows the DSP-LUT usage amount relationship on one test configuration. The HLS baseline
denotes the optimal synthesis results among 200 random mappings.

Threshold θ C-In C-Out Naïve RL GS-Tr+S GS-Tr+R CON AFF OPT

3 AxC units 12.42 12.44 3.62 10.59 4.87 3.24 3.18 3.10 2.77
5 AxC units 14.68 14.65 6.20 12.28 8.03 5.86 5.13 5.38 4.74
8 AxC units 17.07 17.04 11.12 15.17 12.65 10.62 10.17 10.04 8.56

Table 4: Relative errors of different methods with the AxC unit constraint as 3,5,8 in Application III.

be fair, all methods run on the same server with a Quadro RTX 6000 GPU. The RL based optimizer323

takes 22 GB GRAM, while other optimizers only take 7 GB on average. Fig. 8 in the appendix further324

demonstrates that our methods and GS-T methods require much less training time than RL.325

4.5 Application III: Imprecise Functional Unit Assignment in Approximate Computing326

One fundamental problem in approximate computing (AxC) is to assign imprecise functional units327

(a.k.a., AxC units) to execute operations such as multiplication or addition [42–46], aiming to328

significantly reduce circuit energy with tolerable error. We follow the problem formulation in [45],329

where given a computation graph, each node represents either multiplication or addition. The330

incoming edges of a node represent its two operands. The goal is to assign AxC units to a certain331

number of nodes while minimizing the expected relative error of the output of the computation graph.332

In this application, each configuration C is a computation graph with 15 nodes (either multiplication333

or addition) that maps a vector in R16 to R. A fixed number θ of nodes are assigned to AxC units334

with produce 10% relative error. Let X ∈ {0, 1}|V | denote whether a node is assigned to an AxC unit335

or not; the proxy of the objective fr is the expected relative error at the output. We use 100k (X,C)336

as the training dataset and the entire solution space is 215 × 215. For each (X,C), the ground-truth,337

i.e., expected relative error, is computed by averaging 1k inputs sampled uniformly at random from338

[0, 10]16. The constraint gr is
∑

v∈V Xv ≥ θ with normalization, where θ ∈ {3, 5, 8}. We test the339

learned Aθ on 500 unseen configurations.340

Evaluation. Table. 4 shows the averaged relative errors of the assignments by different methods. The341

problem is far from trivial. Intuitively, assigning AxC units closed to the output, we may expect small342

error. However, C-Out performs bad. Our proxies AFF and CON obtain comparable best results.343

The MAE loss values of the two proxies are also similar, as shown in Table 8 in the appendix. The344

reason is that the circuit is made up of 4 layers in total which leads to at most 4-order moments in345

the objective function, which is in a medium-level complexity. Training time is also studied for this346

application, resulting in the same conclusion as application II (See Table 7 in the appendix).347

5 Conclusion348

This work introduces an unsupervised end-to-end framework to resolve LCO problems based on349

the relaxation-plus-rounding technique. With our entry-wise concave architecture, our framework350

guarantees that a low objective value could lead to qualified discrete solutions. Our framework is351

particularly good at solving PCO problems where the objectives need to be modeled and learned.352

Real-world applications demonstrate the superiority of our method over RL and gradient-relaxation353

approaches in both optimization performance and training efficiency. In the future, we aim to further354

broaden our framework so that binary embeddings of the optimization variables are not needed.355
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A Deferred Theoretical Arguments580

A.1 Proof of Theorem 1581

We analyze the rounding process of the relaxed solution X̄ = Aθ(C), X̄ ∈ [0, 1]n into the integral582

solution X̂ ∈ {0, 1}n. Let X̄i, X̂i, i = {1, 2, ..., n} denote their entries respectively. The rounding583

procedure has no requirement on the order of the rounding sequence, w.l.o.g, suppose we round from584

index i = 1 to i = n. In practice, it might be better to sort X̄ and round the entries according to their585

ranks. We have the following inequations:586

lr(θ;C)

= fr([X̄1, X̄2, ..., X̄n];C) + βgr([X̄1, X̄2, ..., X̄n];C)

(a)

≥ X̄1(fr([1, X̄2, ..., X̄n];C) + βgr([1, X̄2, ..., X̄n];C))

+ (1− X̄1)(fr([0, X̄2, ..., X̄n];C) + βgr([0, X̄2, ..., X̄n];C))

≥ X̄1( min
j1={0,1}

fr([j1, X̄2, ..., X̄n];C) + βgr([j1, X̄2, ..., X̄n];C))

+ (1− X̄1)( min
j1={0,1}

fr([j1, X̄2, ..., X̄n];C) + βgr([j1, X̄2, ..., X̄n];C))

(b)
= (fr([X̂1, X̄2, ..., X̄n];C) + βgr([X̂1, X̄2, ..., X̄n];C))

≥ min
j2={0,1}

(fr([X̂1, j2, ..., X̄n];C) + βgr([X̂1, j2, ..., X̄n];C))

= (fr([X̂1, X̂2, ..., X̄n];C) + βgr([X̂1, X̂2, ..., X̄n];C))

≥ ...

≥ min
jn∈{0,1}

(fr([X̂1, X̂2, ..., jn];C) + βgr([X̂1, X̂2, ..., jn];C)

= fr(X̂;C) + βgr(X̂;C)

(c)
= f(X̂;C) + βg(X̂;C),

(9)

where (a) is due to lr(θ;C)’s entry-wise concavity w.r.t. X̄ and Jensen’s inequality, (b) is due587

to the definition X̂1 = argminj1={0,1} fr([j1, X̄2, ..., X̄n];C) + βgr([j1, X̄2, ..., X̄n];C), and (c)588

is due to the assumption that the neural network based proxies could learn the objective and the589

constraints perfectly for X̂ ∈ {0, 1}n. The inequalities above demonstrate the fact that the loss value590

is non-increasing via the whole rounding process. By this, once the learnt parameter θ achieves591

lr(θ;C) < β, we could get f(X̂;C) + βg(X̂;C) ≤ lr(θ;C) < β. Because of the settings that592

f(·), g(·) ≥ 0, we have f(X̂;C) < lr(X̄;C), s.t. g(X̂;C) < 1.593

A.2 Proof of Theorem 2594

Set hr(X̄) =
∑

X∈{0,1}n h(X)
∏n

j=1 X̄
Xj

j (1− X̄j)
(1−Xj).595

We first prove that hr(X̄) with the form above satisfies (a) hr(X) = h(X) for X ∈ {0, 1}n.596

Given one X ′ ∈ {0, 1}n, by setting X̄ = X ′, we have597

n∏
j=1

X
′Xj

j (1−X ′
j)

(1−Xj) = 1, if X = X ′, and otherwise 0.

Therefore, in hr(X
′), there is only one term h(X ′)

∏n
j=1 X

′X′
j

j (1 −X ′
j)

(1−X′
j) = h(X ′) left. So,598

hr(X
′) = h(X ′), which satisfies (a).599

Then we prove that hr(X̄) satisfies (b) hr is entry-wise affine. From the definition, we have:600

X̄
Xj

j (1− X̄j)
1−Xj =

{
X̄j Xj = 1

1− X̄j Xj = 0.
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Consider two sequences X̄, X̄ ′ ∈ {0, 1}n with the entries X̄i, X̄
′
i, i = {1, 2, ..., n}. We have601

γ[X̄Xi
i (1− X̄i)

1−Xi ] + (1− γ)[X̄ ′Xi
i (1− X̄ ′

i)
1−Xi ]

=

{
1− γX̄i − (1− γ)X̄ ′

i Xi = 0

γX̄i + (1− γ)X̄ ′
i Xi = 1.

=
[
γX̄i + (1− γ)X̄i

]Xi
[
1− γX̄i − (1− γ)X̄ ′

i

](1−Xi)
.

W.l.o.g, we assume that only the entries X̄i and X̄ ′
i in the two sequences are different. For any602

γ ∈ [0, 1], we may use the above equality and have603

γhr(X̄) + (1− γ)hr(X̄
′)

= γ
∑

X∈{0,1}n

h(X)

n∏
j=1

X̄
Xj

j (1− X̄j)
(1−Xj) + (1− γ)

∑
X∈{0,1}n

h(X)

n∏
j=1

X̄
′Xj

j (1− X̄ ′
j)

(1−Xj)

= γ
∑

X∈{0,1}n

h(X)X̄Xi
i (1− X̄i)

1−Xi

n∏
j=1,j ̸=i

X̄
Xj

j (1− X̄j)
(1−Xj)

+ (1− γ)
∑

X∈{0,1}n

h(X)X̄ ′Xi
i (1− X̄ ′

i)
1−Xi

n∏
j=1,j ̸=i

X̄
Xj

j (1− X̄j)
(1−Xj)

=
∑

X∈{0,1}n

h(X)
[
γX̄Xi

i (1−X̄i)
1−Xi + (1−γ)X̄ ′Xi

i (1−X̄ ′
i)

1−Xi

] n∏
j=1,j ̸=i

X̄
Xj

j (1−X̄j)
(1−Xj)

=
∑

X∈{0,1}n

h(X)
[
γX̄i + (1−γ)X̄i

]Xi
[
1−γX̄i−(1−γ)X̄ ′

i

](1−Xi)
n∏

j=1,j ̸=i

X̄
Xj

j (1−X̄j)
(1−Xj)

= hr(γX̄ + (1− γ)X̄ ′)

Thus, we prove that the form of hr(X) is entry-wise affine.604

A.3 Proof of Proposition 1605

Suppose that the output of function h(X1, X2) is denoted as follows.606

a0 = h(0, 0), a1 = h(0, 1), a2 = h(1, 0), a3 = h(1, 1) (10)

Then, we pick out the largest value ai among a0, a1, a2, a3. W.l.o.g, we assume that a0 is the largest607

and they hold the following inequations:608

a0 ≥ a1, a0 ≥ a2, a0 ≥ a3. (11)

Then, we define our entry-wise concave function hr(X1, X2) as follows.609

hr(X1, X2) = a0 −
3∑

i=1

Relu(f [i])

= a0 − Relu(f [1])− Relu(f [2])− Relu(f [3]),

(12)

where610

Relu(f [1]) = Relu((a0 − a1)(X2 −X1)) =

{
a0 − a1 X1 = 0, X2 = 1

0 otherwise,

Relu(f [2]) = Relu((a0 − a2)(X1 −X2)) =

{
a0 − a2 X1 = 1, X2 = 0

0 otherwise,

Relu(f [3]) = Relu((a0 − a3)(X1 +X2 − 1)) =

{
a0 − a3 X1 = 1, X2 = 1

0 otherwise.

(13)
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B Additional Results611

B.1 Application I612

Here, we display some additional visualization results of the feature-based edge covering and node613

matching problems in application I in Fig. 5. In both edge covering and node matching problems,614

our method based on entry-wise affine proxies could avoid the multiplication between some large615

numbers so that the final cost could be low enough. For example, our method avoids 85*85 in the616

first row, 97*76 in the second row, 71*91 in the third row, and 69*98 in the forth row, which are all617

selected by the method with Gumbel-Softmax tricks.

A plain picture

(a) Matching:Config

OPT score: 336.98862743285923

(b) Matching:Optimal X∗

AFF score: 336.98862743285923

(c) Matching:AFF (Ours)

GS-Tr+R score: 341.3802940995259

(d) Matching:GS-Tr + R
A plain picture

(e) Matching:Config

OPT score: 403.78083240320615

(f) Matching:Optimal X∗

AFF score: 406.7808324032062

(g) Matching:AFF (Ours)

GS-Tr+R score: 416.2766657365395

(h) Matching:GS-Tr + R
a plain picture

(i) Covering:Config

OPT score: 37.811315489408166

(j) Covering:Optimal X∗

AFF score: 39.50492660051929

(k) Covering:AFF (Ours)

GS-Tr+R score: 45.495621044963734

(l) Covering:GS-Tr + R
a plain picture

(m) Covering:Config

OPT score: 35.67298439288202

(n) Covering:Optimal X∗

AFF score: 36.881178837326466

(o) Covering:AFF (Ours)

GS-Tr+R score: 38.78617883732647

(p) Covering:GS-Tr + R
Figure 5: The additional visualization of the edge covering and node matching for Application I.

618

B.2 Application II619

Method 1-st (%) 2-nd (%) 3-rd (%)

SA 12.3 10.3 13.4
GA 14.8 15.7 18.2
RL 18.5 21.8 19.5

GS-Tr+R 20.9 27.2 22.7
CON 39.5 24.8 26.0

Table 5: The percentage that each method
occupies in the first, second and third place
of the ranking.

The additional visualization results of DSP-LUT us-620

age amount relationship on the test configurations is621

shown in Figure. 6. Our entry-concave proxies gen-622

erates the lowest LUT-DSP combinations among all623

the methods. To be fair, we also pick the best results624

from 200 randomly sampled HLS tool’s assignment625

as a baseline (called HLS), to show the superiority of626

the other optimization methods. The GS-Tr+R and627

the RL method outperforms the HLS baseline, while628

the generic methods SA and GA only marginally out-629

perform and are comparable with the best of HLS630

random solutions.631

The average ranking of the LUT usage under the constraint of the maximum DSP usage amount632

is shown in Table. 6, which adds to another two baselines, the ‘Naive’ baseline and the GS-Tr+S633

method. It turns out that these two methods could not generate feasible results that satisfy the DSP634

usage threshold when the threshold is relatively low, thus we put them in the last place in the ranking635

if they could not generate feasible solutions.636

We also include the percentages of cases where each method takes the first, second and third places637

according to the rank, which is shown in Table 5. The comparison about how different proxies638

17



2000 2500 3000 3500 4000 4500
Actual LUT Usage

20

30

40

50

60

70

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

200 400 600 800 1000
Actual LUT Usage

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

100 200 300 400 500
Actual LUT Usage

2

4

6

8

10

12

14

16

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

500 600 700 800 900 1000 1100
Actual LUT Usage

6

8

10

12

14

16

18

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

2500 2750 3000 3250 3500 3750 4000 4250
Actual LUT Usage

5

10

15

20

25

30

35

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

2500 3000 3500 4000 4500
Actual LUT Usage

15

20

25

30

35

40

45

50

55

Ac
tu

al
 D

SP
 U

sa
ge

HLS
SA
GA
RL
GS-Tr+R
CON

Figure 6: The additional visualization of LUT-DSP usage relationship. The HLS baseline denotes the
optimal synthesis results among 200 random mappings.

DSP usage 40% 45% 50% 55% 60% 65% 70% rank-avg

SA 3.94 3.68 3.99 3.96 4.50 5.03 5.21 4.33
GA 2.88 3.09 3.73 3.56 4.20 4.03 4.42 3.70

Naïve 6.88 6.62 6.78 6.85 6.76 6.75 5.90 6.64
RL 3.50 4.19 4.33 3.73 3.22 3.14 2.64 3.53

GS-Tr+S 5.02 4.97 3.83 3.90 3.37 3.35 3.67 4.01
GS-Tr+R 3.93 3.39 2.94 3.57 2.52 2.98 3.23 3.22

CON 2.15 2.26 2.46 2.47 3.43 2.72 2.93 2.63
Table 6: The result of LUT DSP balancing problem in application II. The DSP usage thresholds are
from 40% to 70%, For the Naïve and GS-Tr+S method, if there are no feasible results under the DSP
usage constraint, we put them in the last place.

approximate the ground-truth LUT usage amount is shown in Fig 7. Again, the entry-wise affine639

proxy may introduce large error while the entry-wise concave proxy could approximate in a better640

sense.641

We investigate the training time of RL method, GS-Tr method and the entry-wise concave method.642

The comparison among these methods is shown in Fig 8. We run all the three methods on the same643

server with 2 Intel(R) Xeon(R) Gold 6248R CPUs, 1000GB RAM in total. In each experiment we644

take 26 processes of the CPU and run on one Quadro RTX 6000 GPU card. We count the time cost645

during training and select the models at different epochs for testing at intervals. Note that the training646

objectives in all methods use proxies while the testing results are the outputs given by the HLS tool.647

Due to the fact that inferring via HLS consumes a lot of time, we only test limited numbers of cases648

to draw the figure and thus the curves are not smooth.649

B.3 Application III650

For each method, we count the ratio that the relative error based on the assignment given by this651

method exceeds the optimal assignment (ratio = relative error / OPT relative error - 1). The smaller652

the ratio is, the closer the method’s relative error is to the optimal solution. The results are shown653

in Table 7. We also include the training time that the methods require to achieve the corresponding654

performance in the table. All the methods run on the same server with 2 Intel(R) Xeon(R) Gold655

6248R CPUs, 1000GB RAM in total. In each experiment we take 26 processes of the CPU and run656

on one Quadro RTX 6000 GPU card. The time is obtained by counting the least epoch that a model657
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(b) LUT entry-wise affine proxy
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(c) LUT entry-wise concave proxy

Figure 7: The visualization of different proxies in LUT learning in application II.
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(a) DSP threshold: 40 %
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(b) DSP threshold: 50 %
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(c) DSP threshold: 60 %
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(d) DSP threshold: 70 %

Figure 8: Training time of RL, vs GS-Tr, vs CON with different constraints on DSP usage.

achieves its reported performance, the time of OPT is the time that the brute-force search takes in the658

testset.659

Thresholdθ C-In C-Out Naive RL GS-Tr+S GS-Tr+R CON AFF OPT

3 348.47 349.09 30.68 282.31 75.68 16.78 14.80 11.91 0
5 209.70 209.07 30.80 159.07 69.17 23.53 8.2 13.50 0
8 99.41 99.06 29.90 77.21 47.68 24.03 18.80 17.28 0

Time / s 0 0 90+ 9851+ 90+ 90+ 92+ 92+ 32776+
Table 7: The averaged ratios (%) that the relative errors of different methods exceed the OPT on
application III. The required training time to achieve the performance is listed at the bottom row.

B.4 Study I: Further Evaluation on The Learning Capability of Different Proxies.660

Proxy AFF CON W/O limit

Train 0.19 0.17 0.10
Test 0.19 0.18 0.19

Table 8: Huber loss on application III.

We have studied the learning capability of different prox-661

ies for Application II, as shown in Fig. 7 and Fig. 3. We662

further study how proxies under different constraints fit663

with historical data on application III. We show the Huber664

loss [71] of the proxies in Table 8. The objective of ap-665

plication III has 4-order moment, the three proxies obtain666

comparable approximation performance.667

B.5 Study II: The Effectiveness of Our ‘Rounding’ Process668

Here we empirically study the effectiveness of our rounding procedure. We show the average669

relaxed loss value (lr = fr(X̄;C) + βgr(X̄;C), X̄ ∈ [0, 1]n), the average rounded loss value670

(l′r = fr(X̂;C) + βgr(X̂;C), X̂ ∈ {0, 1}n and the average true value of the rounded assignment671

(l = f(X̂;C) + βg(X̂;C)) on the testset of each problem in Table 9. According to the table, we672

observe that both the methods that adopt entry-wise affine proxies and entry-wise concave proxies are673

guaranteed to obtain a drop of the loss values after our rounding procedure. However, for the proxies674

that do not satisfy the constraints, the Naïve method and the GS-Tr-R baseline could not always675

guarantee such a drop after the rounding process. In particular, the rounding in GS-Tr-R increases the676
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Edge covering (App. I) Node matching (App. I) Resource allocation (App. II) A×C circuit design (App. III)

Proxy Naïve GS-Tr-R CON AFF Naïve GS-Tr-R CON AFF Naïve GS-Tr-R CON Naïve GS-Tr-R CON AFF
lr 62.58 78.56 80.91 46.37 5316.07 13103.39 5922.61 5389.95 5899.10 3485.60 2785.95 4.41 4.23 6.75 6.67
l′r 70.20 51.04 52.09 45.73 442.15 442.03 430.11 432.63 3350.35 2741.32 2599.89 9.31 7.27 5.22 5.19
l 68.52 46.91 52.04 44.55 429.12 429.39 422.47 418.96 2901.19 2749.08 2511.70 6.98 6.57 6.21 6.17

OPT 42.69 416.05 no OPT 5.36

Table 9: The relaxed loss value lr, the rounded loss value l′r and its true value l of the methods.

loss in the application of A×C circuit design, while the rounding in Naïve increases the loss in the677

applications of edge covering and A×C circuit design.678

C Experimental details679

All of the experiments are carried out on the same server with 2 Intel(R) Xeon(R) Gold 6248R680

CPUs, 1000GB RAM in total. In each experiment we take 26 processes of the CPU and run on one681

Quadro RTX 6000 GPU card. The maximum GRAM of the Quadro RTX 6000 GPU is 24GB. The682

proxies that satisfies our principle (AFF, CON) and GS-Tr run on PyTorch [72] frame with PyTorch683

geometric [73]. The RL baseline follow the actor-critic technique in [57]. [30] also utilizes the684

same RL technique to solve the same problem. The details of each dataset is displayed in Table. 10.685

Adam [74] is used as the optimizer in all of the experiments. All the experiment results are conduct686

and averaged under three random seeds 12345, 23456 and 34567.687

To be fair, in the training process, we first train the baseline methods, such as the proxy without688

constraints and Aθ based on the Gumbel-softmax trick. Then we train our entry-wise concave proxy689

and Aθ with exactly the same hyper-parameters with the baselines except for the necessary changes690

to construct the entry-wise concavity.691

Task Toy example Application I Application II Application III

fr, gr training 95,000 95,000 7,200 95,000
fr, gr testing 5,000 5,000 800 5,000
Aθ training 10,000 10,000 40 1,000
Aθ testing 500 500 20 500

Table 10: The number of instances in each dataset.

C.1 The toy example692

The ground truth of the objectives is designed as follows.693

f(X1, X2;C) = g1(C)X1 + g2(C)X2 + g3(C)X1X2 + g4(C), (14)

where C = [C1, C2] and694

g1 = (580− 10C1 − 3C2)/33,

g2 = (580− 10C2 − 3C1)/33,

g3 = (3C1 + 3C2)/45,

g4 = −(5C1 + 5C2)/33 + 60.

(15)

The constants are set arbitrarily. To match our graph-based pipeline, in this toy example, we also695

build a single edge graph for each configuration where the two nodes are associated with the attributes696

C1 and C2, and the binary variables X1 and X2.697

The proxy without constraints: We use 3 layers of GraphSAGE [68] convolutional layers that take698

both the node attibutes C and the optimization variables X̄ as inputs with leaky ReLU activation and699

batch normalization. Then, the structure is followed by a global mean pooling. After several MLP700

layers, the proxy outputs the cost. We use MSE loss to train this proxy. The learning rate is set as701

1e-2. The batch size is set as 4096. The reported performance is trained within 200 epochs.702
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Figure 9: The generalization from node problems to edge problems.

The entry-wise concave proxy: We use 3 layers of GraphSAGE with the same hyper-parameters703

as the proxy without constraints but it only takes the configuration C as inputs to encode the704

configuration. Then, the encoded configuration H ∈ R|V |×d (d is the dimension of the latent705

node feature) is separated equally into two parts U ∈ R|V |× d
2 and W ∈ R|V |× d

2 , we construct706

UX̄ +W, (X̄ ∈ [0, 1]|V |), then we multiply U1X̄1 +W1 with U2X̄2 +W2 to obtain the latent node707

representation ϕ(X̄;C), followed by a linear layer as the implementation of the AFF proxy ha
r(X̄;C)708

as introduced in Section 4 Eq. 6. MSE loss is used as the criterion, the learning rate is 1e-2, the batch709

size is 4096, the model is trained within 200 epochs.710

Aθ based on Gumbel-softmax tricks: When training Aθ, we also use 3 GraphSAGE layers to711

encode the configuration C with leaky Relu activation and batch normalization. Then the encoded712

latent feature is followed by fully connected layers to reduce the dimension and the Gumbel-softmax713

trick to sample a distribution from the soft probability predicted by the model. We use the soft714

Gumbel-softmax [48, 49] without the straight through trick. The learning rate is set as 1e-2, the batch715

size is 4096, the model is trained for 200 epochs.716

Aθ in {relaxation (Naïve), relaxation with entry-wise concave proxy (Ours)}: In Aθ, the structure717

is the same as that based on Gumbel-softmax tricks except that the structure has no pooling layer and718

takes a Sigmoid layer. The learning rate is 1e-2, the batch size is 4096, the model is trained for 200719

epochs.720

C.2 Application I - Edge Covering721

Dataset details: Each configuration C is a 4× 4 grid graph. Each node of the graph consists of two722

images randomly selected from the MNIST dataset [66] and thus represents a number between 00723

and 99.724

The ground truth of the objective are designed as follows:725

f(X;C) =
∑
e∈E

weXe, (16)

where726

we = (Cv + Cu)/3 + (CvCu)/100, for e = (u, v) ∈ E. (17)

The proxy without constraints: We firstly utilize ResNet-50 [67] to extract the latent fixed node727

feature and then send the feature into a GNN, the GNN is also based on 3 MPNN [75] layers, which728

involves the edge assignment X̄, (X̄ ∈ [0, 1]|E|) in the message passing. Global mean pooling is729

used to generate the final predicted value fr(X̄;C). MSE loss is utilized as the criterion, the learning730

rate is 5e-3, the batch size is 160.731

The entry-wise affine proxy: We also use ResNet-50 and 3 layers of MPNN [75] which take the732

output of ResNet-50 as inputs with leaky Relu activation and batch normalization to encode the733

configuration C into the latent node representation H ′ ∈ R|V |×d1 (d1 is the dimension of the node734

feature). After the encoding procedure, the encoded node features are lifted to each side of the edges735

according to the edge index, then these node features on two sides of the edges are concatenated736

together and sent into MLP layers to generate the latent edge representation H ′′ ∈ R|E|×d2 (d2737
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is the dimension of the edge feature). Then H ′′ is separated into two parts U ∈ R|E|× 3d2
4 and738

W ∈ R|E|× d2
4 , and we calculate UX̄ + W, (X̄ ∈ [0, 1]|E|) to construct the latent representation739

ϕ(X̄;C). The structure is followed by mean pooling and linear layers to construct the AFF proxy740

ha
r(X̄;C). The whole procedure generalizes our framework from solving node problems to edge741

problems, as is shown in Fig. 9. We use MSE loss for training, the learning rate is set as 5e-3, the742

batch size is 160.743

The entry-wise concave proxy: The network shares the same structure with the AFF proxy in744

the front part, while we utilize linear layers mixed with a negative Relu function to construct the745

CON proxy hc
r(X̄;C) = ⟨wc,−Relu(ϕ(X̄;C))⟩+ b, as introduced in Section 4. Note that we use746

torch.clamp() function to control the entries in wc greater or equal to zero in each batch of data during747

the training process. We use MSE loss for training and set the learning rate as 5e-3, the batch size is748

160.749

The RL baseline: We apply an actor critic model [57]. This model consists of 4 key components:750

1)States, the states are formulated as every possible partially assigned grid graph; 2) Actions, given751

the current state and the currently candidate edges of the grid graph, the action is which new edge to752

pick. Note that the model is only allowed to pick from the edges which connect at least one node753

that has not been covered yet; 3) State transition, given a state and an action, the probability of the754

next states; 4)Reward, the reward is 0 for all intermediate actions, in the last action the reward is the755

evaluation of the covering score predicted by the proxy without constraints.756

In each state at a time step, we extract the features from the last layer of the proxy without constraints757

fr. We utilize another ResNet-50 + GNN to encode the whole grid graph into a vector encoding.758

The features are further combined with the vector embedding as the state encoding. Then the state759

encoding is sent into the policy network that is made up of multiple MLP layers to output the critic760

value c and the action a which indicates the next edge to pick from. The loss for the actor is calculated761

by subtracting the reward by c, and we use Huber loss to make c close to the reward. In each state, the762

model would only choose from the edges which connect at least one node that has not been covered763

yet. The reward is defined as the negative proxy prediction:764

rt =

{− fr(X;C), s = T

0, 0 < s < T,
(18)

where T is the max step, and s denotes the number of the step. The learning rate is set as 1e-2, the765

discount factor for the reward is set as 0.95, we train the RL baseline for more than 20, 000 epochs to766

achieve the reported performance.767

The constraint gr(X̄;C): As to the penalty constraint gr(X̄;C) =
∑

v∈V

∏
e:v∈e(1− X̄e) which768

naturally satisfies our definition of CO problems in Section 2, we apply the log-sum-exponential trick769 ∑
v∈V exp(

∑
v∈e log(1− X̄e)) to calculate it via message passing in PyTorch geometric.770

Aθ based on Gumbel-softmax trick: We utilize 3 GraphSAGE layers to encode the node feature,771

with leaky Relu activation function and batch normalization. The encoded node features are lifted to772

each side of the edges, concatenated together and then sent into MLP layers to reduce the dimension773

and map to Aθ(C) ∈ [0, 1]|E|. Then the model is followed by the Gumbel-softmax trick to obtain the774

output X ∼ Ber(Aθ). We use the soft Gumbel-softmax [48, 49] without the straight through trick.775

The learning rate is set as 1e-3, the batch size is 60.776

Aθ in {relaxation (Naïve), relaxation with entry-wise concave proxy (Ours)}: The model shares777

the same structure as that based on the Gumbel-softmax trick, except that the Gumbel-softmax trick778

is replaced by X̄ ∈ [0, 1]|E| directly. The learning rate is set as 1e-3, the batch size is 60.779

C.3 Application I - Node Matching780

The ground truth of the objective are designed as follows:781

f(X;C) =
∑
e∈E

weXe, (19)
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where782

we = CvCu, for e = (u, v) ∈ E. (20)

Every structure design keeps the same as Application I - Edge Covering except for the extra penalty783

constraint
∏

e1,e2:v∈e1,e2
e1 ̸=e2

X̄e1X̄e2 in Eq. (8) which naturally follows our request on gr, and is also784

conducted via matrix operations on PyTorch geometric. As to the RL baseline, the structure design785

is basically the same as Application I, while in this problem, at each time step, the model is only786

allowed to pick an edge whose two nodes are both not covered. The reward is defined as follows:787

rt =


− fr(X;C) s = T

− β 0 < s < T, no options
0, 0 < s < T, option exists,

(21)

where “no options” means that there are some covered nodes whose neighboring nodes have been all788

covers, “option exists” denotes the case when eligible edges still exist, T is the max step, β is a large789

hyper-parameter, and s denotes the number of the step. The learning rate is set as 1e-2, the discount790

factor for the reward is set as 0.95, we train the RL baseline for more than 20, 000 epochs to achieve791

the reported performance.792

C.4 Application II - Resource Binding Optimization793

Dataset details In this application, we focus on the resource binding problems in field-programmable794

gate array (FPGA) design. Each configuration C in the dataset is a data flow graph (DFG) with more795

than 100 nodes. Each node represents an arithmetic operation such as multiplication or addition. The796

operations need to be one-to-one mapped into a micro circuit to carry out the calculation. Given an797

assignment of the mapping, we run high-level synthesis (HLS) simulation tools to obtain the actual798

circuit resource usage under the assignment, which might take up to hours time. Note that different799

assignments of the mapping could result in vastly different actual resource usage.800

In this dataset, we focus on the resource balancing problems between digital signal processors (DSP)801

and look-up tables (LUT). Here DSP is a small processor that is able to quickly perform mathematical802

operation on streaming digital signals, LUT is the small memory that is used to store truth tables803

and perform logic functions. The optimization goal of the dataset is to allocate those nodes with804

pragma to either LUT or DSP, such that the actual usage amount of LUT could be minimized given805

a maximum usage amount of the DSP usage. We use 1 (LUT) or 0 (DSP) to assign each node’s806

mapping. We encode the fixed node feature into a 10-dimension embedding which contains the807

following information: 1) 4 digits to indicate the types of nodes in {input, m-type, intermediate-type,808

output}; 2) 5 digit binary encoding of the node’s calculation precision, from 2 bits to 32 bits; 1809

digit encoding that indicates whether the node requires pragma. For those nodes that do not require810

pragma, HLS tools have a set of heuristic assignments to the nodes during the simulation.811

The proxy without constraints: We separately utilize two GraphSAGE GNN models [68] to predict812

the LUT usage fr(X̄;C) and the DSP usage gr(X̄;C), the structure of them are the same. We813

use 3 layers of GraphSAGE [68] convolutional layers that take both the node attibutes C and the814

optimization variables X̄ as inputs with leaky ReLU activation and batch normalization. Then, the815

structure is followed by a global mean pooling. After several MLP layers, the proxy outputs the cost.816

We use MSE loss to train this proxy. The learning rate is set as 1e-3. The batch size is set as 256.817

The entry-wise affine proxy: For both fr and gr, we use 3 layers of GraphSAGE to encode the818

configuration C and the hyper-parameter α to control the DSP usage threshold with leaky Relu819

activation and batch normalization into the latent node representation H ∈ R|V |×d (d is the node820

feature dimension). The hyper-parameters of the layers are exactly the same as the proxy without821

constraints. Then H is separated equally into two parts U ∈ R|V |× d
2 and W ∈ R|V |× d

2 , and we822

calculate UX̄ +W , after that we do the log-sum-exponential trick
∑

v∈V exp[log(UvX̄v +Wv) +823 ∑
u:(u,v)∈E log(UuX̄u+Wu)] via message passing to generate the 2-order moment entry-wise affine824

latent representation as introduced in Section 4. Finally, the global mean pooling and a linear layer is825
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used to obtain the output fr(X̄;C), gr(X̄;C). Huber loss is used as the criterion, the learning rate is826

set as 5e-4 for gr and 1e-3 for fr, the batch size is 256.827

The entry-wise concave proxy: The models share basically the same structure as that in the AFF828

proxy except for the last layers. We use linear layers with a negative Relu function to construct829

the CON proxy hc
r(X̄;C) = ⟨wc,−Relu(ϕ(X̄;C))⟩ + b, as introduced in Section 4. We utilize830

torch.clamp() function to control the entries in wc to be always greater or equal to zero in each batch831

of data processing during the training process.832

The simulated annealing baseline: We run the simulated annealing algorithm guided by the proxy833

without constraints. The initial temperature is set as 1000, the cool down factor is 0.99, the ending834

temperature is 699. For each temperature, the number of jumps is 20. And, we set the probability for835

mutation is 0.1.836

The genetic algorithm baseline: We run the genetic algorithm guided by the proxy without con-837

straints. The max generation is set as 20, the population of each generation is 40, the number of838

parents for mating in each generation is 20, the probability of crossover is 0.6, the probability of gene839

mutation is 0.01.840

The RL baseline: We apply an actor critic model [57]. This model consists of 4 key components:841

1)States, the states are formulated as every possible partially assigned DFG; 2) Actions, given the842

current state and the currently considered node of the DFG, the action is whether to assign the LUT to843

this node; 3) State transition, given a state and an action, the probability of the next states; 4)Reward,844

the reward is 0 for all intermediate actions, in the last action the reward is the evaluation of the fully845

assigned DFG subject to the DSP usage threshold.846

In each state at a time step, we extract the features from the last layer of the proxies without constraints847

fr, gr and concatenate them together. We utilize another GNN to encode the whole DFG into a vector848

encoding. The concatenated features is further combined with the vector embedding as the state849

encoding. Then, the state encoding is sent into the policy network that is made up of multiple MLP850

layers to output the critic value c and the action a which indicates whether to assign LUT for the851

current multiplication node. The loss for the actor is calculated by subtracting the reward by the critic852

value c, we use Huber loss to make c close to the reward. Note that the above scheme follows the853

original paper that studied the same application [30] while the status representation is based on an854

intermediate output given by the GNN in our proxy without constraints. The reward is defined as855

the negative weighted sum of LUT usage and the difference between the DSP usage and the DSP856

threshold:857

rt =

{− αfr(X;C)− βRelu(t− gr(X;C)), s = T

0, 0 < s < T,
(22)

where T is the max step, α, β are hyper-parameters and set as 0.1, 10 respectively, t is the DSP usage858

threshold and s denotes the number of the step. The learning rate is set as 1e-2, the discount factor859

for the reward is set as 0.95, we train the RL baseline for more than 9, 000 epochs to achieve the860

reported performance.861

The mapping of gr(X̄;C): Here we introduce the mapping of the constraints in detail. The relaxed862

optimization goal could be written as follows:863

min
θ

fr(X̄;C), s.t. gr(X̄;C) < t, (23)

where t − 1 is the threshold for the DSP usage amount, X̄ = Aθ ∈ [0, 1]n. As introduced in864

Section 2, we map the above constraints into the normalized constraint g′r(X̄;C) via the following865

normalization.866

g′r(X̄;C) =
gr(X̄;C)− gmin

g+min − gmin

, (24)

where g+min = minX∈{0,1}|V |\Ω gr(X;C) = t and gmin = minX∈{0,1}|V | gr(X;C) = 0 in this case.867

Thus, the normalized constraint could be written as:868

g′r(X̄;C) =
gr(X̄;C)

t
. (25)
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The constraint above could satisfy our definition of the CO problems as introduced in Section 2. The869

overall loss function could thus be written as follows:870

lr(X̄;C) = fr(X̄;C) + β
gr(X̄;C)

t+ 1
, (26)

where β > maxX∈Ω f(X;C).871

In our implementation, we uniformly feed the network with different α = β
t+1 for different t’s such872

that the model can be automatically suitable for different α’s. Simultaneously, for different t, we873

expect the algorithm Aθ to adapt such a constraint t, so we also use t as an input, i.e., using Aθ(·; t).874

During testing, the obtained Aθ(·; t) outputs X̄ that would satisfy different DSP usage thresholds875

by taking different t as the input. By this, a single model could handle all ranges of DSP usage876

thresholds.877

Aθ based on Gumbel-softmax trick: We also use 3 GraphSAGE layers to encode the configuration C878

into the latent features. Then, we use MLP layers to reduce the dimension and map to Aθ(C) ∈ [0, 1]n879

and the Gumbel-softmax trick to sample X ∼ Ber(Aθ). We use the soft Gumbel-softmax [48, 49]880

without the straight through trick. The learning rate is set as 1e-3, the batch size is 256.881

Aθ in {relaxation (Naïve), relaxation with entry-wise concave proxy (Ours)}: The model shares882

the same structure as that based on the Gumbel-softmax trick, except that the Gumbel-softmax trick883

is replaced by X̄ ∈ [0, 1]n directly. The learning rate is 1e-3, the batch size is 256.884

C.5 Application III - Circuit Design for Approximate Computing885

Dataset details: Each configuration C in our approximating computing (A×C) dataset is a computa-886

tion graph whose nodes represent either multiplication or addition calculation. For each operand, we887

have two different calculators to carry out the calculation: one is the precise calculator which always888

output the precise result but requires high computational resource workload, the other is the A×C889

unit which costs low computational resource but always randomly produces 10% relative error of890

the actual result. To balance the computation precision and the resource workload, the optimization891

goal is to minimize the average relative error of the computation graph given the need to use at least892

a certain number θ of the A×C units, where θ ∈ {3, 5, 8}. For each instance in the dataset, we893

randomly take 1, 000 different inputs to calculate the average relative error. Each input consists of 16894

integer numbers that are uniformly sampled from 1 to 100. To simulate the locality of some data,895

some of the inputs only sample 14 integers and randomly re-use two of them.896

The C-In, C-Out baselines: In the C-In (C-Out) baseline, as many A×C units as the threshold897

requires are placed randomly near to the input (output) of the approximate computing circuit.898

The proxy without constraints: We utilize 4 PNA [76] layers as the GNN backbone to show that our899

method is not limited with certain GNN backbones. The PNA layers take both the configuration C900

and the optimization variable X̄ as inputs with leaky Relu activation and batch normalization. Then901

the structure is followed by global mean pooling with MLP layers to output fr(X̄;C). Huber loss is902

used as the criterion, the learning rate is 1e-3, and the batch size is 2048.903

The entry-wise affine proxy: We also use 4 PNA layers but only take the configuration C as904

input to generate the latent node features H ∈ R|V |×d (d is the dimension of the node features).905

The hyper-parameters are exactly the same as the proxy without constraints. Then H is separated906

equally into two parts: U ∈ R|V |× d
2 and W ∈ R|V |× d

2 , and we calculate UX̄ +W , after that we907

do the log-sum-exponential trick
∑

v∈V exp[log(UvX̄v +Wv) +
∑

u:(u,v)∈E log(UuX̄u +Wu)] via908

message passing to generate the 2-order moment entry-wise affine latent representation as introduced909

in Section 4. Huber loss is used as the criterion, the learning rate is set as 1e-3, the batch size is 2048.910

The entry-wise concave proxy: The model shares basically the same structure as that in the AFF911

proxy except for the last layers. We utilize linear layers mixed with a −Relu function to construct912

the CON proxy hc
r(X̄;C) = ⟨wc,−Relu(ϕ(X̄;C))⟩ + b, as introduced in Section 4. We use913

torch.clamp() function to control the entries in wc to be always greater or equal to zero in each batch914

of data processing during the training process.915
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The RL baseline: We apply an actor critic model [57]. This model consists of 4 key components:916

1)States, the states are formulated as every possible partially assigned A×C computation graph; 2)917

Actions, given the current state and the currently considered node of the A×C circuit, the action is the918

next node to assign with the A×C unit; 3) State transition, given a state and an action, the probability919

of the next states; 4)Reward, the reward is 0 for all intermediate actions, in the last action the reward920

is the evaluation of the fully assigned A×C computation graph.921

In each state at a time step, we extract the features from the last layer of the proxy without constraints922

fr. We utilize another GNN to encode the whole computation graph into a vector encoding. The923

features are further combined with the vector embedding as the state encoding. Then the state924

encoding is sent into the policy network that is made up of multiple MLP layers to output the critic925

value c and the action a which indicates the next node to assign with an A×C unit. The loss for926

the actor is calculated by subtracting the reward by c, and we use Huber loss to make c close to the927

reward. Note that the state stops if the model has already assigned with as many A×C units as the928

threshold requires. The reward is defined as the negative proxy prediction:929

rt =

{− fr(X;C), s = T

0, 0 < s < T,
(27)

where T is the max step, and s denotes the number of the step. The learning rate is set as 1e-2, the930

discount factor for the reward is set as 0.95, we train the RL baseline for more than 9, 000 epochs to931

achieve the reported performance.932

The mapping of gr(X̄;C): The relaxed optimization goal could be written as follows:933

min
θ

fr(X̄;C), s.t.
n∑

i=1

X̄i > t, (28)

where t + 1 is the A×C unit usage threshold, Xv = 1 denotes the usage of an A×C unit. The934

relaxation of the above constraint could be written as g′r(X̄;C) = n−
∑n

i=1 X̄i ∈ [0, n− t). With935

the method introduced in Section 2, we could normalize it as follows:936

gr(X̄;C) =
g′r(X̄;C)− gmin

g+min − gmin

, (29)

where g+min = minX∈{0,1}n\Ω g′r(X;C) = n − t and gmin = minX∈{0,1}|V | g′r(X;C) = 0 in this937

case. Thus, the normalized constraint could be written as:938

gr(X̄;C) =
n−

∑n
i=1 X̄i

n− t
. (30)

The constraint above could satisfy our definition of the CO problems as introduced in Section 2, the939

overall loss function could thus be written as:940

lr(X̄;C) = fr(X̄;C) + β
n−

∑n
i=1 X̄i

n− t
, (31)

where β > maxX∈Ω f(X;C).941

In our implementation, we uniformly feed the network with different α = β
n−t for different t’s942

such that the model can be automatically suitable for different α’s. Simultaneously, for different943

t, we expect the algorithm Aθ to adapt such a constraint t, so we also use t as an input, i.e., using944

Aθ(·; t). During testing, the obtained Aθ(·; t) outputs X̄ that would satisfy different A×C unit usage945

thresholds by taking different t as the input. By this, a single model could handle all ranges of A×C946

unit usage thresholds.947

Aθ based on Gumbel-softmax trick: We also use 3 GraphSAGE layers with leaky Relu activation948

functions and batch normalization to encode the configuration C into the latent features. Then, we949

use MLP layers to reduce the dimension and map to Aθ(C) ∈ [0, 1]n and the Gumbel-softmax trick950

to sample X ∼ Ber(Aθ). We use the soft Gumbel-softmax [48, 49] without the straight through trick.951

The learning rate is set as 1e-3, the batch size is 2048.952

Aθ in {relaxation (Naïve), relaxation with entry-wise concave proxy (Ours)}: The model shares953

the same structure as that based on the Gumbel-softmax trick, except that the Gumbel-softmax trick954

is replaced by X̄ ∈ [0, 1]n directly. The learning rate is 1e-3, the batch size is 2048.955
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D Broader Impact956

In this paper, we introduce a general unsupervised framework to resolve LCO problems. The broader957

impact of this paper is discussed from the following aspects:958

1) Who may benefit from this research. The researchers, companies and organizations who utilize our959

optimization framework to solve CO, LCO or PCO problems might benefit from this research, because960

our framework reduces the cost of data labeling and improves the performance of the optimization.961

In addition, more broader people might also benefit from this research, because the unsupervised962

framework and the standardized low-cost training in comparison with the current methods mean963

lower energy cost and less pollution, which might do good to the whole society.964

2) Who may be put at a risk from this research. Although our method guarantees the quality of the965

obtained solution when the loss is low, how much gap between the obtained solution and the optimal966

solution is still unclear. There might be still some gaps to fill in before our method gets deployed in967

the scenarios where rigorous approximation guarantee of the solutions is requested.968

3) What are the sequences of the failure of the system. A failure of our approach will fail to give a969

relatively good enough solution to the CO problem.970

E Licenses971

We use the following datasets in our research, their licenses are listed as follows:972

• The feature based edge covering and node matching problem dataset in application I is973

generated and proposed by us. It is inspired by [65] and utilizes the images from MNIST [66],974

which is under the Creative Commons Attribution-Share Alike 3.0 license. The dataset is975

publicly available.976

• The resource binding problem dataset in application II is from [30] and is publicly available.977

Please cite their paper in the new publications.978

• The imprecise functional unit assignment problem dataset in application III is from [45] and979

is publicly available. Please cite their paper in the new publications.980

All the datasets and code bases are publicly available. They contain no human information or981

offensive content.982
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