
A Block Bootstrapping

Implementation

Let I1, . . . , IS denotes the index sets of exclusive S blocks where S ⌧ n. We allocate the index
of data [n] to each block I1, . . . , IS by the stratified sampling to balance among classes. Let index
function u : [n] ! [S] denotes such assignment so u(i) = s if i 2 Is. Then, given some weight
distribution H↵ on WS ⇢ RS

+, we impose the same value of weight on all elements in a block
such as, wi = ↵u(i) for i 2 [n], where ↵ = {↵1, . . . , ↵S} ⇠ H↵. We write an allocated weight
vector as w↵ = {↵u(1), . . . , ↵u(n)} 2 Wn. Similar with GBS, setting H↵ = S ⇥Dirichlet(1, . . . , 1)
induces a block version of the RWB, and imposing H↵ = Multinomial(S; 1/S, . . . , 1/S) results
in a block nonparametric bootstrap. We remark that the Dirichlet distribution with a uniform
parameter of one can be easily approximated by independent exponential distribution. That is,
zi/

Pn
k=1 zk ⇠ Dirichlet(1, . . . , 1) for independent and identically distributed zi ⇠ Exp(1). Due to

the fact that
Pn

i=k zk/n ⇡ 1 by the law of large number for a moderately large n, n�1
⇥{z1, . . . , zn}

approximately follows the Dirichlet distribution. This property is convenient in a sense that we do
not need to consider the dependence structure in w, and simply generate independent samples from
Exp(1) to sample the bootstrap weight. We use this block bootstrap as a default of the NeuBoots
in sequel. The proposed procedure asymptotically converges towards the same target distribution
where the conventional non-block bootstrap converges to, and under some mild regularity conditions.
Theoretically, the block bootstrap asymptotically approximates the non-blocked bootstrap well as the
number of blocks S increases as n ! 1 (see Theorem A.1).

Asymptotics of Block Bootstrap

We shall rigorously investigate asymptotic equivalence between the blocked bootstrap and the
non-blocked bootstrap. To ease the explanation for theory, we introduce some notation here. We
distinguish a random variable Yi and its observed value yi, and we assume that the feature X1, X2, . . .
is deterministic. the Euclidean norm is denoted by k · k, and the norm of a L2 space is denoted by
k · k2. Also, to emphasize that the bootstrap weight w depends on n, we use wn. Let Y1, Y2, . . .
be i.i.d. random variables from the probability measure space (⌦, F ,P0). We denote the empirical
probability measure by bPn :=

Pn
i=1 �Yi/n, where �x is a discrete point mass at x 2 R, and let

Pg =
´

gdP, where P is a probability measure and g is a P-measurable function. Suppose that
p

n(bPn � P0) weakly converges to a probability measure T defined on some sample space and its
sigma field (⌦0, F 0). In the regime of bootstrap, what we are interested in is to estimate T by using
some weighted empirical distribution that is bP⇤

n =
Pn

i=1 wi�Yi , where w1, w2, . . . is an i.i.d. weight
random variable from a probability measure Pw. In the same sense, the probability measure acts on
the block bootstrap is denoted by Pw↵ . We state a primary condition on bootstrap theory as follows:

p
n(bPng � P0g) ! Tg for g 2 D and P0g

2
D

< 1, (A.1)

where D is a collection of some continuous functions of interest, and gD(!) = supg2D
|g(!)| is the

envelope function on D. This condition means that there exists a target probability measure and the
functions of interest should be square-bounded.

Based on this condition, the following theorem states that the block bootstrap asymptotically induces
the same bootstrap distribution with that of non-block bootstrap. All proofs of theorems are deferred
to the supplementary material.
Theorem A.1. Suppose that (A.1) holds and {↵1, . . . , ↵S}

T
⇠ S ⇥ Dirchlet(1, . . . , 1) with wi =

↵u(i). We assume some regularity conditions introduced in the supplementary material, and also
assume S ! 1 as n ! 1. Then, for a rn such that k bf � f0k2 = OPw(⇣nr�1

n) for any diverging
sequence ⇣n,

sup
x2X ,U2B

���Pw

n
rn(bfw(x) � bf(x)) 2 U

o
� Pw↵

n
rn(bfw↵(x) � bf(x)) 2 U

o��� ! 0, (A.2)

in P0-probability, where B is the Borel sigma algebra.

Recall that the notation is introduced in Section 2. [34] showed that the following conditions on the
weight distribution to derive bootstrap consistency for general settings:

15

W1. wn is exchangeable for n = 1, 2,
W2. wn,i � 0 and

Pn
i=1 wn,i = n for all n.

W3. supn kwn,1k2,1 < 1, where kwn,1k2,1 =
´ p

Pw(wn,1 � t)dt.
W4. lim�!1 lim supn!1

supt�� t2Pw(wn,1 � t) = 0.
W5. n�1

Pn
i=1(wn,i � 1)2 ! 1 in probability.

Under W1-W5, combined with (A.1), showed that
p

n(bP⇤

n � bPn) weakly converges to T. It was
proven that the Dirichlet weight distribution satisfies W1-W5, and we first show that the Dirichlet
weight distribution for the blocks also satisfies the condition. Then, the block bootstrap of the
empirical process is also consistent when the classical bootstrap of the empirical process is consistent.

Since the block bootstrap randomly assigns subgroups, the distribution of wn is exchangeable, so
the condition W1 is satisfied. The condition W2 and W3 are trivial. Since a Dirichlet distribution
with a unit constant parameter can be approximated by a pair of independent exponential random
variables; i.e {z1/

PS
i=1 zi, . . . , zS/

PS
i=1 zi} ⇠ Dir(1, . . . , 1), where zi

i.i.d.
⇠ exp(1). Therefore,

S ⇥ Dir(1, . . . , 1) ⇡ {z1, . . . , zS}, if S is large enough. This fact shows that t2Pw(wn,1 � t) ⇡

t2Pz(z1 � t), and it follows that Pz(z1 � t) = exp(�t), so W4 is shown. The condition W5 is
trivial by the law of large number. Then, under W1-W5, Theorem 2.1 in [34] proves that

p
n(bP⇤

n � bPn)) T, (A.3)

where the convergence “)” indicates weakly convergence.

We denote the true neural net parameter by �0 such that f0 = f�0 , where f0 is the true function that
involves in the data generating process, and b� and b�w are the minimizers of the (??) for one-vector
(i.e. w = (1, . . . , 1)) and given w, respectively. This indicates that bf = fb� and bfw = fb�w

. Then,
our objective function can be expressed as minimizing bPnL(f�(X), y) with respect to �. We further
assume that

A1. the true function belongs to the class of neural network, i.e. f0 2 F .

A2. supx2X ,U2B

���Pw

n
rn(bfw(x) � bf(x)) 2 U

o
� P0

n
rn(bf(x) � f0(x)) 2 U

o��� ! 0,

in P0-probability, where f0 is the true function that involves in the data generating process.

A3. Suppose that
Pn

i=1
@

@�L(fb�(Xi), yi) = 0,
Pn

i=1
@

@�wiL(fb�w
(Xi), yi) = 0 for any w, and

E0[
@

@�L(f�0(X), y)] = 0.

A4. H is in P0-Donsker family, where H = {
@

@�L(f�(·), ·) : � 2 �}; i.e.
p

n(bPng � bP0g) ! Tg

for g 2 H and P0g2
H

< 1.

These conditions assume that the classical weighted bootstrap is consistent, and a rigorous theoretical
investigation of this consistency is non-existent at the current moment. However, we remark that the
main purpose of this theorem is to show that the considered block bootstrap induces asymptotically
the same result from the classical non-block bootstrap so that the use of the block bootstrap is at least
asymptotically equivalent to the classical counterpart. In this sense, it is reasonable to assume that
the classical bootstrap is consistent.

Then, it follows that

sup
x2X ,U2B

���Pw

n
rn(bfw(x) � bf(x)) 2 U

o
� Pw↵

n
rn(bfw↵(x) � bf(x)) 2 U

o���

 sup
x2X ,U2B

���Pw

n
rn(bfw(x) � bf(x)) 2 U

o
� P0

n
rn(bf(x) � f0(x)) 2 U

o���

+ sup
x2X ,U2B

���Pw↵

n
rn(bfw↵(x) � bf(x)) 2 U

o
� P0

n
rn(bf(x) � f0(x)) 2 U

o��� .

The first part in the right-hand side of the inequality converges to 0 by A1. Also, the second
part also converges to 0. That is because the empirical process of the block weighted bootstrap
is asymptotically equivalent to the classical RWB, so A2 and A3 guarantees that the asymptotic
behavior of the bootstrap solution should be consistent as the classical counterpart does.

16

B Additional Experimental Results

B.1 NeuBoots vs Amortized Bootstrapping

Figure. B.1. Comparison between standard bootstrapping, amortized bootstrapping [31], and NeuBoots in
Classification.

Figure. B.2. Comparison between standard bootstrapping, amortized bootstrapping[31], and NeuBoots in
Regression.

B.2 Computation time and costs

We supplement the comparison between MIMO, BatchEnsemble, and NeuBoots. We estimate training
time and prediction during one epoch and measure the memory cost of those methods in ResNet-110
on CIFAR-100.

Method Training Time (sec) Test Time (sec) Memory Usage (mb)

Baseline 29.1 1.69 1605
MCDrop 29.2 8.45 1605

DeepEnsemble 145.5 8.45 7600
BatchEnsemble 217.1 6.59 2474

MIMO 30.2 1.87 1605
NeuBoots 29.2 1.71 1605

Table B.1. A comparison of training time, test time, and memory cost.

We verified that NeuBoots benefits computational efficiency compared to BatchEnsemble. Inter-
estingly, the above experiment shows that the computational cost of MIMO is similar to that of
NeuBoots4. This result is because we used a convolutional neural network that benefits channel
parallelism thanks to GPU. However, if we apply MIMO to MLP, the result is different: for 5-layer

4The memory comparison between NeuBoots and MIMO seems unclear due to the small resolution of
CIFAR. We observed NeuBoots has lower memory cost than MIMO if we change the model from ResNet to
DenseNet.

17

MLP (K = 3), NeuBoots takes 7.57 seconds for one epoch training, MIMO takes 41.09 seconds, as
we expected. Also, we observed that growing the number of the ensemble makes the proportion gap
increase: for K = 5, NeuBoots takes 7.68 seconds, MIMO takes 62.47 seconds. Furthermore, the
below table shows that MIMO requires more memory cost in test time as the number of ensembles
increases, as we expected in Table 3.2.

Method K = 1 K = 2 K = 3 K = 4 K = 5

MIMO 1515 1633 1741 1885 2067
NeuBoots 1515 1517 1517 1517 1517

Table B.2. A comparison between MIMO and NeuBoots in memory cost (mb) as the number of ensemble
increases.

B.3 Prediction Calibration

Architecture Method Relative Relative Error Rate(%) ECE(%) NLL(%) Brier Score(%)Training Time Prediction Time

ResNet-110

Baseline 1.0 1.0 26.69±0.35 16.43±0.15 14.19±0.71 42.09±0.51
MCDrop 1.1 5.0 26.45 ±0.08 13.65±1.25 13.16±0.64 40.46±0.30

DeepEnsemble [24] 9.5 5.0 34.84±0.21 27.33±4.92 18.69±1.44 56.12±3.02
DeepEnsemble [2] 5.0 5.0 24.28±0.11 4.74±0.17 7.05±0.28 28.29±0.12

NeuBoots 1.1 1.2 26.53±0.19 8.13±0.28 15.68±0.31 39.31±0.64

DenseNet-100

Baseline 1.0 1.0 24.02±0.3 12.38±0.21 10.93±0.34 36.40±0.63
MCDrop 1.1 5.0 23.88±0.09 9.49±0.35 10.22±0.86 34.94±0.67

DeepEnsemble [24] 9.5 5.0 25.51±0.24 6.67±5.06 9.66±0.24 35.33±1.21
DeepEnsemble [2] 5.0 5.0 20.16±0.21 4.74±0.42 7.07±0.14 30.29±0.12

NeuBoots 1.1 1.3 23.46±0.09 2.38±0.12 11.58±0.13 34.67±0.24

Table B.3. Comparison of the relative training speed, relative prediction speed, error rate, ECE, NLL, and Brier
on CIFAR-100. For each metric, the lower value means the better. Relative training and relative prediction times
are normalized with respect to the baseline method. Best results are indicated in bold.

Data Architecture Method Relative Relative Error Rate(%) ECE(%) NLL(%) Brier Score(%)Training Time Prediction Time

CIFAR-10

ResNet-110

Baseline 1.0 1.0 5.89 4.46 3.34 10.2
MCDrop 1.0 5.0 5.93 3.96 2.57 9.7

DeepEnsemble 9.5 5.0 5.44 5.72 2.43 8.81
NeuBoots 1.1 1.2 5.65 0.89 3.28 9.32

DenseNet-100

Baseline 1.0 1.0 5.13 3.2 2.23 8.3
MCDrop 1.1 5.0 4.95 2.72 1.93 8.1

DeepEnsemble 9.5 5.0 4.63 0.54 1.46 6.74
NeuBoots 1.1 1.3 4.0 2.87 2.82 8.66

SVHN

ResNet-110

Baseline 1.0 1.0 3.55 2.39 1.75 5.8
MCDrop 1.1 5.0 3.64 1.8 1.73 6.11

DeepEnsemble 9.5 5.0 2.65 1.78 1.2 4.16
NeuBoots 1.1 1.2 3.51 0.96 1.48 5.6

DenseNet-100

Baseline 1.0 1.0 3.6 3.2 2.23 8.3
MCDrop 1.1 5.0 3.6 1.6 1.62 5.89

DeepEnsemble 9.5 5.0 2.68 1.55 1.18 4.23
NeuBoots 1.1 1.3 3.65 0.47 1.49 5.7

Table B.4. Comparison of the relative training speed, relative prediction speed, error rate, ECE, NLL, and Brier
on various datasets and architectures. For each metric, the lower value means the better. Relative training and
relative prediction times are normalized with respect to the baseline method. Best results are indicated in bold.

18

B.4 Dropout vs NeuBoots

Figure. B.3. Comparison of ECE, NLL, and Brier for Dropout and the NeuBoots on the classification task on
MNIST.

B.5 Calibration on Corrupted Dataset

For evaluating the calibrated prediction of NeuBoots under distributional shift, we use Corrupted
CIFAR-10 and 100 datasets [18]. Based on Ovadia et al.[33], we first train the ResNet-110 models on
each training dataset of CIFAR-10 and 100, and evaluate it on the corrupted dataset. For evaluation,
we measure the mean accuracy and standard deviation for each of the five severities.

Deep Ensemble perform best in most cases, but NeuBoots also show better accuracy than baseline.

Figure. B.4. Calibration under distributional shift.

B.6 OOD Detection

In this section, we illustrate additional results of OOD detection experiments.

19

Figure. B.5. Histogram of the predictive standard deviation estimated by NeuBoots on test samples from
CIFAR-10 (in-distribution) classes (top row) and SVHN (out-distribution) classes (bottom row), as we vary
bootstrap sample size B 2 {2, 5, 10, 20, 30}.

Figure. B.6. Confidence bands of the prediction of NeuBoots for bison data in TinyImageNet. The proposed
method predicts is as an out-of-distribution class with prob=0.7664.

Figure. B.7. Confidence bands of the prediction of NeuBoots for gazelle data in TinyImageNet. The proposed
method predicts is as an out-of-distribution class with prob=0.5021.

Figure. B.8. Confidence bands of the prediction of NeuBoots for German shepherd data in TinyImageNet.
The proposed method predicts is as an in-of-distribution class dog with prob=0.1983.

20

	Introduction
	Preliminaries
	Neural Bootstrapper
	Adaptive Block Bootstrapping
	Discussion

	Empirical Studies
	Prediction Calibration
	Active Learning
	Out-of-Distribution Detection
	Bagging Performance for Semantic Segmentation
	Imbalanced Dataset

	Related Work
	Conclusion
	Acknowledgement
	Block Bootstrapping
	Additional Experimental Results
	NeuBoots vs Amortized Bootstrapping
	Computation time and costs
	Prediction Calibration
	Dropout vs NeuBoots
	Calibration on Corrupted Dataset
	OOD Detection

