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A SUPPLEMENTARY MATERIAL

A.1 REPRODUCING KERNEL HILBERT SPACES

The kernel functions k(x,x’) : X x X — R used in Gaussian Process (GP) uniquely define an
associated Reproducing Kernel Hilbert Space (RKHS) (Aronszajnl, [1950). Formally:

Definition A.1. Let H; be a Hilbert space of real valued functions f : X —R on a non-empty set X".
A function k : X x X—R is a reproducing kernel of H, and #;, a Reproducing Kernel Hilbert
Space (RKHS), if

¢ VX,X/ € X, k‘(X,X/) = <]<2(-,X), k(-,X/»%k,
* kspans Hy ie., Vx € X, k(-,x) € Hy,
* Vx € X,Vf € Hie, (f(-), k(-,%))3, = f(x) (the reproducing property).

There exists varieties of kernels that can be used in fitting a GP surrogate model. A kernel that
depends only on the distance between two given points i.e., k = k(x — x’) is called as stationary
kernels. Stationary kernels are also called as translation-invariant kernels. Some of the popular kernel
functions are listed below.

A.1.1 MATERN KERNEL

Matérn kernel is a kernel that is commonly used in numerous machine learning applications. There
are two variants of Matérn kernels that differ in their smoothness coefficient () as shown below.
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kMAT(x,x’)l,:% = (1 + Tfﬂx —x'|| + %;HX — x/||2> exp < — T\[Hx — x'||) (8)

where [ is the lengthscale hyperparameter of Matérn kernel.

A.1.2 SQUARED EXPONENTIAL KERNEL

Squared Exponential (SE) kernel or Radial Basis Function (RBF) or Gaussian kernel function is the
popular stationary kernel function. The closed-form formulation of the SE kernel is represented as
shown below.

ksg(x,x’) = a? exp (— —lx — x’||2> 9)

where, afc and [ corresponds to the signal variance and lengthscale hyperparameter, respectively,
collectively represented as O = {I, U%}.



A.1.3 LINEAR KERNEL

Linear kernel is a commonly used non-stationary kernels defined as the inner product of the input
data points. The mathematical formulation of a linear kernel is given by:

kun(x,x') = x'xT 4 ¢ (10)

where c is the bias hyperparameter of linear kernels.

A.1.4 MULTI-KERNEL LEARNING

Multi-kernel is a non-stationary kernel function defined as a linear combination of stationary and
non-stationary kernels. For instance, multi-kernels can be constructed as:

kwke (x,x") = wy ksg(x, %) + we kmar(x,x') + w3 kun(x, x”) (1D

where w = [w; ws ws] corresponds to the kernel weights, that are usually tuned by maximizing GP
log-likelihood.

A.2 BAYESIAN OPTIMIZATION

The central idea of Bayesian Optimization (BO) strategy is to define a prior distribution over all
the possible set of objective functions and then refine the model sequentially with the observed
samples. BO is built on top of the Bayes theorem that incorporate prior belief about the black-box
objective function under consideration. According to Bayes theorem, given a model M and data D,
the posterior probability of the model conditioned on data i.e., P(M|D) is directly proportional to
the likelihood of data D conditioned on model M i.e., P(D|M), multiplied by the prior probability
of model P(M),

P(M|D) x P(D|M) P(M) (12)

The observation model of BO is collected as Dy.+ = {X1.t,y1:¢}, where y; = f(x:) + 7, is a noisy
observation of the black-box objective function f evaluated at input location x; corrupted with a
white Gaussian noise 7, ~ GP(0,07). In BO, we compute the posterior distribution P(f |D) by
combining the prior P(f) with the likelihood P(D| f) represented as,

P(fIDP) o< P(D[f) P(f) (13)

The posterior distribution P( f |D) computed captures our updated belief about the black-box objec-
tive function. BO can be perceived as a two step sequential strategy. First step focuses on defining the
prior distribution that capture our prior beliefs. Usually GPs are used in placing prior distributions.
Second step focuses on determining the best candidate that can be evaluated next. Acquisition
functions are used to find the next candidate point with the high promise of finding the optima. An
algorithm for the standard Bayesian optimization procedure is provided in Algorithm 2}

Algorithm 2 Standard Bayesian Optimization

Input: Set of observations D1.p = {X1.¢/, ¥1.+ }, Sampling budget T’

1. fort =1t',..., T iterations do
2. optimize ©* = argmax log £
e
3. update GP model with optimal kernel hyperparameters ©*
4. find the next query point x;,1 = argmax u(x)

xXEX

5. query f(x) at X¢r1 s Yep1 = f(Xet1) + Do

6. augment the data as Dy.;11 = D1.4 U (X¢41, Yet1)
7. update GP model

8. end for




A.2.1 ACQUISITION FUNCTIONS

The acquisition function guides the optimization by balancing the trade-off between exploration and
exploitation. [Kushner| (1964) proposed Expected Improvement (EI) acquisition function to guide the
search by taking into account both the probability and magnitude of improvement over the current
known optima. The next candidate point is obtained by maximizing the acquisition function given as:

x) — f(xT o(x if o(x
wno) = {00~ JED 22 o0 62) o0 >0 "
_oux) - f(xT)
Z= o(x)

where ®(Z) and ¢(Z) represents the Cumulative Distribution Function (CDF) and Probability
Distribution Function (PDF) of the standard normal distribution, respectively and f(x™) is the best
value observed so far in the optimization.

Gaussian Process-Upper Confidence Bound (GP-UCB) acquisition function is another popular
acquisition function defined based on confidence bounds criteria. GP-UCB acquisition function is
given as:

ugpuc(x) = pu(x) + /Bt o(x)
where f; is a hyperparameter that balances the exploration-exploitation at iteration ¢. |Srinivas et al.

(2012)) discussed in detail the possible values for trade-off parameter ;. Following Brochu et al.
(2010), we set the value for trade-off parameter (/3;) at iteration ¢ as:
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where ¢’ € (0, 1), d is the number of input dimensions.

A.2.2 THOMPSON SAMPLING BASED BAYESIAN OPTIMIZATION

Thompson sampling (Thompson, [1933) is a randomized selection strategy to select the next candidate
for function evaluation by maximizing a random sample drawn from the posterior distribution. There
have been significant advancements [Kaufmann et al.| (2012); Shahriari et al.|(2014); Bijl et al.| (2016));
Chowdhury and Gopalan| (2017) in Thompson sampling literature that demonstrate the theoretical
guarantees of Thompson sampling. Russo and Van Roy|(2014) provided a Bayesian regret bound for
Thompson sampling using the notion of eluder dimension|Li et al.|(2021). A complete algorithm of
Thompson sampling based Bayesian optimization is provided in Algorithm 3]

Algorithm 3 Thompson Sampling based Bayesian Optimization

Input: Set of observations Dy = {X1.¢/,y1.+' }, Sampling budget T

1. fort =1¢,.--, T iterations do
2. optimize ©* = argmax log £
e
3. update GP model with ©*
4. draw a random sample g, from the updated GP.

find the next query point x;; = argmax g¢+1(x)
xeX

6 query f(x) at X;11 @ Y1 = f(Xet1) + M1

7 augment the data as Dy.;41 = D14 U (X¢41, Yet1)
8. update GP posterior model

9. end for

At each iteration t+1, Thompson sampling strategy selects a point x; that is highly likely to be
the optimum according to the posterior distribution i.e., x; is drawn from the posterior distribution
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Figure 4: A complete process flowchart of our proposed BOAP framework.
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Px+(+|D1:¢—1) conditioned on data D;;—;. Thompson sampling strategy simplifies if Gaussian
Processes (GPs) are used for prior and posterior distributions. For GPs, if g is a sample drawn from
GP(up,.,_,,kp,,_,) we have:

Pxcx (X|D1:t—l) = /Px* (X‘Q)P(gﬂ)l:t—l) dg

The probability Py« (x|g) has its mass at the maximizer:

argmax g(x) (15)
xeX

Using this utility, at each iteration ¢ + 1, we draw a sample g;11 from GP(up,., ., kp,.,_,) and then
find its maxima as per Eq. (I3). The obtained maxima is used as the next candidate for function
evaluation.

A.3 ADDITIONAL DETAILS OF BOAP FRAMEWORK

As discussed in the main paper, our proposed framework uses a model selection based decision
making on whether to choose augmented GP (GP},) built on the expert preferential knowledge on
abstract properties or the standard GP (GP},) for suggesting the next candidate for function evaluation.
The arm containing the standard GP model is denoted as Arm-f and the arm containing the augmented
GP model is termed as Arm-f. A complete flowchart of our framework is shown in Figure 4]

In BOAP, Arm-f directly models the given objective function f(x), whereas Arm-h models f(x)
via a human objective function (h(X)) in a search space comprising of inputs that are augmented
with the latent abstract properties computed using rank GPs. As discussed in the main paper, the
human objective function h(X) incorporates the additional expert feedback from experts, and thus
more-informed and a simplified version of f(x). Therefore, at iteration ¢, if Arm-§ is selected and
Re = [Xey fhooy (Xt)5 -+, Hheo,, (X¢)] s the candidate suggested, then we observe y; as:

Y = h([Xe, fraoy (Xe), s Beo,,, (X0)]) = f(x4)

A graphical representation of BOAP framework and its components are shown in Figure[5] Nodes
highlighted in blue color corresponds to inputs or outputs of a Gaussian process. Rectangular boxes
shaded in Grey correspond to the nodes representing rank GPs, whereas the rectangular boxes shaded
in orange correspond to the nodes representing conventional GPs. The estimated parameters and the
latent variables are highlighted in yellow and green color, respectively.

A.3.1 DERIVATIVES OF THE LIKELIHOOD FUNCTION

In rank GP distributions the MAP estimates are computed using Eq. (4) mentioned in the main
paper. However, the Newton-Raphson recursion needs access to the first and second order derivatives
of the loss function L = —In ® (z(x, x/ )) with respect to latent function values w. The analytical
formulation of the first order and second order derivatives are given as:

oL ['(x;) ¢(z)
ow(x;) 952 P

- ) (10

N



Figure 5: Components of Arm—f and Arm—b in BOAP framework. Nodes highlighted in blue color
corresponds to inputs or outputs of a Gaussian process. The estimated parameters and the latent
variables are highlighted in yellow and green color, respectively. Rectangular boxes shaded in Grey
and Orange correspond to the nodes representing rank GPs and conventional GPs, respectively.
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A.4 ADDITIONAL RESULTS AND EXPERIMENTAL DETAILS

A.4.1 PARAMETER SELECTION IN BOAP FRAMEWORK

The kernel functions (k) used in fitting a Gaussian process model for the unknown objective function
f is associated with its own hyperparameter set 6. The optimal kernel hyperparameters (6*) are
estimated by maximizing the marginal likelihood function, given by the equation:

POIX.0) = [ pislf) plr1X.0) df (18)
By marginalizing Eq. (T8)), we get the closed-form for GP log-likelihood as:

1 _ 1 n
L=logP(ylX,0) = —§(yT[K + U%I} ly) — 3 log |K + 021| —3 log(27) (19)

where n corresponds to the total number of training instances. For a rank GP the closed-form of the
GP log-likelihood can be obtained as:

= 1 . 1 n
L= —wlu[K+ o1 Wy — 5 log | K+ o1 | —75 log(2m) (20)
The only difference in the formulation of log-likelihood of a rank GP and a traditional GP is that
the absolute measurements (y) of the objective function is replaced with the latent function values
obtained via Maximum A Posteriori (MAP) estimates. The GP log-likelihood mentioned in Eq. (T9)
and Eq. (20) is now maximized to find the optimal hyperparameters 6*.

0* = argmax L
0

Further, if we use all training instances for the computation of the log marginal likelihood, there are
chances that only Control arm may get selected in majority of the rounds. Therefore to avoid this,



instead of using all the training instances for computing the marginal likelihood, we use only the
subset of the original training data for finding the optimal hyperparameter set and then we use the
held-out instances from the original training set to compute the (predictive) likelihood.

In this paper, we implement Automatic Relevance Determination (ARD) kernel (Neall, 2012} based
on Squared Exponential kernel mentioned in Eq. (9) at all levels of our proposed BOAP framework.
ARD kernel is popular in the machine learning community due to its ability to suppress the irrelevant
features. In ARD, each input dimension is assigned a different lengthscale parameter to keep track
of the relevance of that dimension. Therefore, a GP fitted in a d—dimensional input space with
ARD kernel has d lengthscale parameters i.e., I = [1.4 and optional variance hyperparameters (noise
variance o and signal variance ).

Specifically, for the human-inspired arm (Arm-h) we use a spatially-varying ARD kernel where we
set the lengthscales of the augmented input dimensions in proportion to the rank GP uncertainties
via a parametric function of the input x. The lengthscale function for each of the augmented input
dimension (corresponding to property w;) is set to be [, (x) = «ao,,(x), where « is the scale
parameter and o,,,(x) is the normalized standard deviation predicted using the rank GP (GP.,,).
Therefore, the hyperparameter set (6;,) of Arm-b consists of the lengthscale parameters ({1.p) for the
original un-augmented dimensions and the scale factor (c) from the augmented input dimensions i.e.,
0n = {li.p, a}.

The overall hyperparameter set © of our proposed framework consists of hyperparameters from
each of the m rank GPs (0,,,,,.) and two main GPs corresponding to the 2-arms (6, and 0y) i.e.,
© ={0,07} = {{l.p,a},{l1.p}}. Ateach iteration ¢, we find the optimal set of hyperparameters
o = {6;, 0}} by maximizing the GP (predictive) log-likelihood mentioned in Eq. and Eq. .

In all our experiments, we set the signal variance parameter a? = 1 as we standardize the outputs of

GPp, and GP ;. We set the noise variance as 1) ~ GP(0,02 = 0.1) and 57 = 0.1. As we normalize
the input space of the GP distributions constructed in our BOAP framework, we tune each lengthscale
hyperparameter [ € © in the interval [0, 1]. Further, we normalize the outputs of each of the auxiliary
rank GPs (GP,,,) to avoid different scaling levels in their output, that can lead to undesired structures
in the augmented input space.

We run all our experiments on an Intel Xeon CPU@ 3.60GHz workstation with 16 GB of RAM
capacity. We repeat our experiments with 10 different random initialization. For a d—dimensional
problem, we consider ¢’ = d + 3 initial observations. The evaluation budget is set as 7' = 10 x d + 5.
For the real-world battery design experiments, due to their expensive nature, we have restricted the

evaluation budget to 50 iterations even though d > 5. In all our experiments, we start with p = (g)
preferences in P, that gets updated in every iteration of the optimization process.

A.4.2 ABLATION STUDIES OF BOAP FRAMEWORK

To demonstrate the robustness of our approach we have conducted additional experiments by ac-
counting for the inaccuracy or poor choices in expert preferential knowledge. Here, we show the
performance of our BOAP approach in two scenarios. First, we show the performance of our proposed
approach when the higher-order abstract properties are poorly selected. Second, we incorporate noise
in the expert preferential feedback by flipping the expert preference between two inputs (designs)
with probability 6 = 0.3. We now discuss in detail the aforementioned two variations of our proposed
method.

Inaccurate Abstract Properties (BOAP-IA) In the first variation, we assume that the expert poorly
selects the human abstraction features. Table [2]depicts the synthetic functions considered and the
corresponding (poorly chosen) human abstraction features. BOAP-IA uses such inaccurate human
abstract features while augmenting the original input space.
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Figure 6: Simple regret vs iterations for the synthetic multi-dimensional benchmark functions. We
plot the average regret along with its standard error obtained after 10 random repeated runs.

Table 2: Selection of abstraction features by a simulated human expert. The human abstraction (high
level) features shown in the 3rd column are deliberately selected to be uninformative.

Functions f(x) Human Abstraction Features
(2_x)2 (G—x)2 1 .
Benchmark exp +exp ™ 10 +x2—+1 w1 = sin X, wy = COS X
! 212 2 i
Rosenbrock ST100 X (w441 — 22)% + (25 — 1)?] wy = sin X, wy = cosx
=1
d [ .2 d s
: i T o _
Griewank 231 1050 Hl CoS (\ﬂ) +1 W) =SinX, wy = X
1= 1=

Noisy Expert Preferences (BOAP-NP) In the second variation, we account for the inaccurate
expert preferential knowledge by introducing an error in human expert preferential feedback. To
do this, we flip the preference ordering with a probability § (we used § = 0.3) i.e., P¥0 = {(x; >~
X;) | Xiy Xj € X, Vij W(X;) > V5 w(x;)}, where v;; is drawn from a random distribution such that
it is +1 with probability 1 — §, —1 with probability 6.

We evaluate the performance by computing the simple regret after 10d iterations. The experimental
settings are retained as mentioned in the experiments section (refer to Section 5.1 in the main paper).
The empirical results for BOAP with inaccurate features (BOAP-IA) and BOAP framework with
noisy preferences (BOAP-NP) are presented in Figure[6] It is significant from the results that our
proposed BOAP framework outperforms standard baselines due to the model selection based 2-arm
scheme employed that intelligently chooses the arm with maximum predictive likelihood to suggest
the next sample.

A.4.3 DETAILS OF REAL-WORLD EXPERIMENTS

As mentioned in the main paper, we evaluate the performance of BOAP framework in two real-world
optimization paradigms in the Lithium-ion battery manufacturing. The advent of cheap Li-ion battery
technology has significantly transformed range of industries including healthcare (Schmidt and
Skarstad, [2001)), telecommunication (Brunarie et al., 2011, automobiles Harper et al.|(2019), and
many more due to its ability to efficiently store the electrochemical energy. However, the process
for manufacturing of Li-ion batteries is very complex and expensive in nature. Thus, there is a wide
scope for optimizing the battery manufacturing process to reduce its CapEx and OpEx. We now
provide a brief discussion on battery manufacturing experiments considered in our main paper. For
real-world experiments, we use the same set of algorithmic parameters that we used in the synthetic
experiments.

Optimization of Electrode Calendering Process

Duquesnoy et al.| (2020) discussed the effect of calendering process on electrode properties that
significantly contribute to the underlying electrochemical performance of a battery. Authors have
implemented a data-driven stochastic electrode structure generator, based on which they construct
electrodes and analyze in terms of Tortuosity (both in solid phase 75, and liquid phase 7j;4), percentage



of Current Collector (CC) surface covered by the active material and percentage of Active Surface
(AS) covered by the electrolyte. The manufacturing process parameters considered are calendering
pressure, Carbon-Binder Domain (CBD), initial electrode porosity and electrode composition. A
pictorial representation of the inter dependencies between the input process variables and output
electrode properties is provided in Figure 8 of Duquesnoy et al.| (2020).

Duquesnoy et al.|(2020) published a dataset reporting the input manufacturing process parameters and
the output characteristics of 8800 electrode structures. Each of the manufacturing setting has been
evaluated for 10 times, therefore we have averaged the results to obtain a refined dataset consisting of
n = 880 instances with d = 8 process variables.

We optimize the calendering process by maximizing the Active Surface of an electrode (overall
objective) by modeling two abstract properties: (i) Property 1 (w1): Tortuosity in liquid phase Tiq,
and (ii) Property 2 (ws): Output Porosity (OP). As discussed in the main paper, the abstract properties
{wn,,wop} can only be qualitatively measured, however to simulate the expert pairwise preferential
inputs { P“ia, P“o*}, we use the empirical measurements for 7j,q and OP in the published dataset.

PYmiq = {(X - X/)i ifT],'q(X) > T]iq(X/) ‘ X,X/ € X1:n Vi e Np}

PYr = {(x > x'); if OP(x) > OP(x') | x,x" € x1., Vi € N,}

We obtain the values 7jq(x) and OP(x) by referring to the dataset published. Based on these
preference lists { P“™a P“or} we fit two auxiliary rank GP distributions {GPu.,,» GPuc }- Then,

we use these auxiliary rank GPs to augment the input space of the main GP surrogate GP;, modeling
the overall objective i.e., active surface of the electrode.

Optimization of Electrode Manufacturing Process

In a similar case study (Drakopoulos et al.,|2021)), the authors have analyzed the manufacturing of
Lithium-ion graphite based electrodes. The main aim of |Drakopoulos et al.|(2021) is to optimize the
formulation and manufacturing process of Lithium-ion electrodes using machine learning. Authors
have established a relationship between the process parameters at different stages of manufacturing
such as mixing, coating, drying, and calendering. The published dataset records all the process
parameters in manufacturing 256 coin cells, as well as the associated results showing the charge
capacity of each coin cell measured after certain charge-discharge cycles. The refined dataset consists
of 12 process variables, out of which two process variables: (i) Anode Thickness (AT), and (ii) Active
Mass (AM) are treated as abstract properties that can be only qualitatively measured. The overall

Dsq

objective here is to maximize the battery endurance £ = 52, where Dsq and Ds are the discharge

capacities of the cell at 50" cycle and 5 cycle, respectively.

We simulate the expert pairwise preferential inputs { P“AT, P“AM} by comparing the empirical values
recorded for these variables in the given dataset.

PeAT = {(x = x'); if AT(x) > AT(x') | x,x" € x1.,, Vi € N,}

Pem = {(x = x'); if AM(x) > AM(X') | x,x" € x1.,, Vi € N, }

We model abstract properties {war, war} by fitting rank GPs {GP,,,» GPu | using preference lists
{Pwa, pwavt We use rank GPs to estimate the abstract properties and then use those estimations
to augment the input space of the main GP modeling the overall objective i.e., maximizing battery
endurance E.

A.5 LIMITATIONS

Firstly, as discussed in Convergence Remarks section in the main paper, if the expert preferential data
is inaccurate or irrelevant, it may mislead the model and increase eluder dimension, thus impeding
convergence. Although the ablation studies show the robustness of BOAP against inaccurate/noisy
expert preferences, our framework may suffer at least in the initial rounds of the optimization until
the Control arm identifies and dominates to suppress the inaccurate/noisy human-inspired model



(Arm-b). Secondly, BOAP in its vanilla version may not be directly scalable because of the scalability
issues of the underlying range of GPs used in the framework. One of the well-known weaknesses
of GP is that it poorly scales and suffers from a cubic time complexity O(n?) due to the inversion
of the gram matrix K. This limits the scalability of GP and thus our BOAP framework to use with
large-scale datasets. In the future line of work, we aspire to overcome these limitations by employing
suitable GP techniques that can be easily scaled.
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