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Abstract
Prompt learning is susceptible to intrinsic001
bias present in pre-trained language models002
(LMs), resulting in sub-optimal performance003
of prompt-based zero/few-shot learning. In004
this work, we propose a null-input prompt-005
ing method to calibrate intrinsic bias encoded006
in pre-trained LMs. Different from prior ef-007
forts that address intrinsic bias primarily for008
social fairness and often involve excessive com-009
putational cost, our objective is to explore010
enhancing LMs’ performance in downstream011
zero/few-shot learning while emphasizing the012
efficiency of intrinsic bias calibration. Specifi-013
cally, we leverage a diverse set of auto-selected014
null-meaning inputs generated from GPT-4 to015
prompt pre-trained LMs for intrinsic bias prob-016
ing. Utilizing the bias-reflected probability dis-017
tribution, we formulate a distribution disparity018
loss for bias calibration, where we exclusively019
update bias parameters (0.1% of total parame-020
ters) of LMs towards equal probability distri-021
bution. Experimental results show that the cali-022
bration promotes an equitable starting point for023
LMs while preserving language modeling abil-024
ities. Across a wide range of datasets, includ-025
ing sentiment analysis and topic classification,026
our method significantly improves zero/few-027
shot learning performance of LMs for both in-028
context learning and prompt-based fine-tuning029
(on average 9% and 2%, respectively).030

1 Introduction031

The advent of GPT models (Radford et al., 2019;032

Brown et al., 2020) has catalyzed the transforma-033

tive prompt-learning paradigm. The innovative ap-034

proach of "pre-train, prompt, and predict" (Schick035

and Schütze, 2021a; Liu et al., 2023) facilitates fast036

adaptation of pre-trained language models (LMs)037

in learning various tasks and empowering LMs’038

strong zero/few-shot learning abilities (Schick and039

Schütze, 2021b; Gao et al., 2021).040

Due to the susceptibility to bias ingrained in041

pre-trained LMs, prompt learning tends to make042

biased predictions toward some specific answers, 043

thereby impacting the performance of prompt- 044

based zero/few-shot learning (Zhao et al., 2021; 045

Han et al., 2023). To mitigate this issue and im- 046

prove LM performance, Zhao et al. (2021) and 047

Holtzman et al. (2022) propose to reweigh LM 048

output probabilities. Han et al. (2023) explores cal- 049

ibrating decision boundaries. While these research 050

has demonstrated substantial improvements, they 051

are primarily designed for in-context learning with 052

frozen pre-trained LMs, leading to two main limita- 053

tions: (1) They may be not effective in task-specific 054

fine-tuning scenario (Jian et al., 2022). Note, how- 055

ever, prompt-based fine-tuning has shown perfor- 056

mance improvements over in-context learning (Gao 057

et al., 2021; Logan IV et al., 2022). It is particularly 058

important for relatively small-sized LMs. (2) The 059

intrinsic bias encoded in pre-trained LMs persists 060

since these research focuses on output calibration 061

and does not modify LMs. 062

To address these limitations, we investigate the 063

potential for enhancing the performance of LMs 064

as zero/few-shot learners in classification tasks by 065

calibrating intrinsic bias of pre-trained LMs. This 066

exploration extends to various prompt-learning sce- 067

narios: in-context learning and prompt-based fine- 068

tuning. Prior approaches to mitigate intrinsic bias 069

primarily focus on achieving social fairness, and 070

often require laborious corpora augmentation and 071

costly re-training (Huang et al., 2020; Kaneko and 072

Bollegala, 2021; Solaiman and Dennison, 2021; Li 073

et al., 2023). To improve efficiency in both data 074

generation and model updates, we propose leverag- 075

ing auto-generated null-meaning inputs to prompt 076

LMs for intrinsic bias probing, and subsequently 077

updating only bias parameters BLM of LMs for bias 078

calibration. Our motivation stems from the expecta- 079

tion that bias-calibrated models should produce uni- 080

form probabilities across all categories if the input 081

in a prompt delivers null information (Zhao et al., 082

2021). BLM functions as offsets in neural networks, 083
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Figure 1: We demonstrate our calibration method significantly improves classification performance of pre-trained
LM. Upper: The pipeline of proposed null-input prompting method for intrinsic bias calibration targeting AGNews
task (Zhang et al., 2015). Lower left: Performance comparison of zero-shot in-context learning using: original LM
(Orig. RoBERTa); calibrated (Calib.) LM with full model updates (WLM + BLM); calibrated LM with only BLM
updates. Lower right: Case study illustrating that LM makes correct prediction after intrinsic bias calibration.

and strategically updating only BLM could poten-084

tially counteract intrinsic bias of pre-trained mod-085

els, achieving higher efficiency (updating ∼ 0.1%086

parameters of entire LM). The approach promotes087

an equitable starting point, and we expect that the088

light model updates preserve pre-trained models’089

language understanding abilities while maintaining090

the focus on bias calibration, ultimately making091

LMs better zero/few-shot learners.092

The pipeline of our calibration method is illus-093

trated in Figure 1. We use Masked LMs (RoBERTa094

Liu et al., 2019) for zero/few-shot learning since095

they generally produce competitive performance in096

classification tasks and their moderate size facili-097

tates combining prompting with fine-tuning (Gao098

et al., 2021; Liu et al., 2023). First, we utilize099

GPT-4 API to automatically generate diverse null-100

meaning inputs Xnull including symbols, words,101

phrases, and sentences. This generation process is102

downstream task-agnostic. By concatenating each103

null-meaning input xnull with an answer format ans104

aligned with the downstream task, we construct105

null-input prompts (similar to Zhao et al., 2021),106

e.g., "An empty sentence. It is about <mask>.".107

For better cohesive integration of the "null" infor- 108

mation into the prompts, we additionally devise a 109

filtering strategy to select xnull, to which the answer 110

format ans exhibits relatively strong Next Sentence 111

Prediction (NSP) correlation (Devlin et al., 2019). 112

Next, we update BLM with null-input prompts to 113

calibrate intrinsic bias. Given the absence of task- 114

relevant information in these prompts, the antici- 115

pated outcome in the parameter updating process 116

is a convergence towards equal output probabilities 117

for each label word. We formulate a customized 118

Kullback–Leibler (KL) divergence loss (Kullback 119

and Leibler, 1951) for gradient descent on BLM to 120

minimize the distribution disparity. Finally, bias- 121

calibrated LMs are applied in downstream prompt- 122

based zero/few-shot learning following Gao et al. 123

(2021). 124

The main contributions of our work are: 125

• We introduce a null-input prompting method 126

for calibrating intrinsic bias of pre-trained 127

Masked LMs, aiming for better prompt-based 128

zero/few-shot classification performance. 129

• Our method integrates two key aspects for 130
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efficient bias calibration: auto-construction131

of null-input prompts and updating only bias132

parameters of LMs. The calibration promotes133

a fair starting point for LMs while preserving134

language modeling abilities.135

• Extensive experiments on eight classifica-136

tion datasets with four prompt-learning ap-137

proaches show that our method significantly138

improves LMs’ zero/few-shot performance,139

and outperforms output-calibration methods.140

2 Preliminaries141

Impact of intrinsic bias on downstream LM per-142

formance. Intrinsic bias in pre-trained LMs stems143

from imbalances present in extensive pre-training144

corpora. Higher frequency of specific terms in145

those corpora could lead to common token bias146

(Zhao et al., 2021). Additionally, frequent co-147

occurrence of certain terms with specific sentiment148

in pre-training could introduce association bias1149

(Cao et al., 2022). Because of those intrinsic bias,150

prompt-based predictions by pre-trained LMs are151

prone to bias towards some specific answers, re-152

sulting in sub-optimal performance in downstream153

tasks (Zhao et al., 2021; Han et al., 2023).154

Mitigating strategies from related work. Re-155

search has focused on counteracting the bias solely156

at the output prediction stage, without modifying157

pre-trained LMs. For example, Zhao et al. (2021)158

introduces contextual calibration and Holtzman159

et al. (2022) presents Domain Conditional Point-160

wise Mutual Information to reweigh answer scores.161

Min et al. (2022) explores computing the probabil-162

ity of the input conditioned on the label. Han et al.163

(2023) proposes to calibrate decision boundaries.164

However, these studies mainly demonstrate their165

effectiveness for in-context learning using frozen166

pre-trained LMs, without addressing the intrinsic167

bias encoded in the LMs. Other research on mitigat-168

ing intrinsic bias primarily targets removing social169

bias (Dinan et al., 2020; Huang et al., 2020; Cheng170

et al., 2021; Zhou et al., 2023), often employing171

costly data augmentation and re-training, and as a172

by-product, degrades language modeling abilities173

(Garimella et al., 2021; Meade et al., 2022).174

Efficiently calibrating intrinsic bias in pre-175

1For example, in a restaurant review “I had roast chicken
and a salad.”, RoBERTa model classifies the sentiment for
“roast chicken” as positive, while the true label is neutral. This
may arise from the association of "roast chicken" with positive
sentiment words prevalent in pre-training corpora.

trained LMs for enhancing downstream zero/few- 176

shot prompt learning performance is an open 177

research problem. In this work, we intro- 178

duce a parameter-efficient intrinsic-bias calibration 179

method leveraging automatically constructed null- 180

input prompts. We demonstrate its effectiveness of 181

making LMs better zero/few-shot learners for both 182

in-context learning and prompt-based fine-tuning. 183

3 Null-Input Prompting for Intrinsic Bias 184

Calibration 185

3.1 Task Formulation 186

Let LM be a pre-trained Masked LM. Verbalizer 187

V (·) maps label y to vocabulary token. Prompt 188

function fp(·) modifies original input xin into cloze- 189

style prompt containing one <mask> token to be 190

predicted. The output representation h<mask> of 191

the <mask> token is acquired from the last encoder 192

layer after forwarding the prompt to the LM. Fol- 193

lowing Gao et al. (2021), the probability prediction 194

of each class y ∈ Y is formulated as: 195

P (y |xin,LM) = P (V (y) | fp(xin),LM) 196

=
exp

(
indexV (y)(Wlm_head · h<mask>)

)
∑|Y|

j=1 exp
(

indexV (yj)(Wlm_head · h<mask>)
) ,

(1)

197

where Wlm_head is the pre-trained masked language 198

modeling head weight matrix, and indexV (y) se- 199

lects the logits corresponding to the label words 200

based on their index in LM token list. 201

One can probe intrinsic bias encoded in pre- 202

trained LM by replacing xin with null-meaning 203

input xnull ∈ Xnull (Zhao et al., 2021). Xnull rep- 204

resents a set of xnull and we will elaborate their 205

generation and selection in § 4. As shown by the 206

blue bars in the upper part of Figure 1, while null- 207

meaning inputs essentially provide no task-relevant 208

prior information, the mean output probability as- 209

sociated with different labels P̄Xnull(y |xnull,LM) 210

may exhibit significant difference attributed to 211

model’s intrinsic bias. Ideally, for bias-calibrated 212

LM LMcalib, the expectation of output distribu- 213

tion conditioned on null-meaning inputs should be 214

uniform across all label words, i.e., 215

EXnull [P (y |xnull,LMcalib;∀y ∈ Y)] =
1

|Y|
.

(2) 216

We aim to calibrate intrinsic bias by updating 217

LM to minimize this distribution disparity which 218
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we quantify using differentiable KL divergence as:219

DKL
(
P̄Xnull(Y) ||U(Y)

)
220

=
1

|Y|
∑
y∈Y

(
P̄Xnull(y) · log

(
|Y| · P̄Xnull(y)

))
221

=

∑
y∈Y P̄Xnull(y) · log

(
P̄Xnull(y)

)
|Y|

+
log|Y|
|Y|

,

(3)

222

where U(Y) denotes uniform probability distribu-223

tion and P̄Xnull(y |xnull) is simplified as P̄Xnull(y).224

3.2 Update Only Bias Parameters225

While intrinsic bias may be encoded across various226

parts of pre-trained LMs, one question arises: is227

it essential to update the entire model, or is there228

a more efficient alternative that can achieve com-229

parable effectiveness in intrinsic bias calibration?230

We propose to only update bias parameters BLM,231

with the following rationale: (i) BLM constitutes232

less than 0.1% of total LM parameters, offering sig-233

nificant memory and computation cost saving com-234

pared to updating entire LM. (ii) Weight parameters235

WLM
2 may carry crucial pre-existing knowledge for236

language modeling, which risks impairment with237

a full model update (Meade et al., 2022). BLM,238

often overlooked in LM research, serves as offsets239

in DNN layers. Strategic updates may counteract240

intrinsic bias while potentially preserving language241

modeling abilities. (iii) Empirical research on ef-242

ficient fine-tuning has demonstrated the important243

role of bias parameters in LMs (Ben Zaken et al.,244

2022; Logan IV et al., 2022).245

We update BLM using gradient descent to min-246

imize the dissimilarity between output probabil-247

ity distribution from the LM conditioned on null-248

meaning inputs and uniform probability distribu-249

tion U(Y). We formulate a customized KL diver-250

gence loss L, including both divergence of indi-251

vidual null-input’s output distribution Pi(Y) with252

respect to U(Y), and batch-averaged distribution253

P̄N (Y) with respect to U(Y), as:254

L =
1

N

N∑
i=1

DKL
(
Pi(Y) ||U(Y)

)
255

+DKL
(
P̄N (Y) ||U(Y)

)
, (4)256

where N is the batch size of null-meaning inputs.257

Incorporating the second term in the loss function258

promotes calibration stability and aligns with the259

objective of Equation 2.260

2WLM also includes embedding parameters in our context.

3.3 Early Stopping of Calibration 261

We aim to obtain LM with improved zero/few-shot 262

performance at the calibration stopping point. An 263

overly calibrated model may simply produce uni- 264

form probability predictions regardless of input 265

information, deviating from our intended objec- 266

tive. We develop different early stopping strategies 267

depending on whether the downstream task is zero- 268

shot or few-shot. 269

For zero-shot downstream tasks. Determining 270

the calibration stopping point for optimal zero-shot 271

learning performance is challenging due to the ab- 272

sence of labeled data for validation during calibra- 273

tion. To discern the patterns of a good stopping 274

point, we first conduct empirical experiments by 275

validating LM zero-shot performance on the entire 276

test dataset after each calibration batch (consisting 277

of N null-meaning inputs). As shown in Figure 2, 278

we observe that model performance has steep in- 279

creases in the first one/few calibration batches3 280

with low variance, and then starts to degrade and 281

becomes unstable. The low performance and insta- 282

bility at the calibration tail confirm our assumption 283

on the detrimental effects of excessive calibration 284

on LM’s modeling abilities. Notably, calibration 285

with only one batch of null inputs (indicated by 286

the red vertical line in Figure 2) delivers consis- 287

tent and significant improvement compared to the 288

original LM (although might not be the best im- 289

provement). Therefore, for enhancing LM zero- 290

shot performance, we directly adopt the One-batch 291

Calibration as the early stopping criterion. 292

For few-shot downstream tasks. With the ac- 293

quisition of a few labeled data, the previous chal- 294

lenge of lacking validation for determining the 295

stopping point in the calibration process is allevi- 296

ated. We leverage the downstream training dataset 297

Ddownstrm
train constituting K samples per class as vali- 298

dation dataset Dcalib
val in the calibration. 299

We take into account above-mentioned empirical 300

findings that for some tasks stopping at one batch 301

of calibration yields optimal LM performance. Re- 302

lying on the limited size of the validation dataset 303

Dcalib
val might fail to identify such stopping points. 304

To this effect, we store both LMone_batch
calib (obtained 305

from one-batch stopping) and LMval
calib (obtained 306

from validation-based stopping) for downstream 307

few-shot leaning tasks. Since LMone_batch
calib is stored 308

3We experimented with smaller calibration learning rates
and observed consistent less improvement of LM performance.
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Figure 2: Empirical experiments show the impact of
calibration on zero-shot learning performance as the
number of calibration batches increases (batch size is
32). The intersections of the curves and red vertical line
signify the outcomes of the first calibration batch.

in the process of obtaining LMval
calib, this will not re-309

sult in additional computation overhead. Memory310

overhead is minimal, as it only requires storing an311

additional set of updated bias parameters.312

We summarize our method for intrinsic bias cal-313

ibration in Algorithm 1 (Appendix A).314

4 Auto-Construct Null-Input Prompt315

4.1 Generate Null-Meaning Input316

We employ null-meaning inputs to probe the intrin-317

sic bias of pre-trained LMs, and then use those bias-318

reflected outputs to calibrate the LMs. Crafting a319

diverse set of null-meaning inputs Xnull for an aver-320

aged output helps prevent overfitting to sub-optimal321

instances, thereby contributing to the effectiveness322

of calibration. However, creating numerous null-323

meaning inputs manually could be laborious and324

challenging. To enable cost-effective acquisition325

of various null-meaning data, we utilize GPT-4326

API for automatic generation with instructions such327

as "Please generate null meaning symbols, words,328

phrases, and sentences, in total <Number>.". Note329

that this generation process is task-agnostic, ensur-330

ing that each generated data contains null informa-331

tion with respect to any downstream task.332

4.2 Select xnull and Build Null-Input Prompt333

We construct null-input prompt fp(xnull) by con-334

catenating the generated null-meaning input with335

an answer format ans. For consistency, the answer336

format (e.g., "It is <mask>.") is the same as the337

one intended for use in the downstream task. Some338

examples are shown in the upper part of Figure 1.339

Generated null-meaning input xnull Pnsp(xnull, ans)

This is an example sentence. 0.9996
A message without purpose. 0.9979

Words without message. 0.9809

Password123 0.0369
123abc 0.0267

//////////////////// 0.0008

Table 1: Some examples of generated null-mean inputs.
In this case, "It is about <mask>." is used as the an-
swer format ans. The green/yellow numbers represent
higher/lower NSP probabilities.

Figure 3: Visualization of attention score by the depth
of color in the connecting lines. We only show the atten-
tion between <mask> token and null-meaning input xnull.
Attn<mask>(xnull) is the attention score of <mask> on
xnull, averaged over encoder layers and attention heads.
Left: Higher attention score indicates enhanced pattern
extraction from xnull which has higher Pnsp(xnull, ans).

To pursue better cohesive integration of the 340

"null" information into the prompts, we priori- 341

tize the null-meaning inputs, with which the an- 342

swer format exhibits higher Next Sentence Pre- 343

diction (NSP) probability (Devlin et al., 2019). 344

Specifically, after we generate a large set of null- 345

meaning inputs {xnull_1, xnull_2, . . . , xnull_k} and 346

the answer format ans is selected, we employ 347

BERT-large model (Devlin et al., 2019) to predict 348

NSP Pnsp(xnull, ans) and sort null-meaning inputs 349

by their probabilities. Table 1 shows some gen- 350

erated xnull, with which a specific answer format 351

presents high/low NSP scores. We find this strat- 352

egy brings advantages in two aspects: (1) It filters 353

some null-meaning inputs that do not conform to 354

normal symbols or text (e.g., "////////////////////"); (2) 355

In the prompts, null-meaning inputs with higher 356

Pnsp(xnull, ans) exhibit higher attention scores be- 357

tween the null input and <mask> as shown in Fig- 358

ure 3. This indicates more effective conveyance of 359
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In-context lrn no demo† In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal

AGNews 47.00.0 54.31.0 54.50.6 79.70.8 78.83.3 82.40.9 89.10.9 86.31.6 89.00.8 86.92.8 87.51.3 89.30.9

DBPedia 58.20.0 54.11.9 61.80.6 92.60.6 94.00.9 94.80.7 98.21.3 99.00.5 99.00.1 98.60.3 98.50.2 98.90.3

TREC 24.00.0 29.42.1 31.10.5 48.31.4 42.53.4 48.62.2 85.07.4 82.22.0 89.34.5 87.62.5 74.24.0 89.71.0

Subj 50.80.0 64.02.7 62.70.8 47.20.2 55.01.3 63.52.3 91.20.9 88.22.5 93.21.2 91.43.3 93.00.8 94.30.2

SST-5 31.50.0 33.02.1 37.50.4 34.41.7 31.22.6 36.61.0 47.84.6 45.32.8 49.92.7 47.11.9 42.64.0 50.01.7

Laptop 54.60.0 58.32.5 59.61.9 50.81.0 65.12.7 67.41.7 74.31.4 74.31.6 74.92.9 76.81.0 75.61.4 78.71.4

Restaurant 68.60.0 72.04.9 72.81.6 69.81.1 74.31.6 74.01.0 79.72.2 79.01.0 82.00.9 78.44.9 79.05.5 79.84.5

Twitter 19.70.0 43.44.1 51.70.4 21.00.5 40.75.4 49.42.7 51.72.9 44.13.9 57.04.2 57.72.8 50.34.2 59.32.3

Average 44.3 51.1 54.0 55.5 60.2 64.6 77.1 74.8 79.3 78.1 75.1 80.0

Table 2: Result comparisons among NoCal (LM-BFF Gao et al., 2021; no calibration), OutCal (output calibration)
and IntrCal (ours; intrinsic-bias calibrated LM) using RoBERTa-large. We report the mean and standard deviation of
performance in 8 classification datasets with 4 prompt-learning methods. "In-context lrn" refers to in-context learning
and "Prompt FT" refers to prompt-based fine-tuning. "with/no demo" denotes incorporating/not incorporating
demonstrations in prompts. In-context lrn no demo† is zero-shot learning, while the other three are few-shot learning.

the "null" information to the placeholder <mask>,360

which could facilitate LM deciphering the "null"361

patterns of the prompts and benefit calibration.362

After the sorting, we discard the bottom 20%363

xnull instances and obtain 800 null-meaning in-364

puts. Specially, for zero-shot downstream tasks,365

since only one batch of null-meaning inputs is re-366

quired for calibration in our early-stopping crite-367

rion (§ 3.3), we select the Top-N{Pnsp(xnull, ans)}368

xnull from Xnull, where N is batch size. We show369

calibration with xnull selection strategy further im-370

proves LM performance in § 5.2 Table 3.371

5 Experiments372

We conduct extensive experiments on 8 English373

datasets, including sentiment analysis and topic374

classification. They consist of 5 sentence-level375

datasets potentially impacted by common token376

bias: AGNews (Zhang et al., 2015), DBPedia377

(Lehmann et al., 2015), TREC (Voorhees and Tice,378

2000), Subj (Pang and Lee, 2004), SST-5 (Socher379

et al., 2013) and 3 aspect-level sentiment analysis380

datasets likely subject to association bias: Restau-381

rant and Laptop reviews from SemEval 2014 Task382

(Pontiki et al., 2014), Twitter (Dong et al., 2014).383

For these aspect-level datasets, the task is to predict384

sentiments associated with the marked aspects in385

each sentence. More details are in Appendix A and386

Table 7.387

5.1 Evaluation Protocol388

We evaluate the effectiveness of our intrinsic-bias389

calibration method on enhancing Masked LMs390

zero/few-shot learning performance with 4 prompt391

learning methods: in-context learning and prompt- 392

based fine-tuning, both with and without demon- 393

stration. We follow the prompt-based fine-tuning 394

and demonstration method of Gao et al. (2021). 395

We conduct calibration with 5 different seeds, 396

and for the few-shot setting, we randomly sample 397

5 different groups of training and validation sets 398

(K samples per class). We report the mean and 399

standard deviation of LM performance. For the 5 400

sentence-level classification tasks, we use accuracy 401

as the metric. For the 3 aspect-level classification 402

tasks, because of the imbalance in test set, we use 403

weighted F1 for a balanced evaluation. Details of 404

calibration and prompt learning are in Appendix A. 405

We present our main results using RoBERTa- 406

large, and K = 16 for few-shot setting. Results of 407

using RoBERTa-base, K = {2, 4, 8}, and different 408

prompt templates are in Appendix B. 409

5.2 Main Results 410

In Table 2, we compare our results of IntrCal (in- 411

trinsic bias calibration) with reproduced results of: 412

(1) NoCal: No calibration. Use LM-BFF (Gao 413

et al., 2021) to compute P (y |xin) for predictions. 414

(2) OutCal: Output calibration. OutCal computes 415
P (y |xin)

P (y |xdomain)
instead of P (y |xin) to counteract sur- 416

face form competition and bias (Zhao et al., 2021; 417

Holtzman et al., 2022). Note that OutCal was orig- 418

inally demonstrated for in-context learning with 419

GPT models, while here, we apply the method in 420

Masked LMs for fair comparisons. 421

In-context learning results. OutCal has signifi- 422

cantly improved LM zero/few-shot performance 423

compared to NoCal. Our method (IntrCal) further 424
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outperforms OutCal by a large margin: 2.9% and425

8.3% absolute in zero-shot learning & 4.4% and426

8.7% absolute in few-shot learning, in terms of427

average and best-case improvement. This demon-428

strates the advantages of intrinsic bias calibration429

over attempting to counteract bias solely at the out-430

put. Moreover, OutCal exhibits higher variance431

in performance due to its sensitivity to human-432

crafted domain-relevant strings xdomain. Using cer-433

tain xdomain instances may not accurately capture434

the bias of LMs, resulting in under-calibration or435

over-calibration and leading to the high variance. In436

our approach, we use a large set of auto-generated437

and selected xnull as the training set for bias cali-438

bration. This mitigates the impact of sub-optimal439

samples and enhances calibration robustness, con-440

tributing to more stable and reliable performance.441

Prompt-based fine-tuning results. This method442

fine-tunes all LM parameters utilizing limited la-443

beled data by minimizing the cross-entropy loss444

based on Equation 1. It greatly raises LM perfor-445

mance compared to in-context learning and sets up446

a strong baseline (i.e., NoCal). OutCal fails to sur-447

pass NoCal. We speculate that OutCal’s limitation448

lies in its exclusive focus on offsetting bias at the449

output and lack of interaction with the interior of450

LM. This appears to impede OutCal from adapting451

effectively to the intricate dynamics of LM after452

prompt-based fine-tuning, leading to some counter-453

productive calibrations. In contrast, IntrCal (ours)454

with the aim of intrinsic bias calibration achieves455

superior performance with absolute gains of maxi-456

mum 5.3% and average 2% compared to NoCal.457

Figure 4: t-SNE visualization for output representations
of <mask> token. Left is obtained from original LM;
Right is obtained from the LM after One-batch Calibra-
tion. Two colors denote the two classes in Subj task.

The output representations of <mask> token for458

label word predictions are visualized by t-SNE459

(van der Maaten and Hinton, 2008) in Figure 4.460

On the left, samples from the two categories are461

almost mixed together, indicating that the orig-462

inal LM tends to bias toward one class predic-463

In-context lrn no demo Prompt FT no demo

UnSel. xnull Sel. xnull UnSel. xnull Sel. xnull

AGNews 53.10.6 54.50.6 87.81.7 89.00.8

DBPedia 62.11.2 61.80.6 98.70.2 99.00.1

TREC 30.90.6 31.10.5 88.53.5 89.34.5

Subj 60.53.2 62.70.8 92.81.6 93.21.2

SST-5 35.51.7 37.50.4 48.74.2 49.92.7

Table 3: Benefits from null-meaning input xnull selec-
tion strategy (§ 4.2). UnSel. signifies using all GPT-
generated xnull in calibration, while Sel. denotes se-
lecting top xnull based on the sorting of Pnsp(xnull, ans).
Note that for In-context lrn no demo (i.e., zero-shot
learning in § 3.3), only batch size N of xnull are ran-
domly sampled (UnSel.) or strategically selected (Sel.).

In-context lrn no demo Prompt FT no demo

WLM + BLM BLM WLM + BLM BLM

AGNews 53.50.8 54.50.6 89.30.8 89.00.8

DBPedia 63.20.9 61.80.6 99.00.5 99.00.1

TREC 31.30.8 31.10.5 87.62.8 89.34.5

Subj 53.30.6 62.70.8 93.70.6 93.21.2

SST-5 33.50.4 37.50.4 49.40.7 49.92.7

Laptop 58.20.8 59.61.9 78.11.3 74.92.9

Restaurant 70.71.8 72.81.6 81.31.0 82.00.9

Twitter 51.80.7 51.70.4 55.72.3 57.04.2

Average 51.9 54.0 79.3 79.3

Table 4: Performance comparisons between differently
calibrated LMs. WLM + BLM updates entire LM in cali-
bration while BLM only updates bias parameters.

tion. In contrast, the right visualization demon- 464

strates improved separability after One-batch Cali- 465

bration(§ 3.3), which explains the significant per- 466

formance enhancement achieved by our intrinsic- 467

bias calibration method. 468

5.3 Update Entire LM vs. Only Bias 469

Parameters in Calibration 470

In Table 4, we evaluate the impact of updating en- 471

tire LM (WLM + BLM) during calibration on down- 472

stream task performance, as compared to only up- 473

dating bias parameters (BLM) in calibration. The 474

optimal learning rate for updating entire LM in cal- 475

ibration is smaller as shown in Appendix A Table 6. 476

Results of In-context lrn/Prompt FT with demo are 477

in Appendix B (Table 11). For in-context learn- 478

ing, the LM with only BLM updates in calibration 479

achieves better overall performance compared to 480

the LM with entire parameter updates, most likely 481

attributed to better preserved language modeling 482

abilities. For prompt-based fine-tuning, two dif- 483
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ferently calibrated LMs demonstrate comparable484

performance, as the impact of entire-parameter cali-485

bration on the modeling ability is mitigated through486

task-specific fine-tuning. Considering the signifi-487

cant saving in memory and computation, we rec-488

ommend only updating BLM in calibration.489

Figure 5: Impact of calibration on general modeling abil-
ities shown through the changes with respect to baseline
on each column. Each row shows the zero-shot perfor-
mance of one task employing original LM (first column;
baseline), task-specific calibrated LM (diagonal), other-
task calibrated LM (other places).

5.4 Analysis490

Evaluate language modeling abilities after cali-491

bration. Our method calibrates the intrinsic bias492

associated with a set of task-specific label words.493

In this section, we explore the impact of updating494

LM for task-specific bias calibration on general495

language modeling abilities. Specifically, we take496

the LM calibrated for one task and evaluate its per-497

formance on the other tasks. The results are shown498

in Figure 5. In general, intrinsic bias calibration499

for one task has a minimal adverse effect on other500

tasks’ modeling (no more than 2% degradation)501

due to the light model updates, while remarkably502

enhancing LM performance on that specific task.503

Notably, there is consistent performance increase504

at bottom right, as these tasks are all sentiment clas-505

sification sharing or including same label words.4506

Is the improvement in prompt-based fine-tuning507

simply attributed to NoisyTune? Wu et al. (2022)508

demonstrates that adding noise to pre-trained LMs509

4For aspect-level datasets, better improvement is on the
diagonals (task-specific calibration), indicating our method
mitigates the impact of association bias (Appendix A).

Prompt FT no demo Prompt FT with demo

NoisyTune IntrCal NoisyTune IntrCal

AGNews 89.01.8 89.00.8 88.41.5 89.30.9

DBPedia 98.00.8 99.00.1 98.60.9 98.90.3

TREC 86.24.3 89.34.5 87.24.6 89.71.0

Subj 93.01.2 93.21.2 92.91.2 94.30.2

SST-5 49.41.1 49.92.7 47.53.5 50.01.7

Laptop 73.83.2 74.92.9 75.53.2 78.71.4

Restaurant 79.92.7 82.00.9 78.32.6 79.84.5

Twitter 51.85.8 57.04.2 59.01.9 59.32.3

Average 77.6 79.3 78.4 80.0

Table 5: Comparison between NoisyTune (Wu et al.,
2022) and IntrCal (ours) in prompt-based fine-tuning.

benefits conventional fine-tuning on downstream 510

tasks. To validate that the gains in prompt-based 511

fine-tuning with our method are not solely a result 512

of perturbing LM parameters, we conduct compar- 513

ison experiments by adding noise (with the most 514

suitable intensity suggested in Wu et al., 2022) 515

to the pre-trained LM before initiating prompt- 516

based fine-tuning. Table 5 illustrates that, while 517

NoisyTune proves effective in better fine-tuning 518

pre-trained LMs on downstream tasks (as compared 519

to NoCal in Table 2), our method consistently sur- 520

passes NoisyTune, confirming the efficacy of intrin- 521

sic bias calibration in enhancing LM performance. 522

6 Conclusion 523

In this work, we propose a null-input prompt- 524

ing method to calibrate the intrinsic bias of pre- 525

trained Masked LMs, aiming to enhance zero/few- 526

shot learning performance in classification tasks. 527

Our method incorporates two key features for effi- 528

ciency: (1) auto-construction of null-input prompts 529

for bias probing, leveraging a diverse set of selected 530

null-meaning inputs easily crafted from generative 531

Large LM; (2) updating only bias parameters for 532

bias calibration. Experimental results show that 533

bias-calibrated LMs demonstrate significant perfor- 534

mance improvement for both in-context learning 535

and prompt-based fine-tuning, with average gains 536

of 9% and 2%, respectively. Moreover, our method 537

outperforms output-calibration approaches, high- 538

lighting the advantage of intrinsic bias calibration. 539

We believe this work presents a new perspective 540

of making LMs better zero/few-shot learners via 541

intrinsic bias calibration. Additionally, the demon- 542

strated significance of bias parameters could pro- 543

vide insights for future bias-related research. 544
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7 Limitations545

While our method has achieved substantial im-546

provement in prompt-based zero/few-shot learning,547

it comes with limitations that could open avenues548

for future research.549

First, calibration is fully unsupervised in the sce-550

nario where no labeled data is available (zero-shot551

downstream tasks in § 3.3). Based on empirical552

experimental results, we adopt the conservative553

One-batch Calibration strategy to ensure a safe and554

consistent performance enhancement. In the future,555

we aim to explore more rigorous approaches to556

determine optimal stopping points in this scenario.557

Second, we utilize RoBERTa (encoder) mod-558

els for classification tasks, as they have demon-559

strated competitive performance (Gao et al., 2021;560

Logan IV et al., 2022). However, the relatively561

small size of those Masked LMs (355M parameters562

for RoBERTa-large) could be the ultimate limita-563

tion to their capabilities. Given the proliferation564

of large-scale decoder LMs and their accomplish-565

ments in tackling more challenging tasks (Thoppi-566

lan et al., 2022; Chowdhery et al., 2023; Touvron567

et al., 2023), we anticipate extending our method568

to large decoder models and validating the appli-569

cability of our findings. Furthermore, we expect570

to expand the scope of tasks to include regression571

problems (e.g., sentiment score prediction) lever-572

aging KL divergence to measure disparities in con-573

tinuous probability distributions, aiming to address574

bias-related challenges across diverse scenarios.575

8 Ethics Statement and Broader Impact576

Our work is conformant to the Code of Ethics. We577

appropriately cite relevant methods, models, and578

datasets that we use. We affirm that all datasets in579

our experiments are public, and no private or sen-580

sitive information is incorporated in our research.581

Our use of datasets and pre-trained models is con-582

sistent with their intended use. For broader im-583

pacts, our method, extending beyond calibrating584

common token bias and association bias, might in-585

spire prospective research in mitigating social bias586

and improving the fairness of pre-trained LMs.587
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A Experimental Details827

Prompts with or without demonstrations. Ta-828

ble 7 shows the prompt templates and label words829

of each dataset we use for main experiments.830

For downstream tasks, in few-shot setting, task-831

specific example-label pairs (i.e., demonstrations)832

can be incorporated in the context to enhance the833

LM’s comprehension. While in zero-shot setting,834

no labeled data is available and thereby no demon-835

strations.836

For calibration, demonstrations are either absent837

from or added to null-input prompts, consistent838

with their exclusion from or inclusion in prompts839

for downstream tasks. An example of a null-input840

prompt without demonstration is:841

<s> An empty sentence. It is <mask>. </s>842

<s> and </s> respectively denote <cls> token and843

<sep> token in RoBERTa. In the other case, we in-844

corporate demonstrations retrieved from the small845

training set into the null-input prompt such as:846

<s> An empty sentence. It is <mask>. </s>
Compellingly watchable. It is great. </s>
The film is strictly routine. It is terrible. </s>

847

Association-bias calibration for aspect-level task.848

For aspect-level sentiment analysis, e.g., "Wonder-849

ful food but poor service. Service was <mask>.",850

the answer contains the aspect word "service". Be-851

cause the model makes sentiment predictions for852

specific aspect words, the task is likely subject to853

association bias (§ 2). For association-bias cali-854

bration, the only difference is that we incorporate855

various aspect words in the answer format (e.g.,856

"<aspect words> was <mask>.") when construct-857

ing null-input prompts. One can either leverage858

GPT-4 to generate in-domain aspect words (e.g.,859

for restaurant reviews, the generated aspect words860

could be menu, food, etc.), or simply employ the861

aspect words in the original training dataset. In862

this work, we choose the latter option. Due to the863

variability of <aspect words> in the answer format,864

sorting null-meaning inputs by NSP score can yield865

different results. To this effect, we do not apply866

xnull selection strategy (§ 4.2) for aspect-level task,867

and instead keep all the generated xnull.868

Hyper-parameters. In calibration stage, we shuf-869

fle the null-input prompts and conduct gradient870

descent on BLM (or WLM + BLM as comparative871

experiment) with 5 different seeds to account for872

calibration variance. There are two main hyper-873

parameters for calibration: (1) xnull batch size N ; 874

(2) calibration learning rate lrcalib. We conduct 875

grid search on N = {8, 16, 32} and lrcalib = 876

{1e−6, 1e−5, 1e−4, 1e−3}, and obtain the best 877

settings: N = 32 and lrcalib as shown in Table 6. 878

Calibrated LMs are applied in downstream tasks 879

with prompt-learning methods. We use the same 880

hyper-parameters as Gao et al. (2021) for prompt 881

learning. We evaluate on each task’s original test 882

set, except for AGNews and DBPedia, where we 883

randomly sample 2000 test examples. 884

We use PyTorch (Paszke et al., 2019) and pub- 885

lic HuggingFace Transformers library (Wolf et al., 886

2020), and conduct all the experiments with one 887

NVIDIA V100 GPU in Google Colab. 888

Calibration Prompt FT
(downstream)WLM + BLM BLM

No demo 1e− 5 1e− 3 1e− 5

With demo 1e− 6 1e− 4 1e− 5

Table 6: Optimal learning rates for calibration and down-
stream prompt-based fine-tuning (Prompt FT). With/No
demo denotes adding/not adding demonstrations in
prompts.

Algorithm 1 Null-input prompting for calibration

Inputs:
Downstream task: zero_shot or few_shot
Null-input prompts: {Nprompt}
(Val. data in Calibration: Dcalib

val ← Ddownstrm
train )

▷ Only when downstream task is few_shot
Output:
LMone_batch

calib for zero_shot
LMone_batch

calib & LMval
calib for few_shot

1: for batch in {Nprompt} do
2: P = LM(batch) ▷ Null input prompting
3: L = DKL(P ||U) ▷ Unif. distribution U
4: BLM ← BLM − α · ∂L

∂BLM
▷ Freeze WLM

5: if first batch then
6: Save LMone_batch

calib
7: end if
8: if downstream is zero_shot then break
9: end if

10: if better Compute_Metric(Dcalib
val ) then

11: Save LMval
calib

12: end if
13: end for

B Additional Results 889
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Dataset Task Type Prompt Template Label Words

AGNews News topic classification {Sentence} It is about <mask>. World / Sports / Business / Technology

DBPedia† Ontology classification {Sentence} It is about <mask>. Company / Artist / Building / Nature

TREC Question classification {Sentence} It is about <mask>. Number / Location / Person
/ Description / Entity / Expression

Subj Subjectivity classification {Sentence} This is <mask>. objective / subjective

SST-5 Movie sentiment analysis {Sentence} The movie was <mask>. terrible / bad / okay / good / great

Laptop Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Restaurant Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Twitter Aspect level sentiment analysis {Sentence} {Aspect words} was <mask>. terrible / okay / great

Table 7: Prompt templates and label words of the eight datasets in our experiments for main results. For DBPedia†,
we use four classes out of the total fourteen classes.

In-context lrn no demo In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal NoCal OutCal IntrCal

AGNews 37.80.0 36.24.6 49.00.9 68.40.4 69.74.3 73.70.3 88.20.3 87.80.6 88.91.0 86.70.1 74.24.1 87.20.1

DBPedia 57.20.0 50.57.1 54.90.1 56.53.4 78.74.4 83.90.4 95.22.1 93.55.0 99.00.4 97.80.9 96.70.8 98.60.1

TREC 28.20.0 25.44.4 30.20.1 41.20.3 39.93.8 42.51.0 82.510.9 70.32.3 86.46.5 85.71.8 80.65.0 91.20.6

Subj 53.60.0 63.61.9 66.41.8 50.80.2 67.01.7 69.60.4 92.51.3 91.10.4 91.91.7 90.42.1 92.00.2 92.30.1

SST-5 31.90.0 30.83.4 32.20.2 25.34.3 28.63.4 29.81.7 45.93.3 42.92.3 48.11.8 44.35.2 40.72.5 45.82.6

Laptop 56.10.0 56.73.8 60.00.1 49.20.9 61.52.8 64.00.6 75.83.4 73.01.3 76.31.8 74.80.1 76.00.6 76.30.5

Restaurant 69.80.0 72.02.9 69.50.5 67.60.7 70.52.4 73.20.7 75.56.6 77.33.4 77.21.1 74.83.3 75.20.7 76.13.9

Twitter 22.00.0 48.65.1 52.30.6 17.60.4 41.85.4 48.40.5 54.51.1 47.73.8 57.91.3 50.64.6 51.82.1 56.04.9

Average 44.6 48.0 51.8 47.1 57.2 60.6 76.3 73.0 78.2 75.6 73.4 77.9

Table 8: Result comparisons among NoCal (LM-BFF Gao et al., 2021; no calibration), OutCal (output calibration)
and IntrCal (ours; intrinsic-bias calibrated LM) using RoBERTa-base. We report the mean and standard deviation
of performance in 8 classification datasets with 4 prompt-learning methods.

In-context lrn with demo Prompt FT no demo Prompt FT with demo

NoCal IntrCal NoCal IntrCal NoCal IntrCal

2-shot

AGNews 70.46.7 76.33.6 76.45.4 80.28.0 78.21.3 83.21.1

DBPedia 92.90.9 94.01.0 97.01.6 98.40.9 97.41.0 97.81.1

TREC 49.84.2 50.54.0 49.122.6 60.39.6 65.29.3 66.19.3

Subj 49.41.1 56.23.9 66.45.4 82.25.9 72.313.9 81.513.2

4-shot

AGNews 75.73.9 80.31.7 85.42.7 87.31.3 76.713.1 85.91.9

DBPedia 93.00.4 93.90.4 97.20.8 97.91.1 96.41.5 98.60.6

TREC 51.92.6 53.22.5 64.57.1 67.66.7 73.68.5 78.29.7

Subj 48.82.2 59.43.1 81.43.9 88.53.2 78.99.3 83.67.8

8-shot

AGNews 79.61.0 82.41.6 86.91.9 88.10.4 85.51.7 88.01.4

DBPedia 92.90.8 94.20.2 97.31.2 98.80.5 98.20.8 98.60.2

TREC 47.92.2 48.72.0 71.64.9 72.25.1 75.46.2 81.75.6

Subj 48.41.0 60.54.8 91.91.3 92.70.8 88.95.3 92.12.2

Table 9: Few-shot learning with different number of training samples (K = {2, 4, 8}) using RoBERTa-large. IntrCal
(ours; intrinsic-bias calibrated LM) consistently outperforms NoCal (no calibration).

13



Figure 6: Performance comparison averaged on using
five different prompt templates with RoBERTa-large. In-
trCal (ours; intrinsic-bias calibrated LM) demonstrates
significantly improved accuracy with lower variance
compared to NoCal (no calibration).

Task Prompt Templates

AGNews

{Sentence} It is about <mask>.

{Sentence} This is about <mask>.

{Sentence} This is on <mask>.

{Sentence} It pertains to <mask>.

{Sentence} In relation to <mask>.

TREC

{Sentence} It is about <mask>.

{Sentence} Concerning <mask>.

{Sentence} This is about <mask>.

{Sentence} In relation to <mask>.

{Sentence} This is on <mask>.

Table 10: The five different prompt templates used in
Figure 6.

In-context lrn with demo Prompt FT with demo

WLM + BLM BLM WLM + BLM BLM

AGNews 82.00.8 82.40.9 89.30.6 89.30.9

DBPedia 95.10.7 94.80.7 99.00.1 98.90.3

TREC 49.12.6 48.62.2 88.92.3 89.71.0

Subj 65.60.4 63.52.3 93.91.6 94.30.2

SST-5 37.11.0 36.61.0 51.31.7 50.01.7

Laptop 65.80.3 67.41.7 77.70.8 78.71.4

Restaurant 72.71.2 74.01.0 81.43.4 79.84.5

Twitter 45.82.7 49.42.7 60.41.7 59.32.3

Average 64.2 64.6 80.2 80.0

Table 11: Performance comparisons between differ-
ently calibrated LMs using RoBERTa-large. WLM +
BLM updates entire LM in calibration while BLM only
updates bias parameters. This table (prompt learning
with demonstrations) is the supplement to § 5.3 Table 4
(prompt learning without demonstrations).

AGNews DBPedia TREC Subj SST-5

Orig. LM 0.033 0.130 0.025 0.195 0.011

Calib. LM 0.022 0.025 0.011 0.112 0.011

Table 12: We calculate the variance of probability distri-
bution across labels conditioned on null-meaning inputs,
i.e., V ar

(
P̄Xnull(Y)

)
, before and after calibration. A

smaller variance indicates that a distribution is closer to
uniform distribution. Orig. LM denotes original LM,
and Calib. LM denotes the LM after One-batch Calibra-
tion (§ 3.3). The decreasing variance in each task after
calibration demonstrates that our method promotes the
establishment of equitable LMs.
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