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ABSTRACT

Knowledge-grounded dialogue is a task of generating an informative response
based on both discourse context and external knowledge. As we focus on bet-
ter modeling the knowledge selection in the multi-turn knowledge-grounded di-
alogue, we propose a sequential latent variable model as the first approach to
this matter. The model named sequential knowledge transformer (SKT) can keep
track of the prior and posterior distribution over knowledge; as a result, it can
not only reduce the ambiguity caused from the diversity in knowledge selec-
tion of conversation but also better leverage the response information for proper
choice of knowledge. Our experimental results show that the proposed model
improves the knowledge selection accuracy and subsequently the performance of
utterance generation. We achieve the new state-of-the-art performance on Wizard
of Wikipedia (Dinan et al., 2019) as one of the most large-scale and challenging
benchmarks. We further validate the effectiveness of our model over existing con-
versation methods in another knowledge-based dialogue Holl-E dataset (Moghe
et al., 2018).

1 INTRODUCTION

Knowledge-grounded dialogue is a task of generating an informative response based on both dis-
course context and selected external knowledge (Ghazvininejad et al., 2018). For example, it is
more descriptive and engaging to respond “I’ve always been more of a fan of the American football
team from Pittsburgh, the Steelers!” than “Nice, I like football too.”. As it has been one of the key
milestone tasks in conversational research (Zhang et al., 2018), a majority of previous works have
studied how to effectively combine given knowledge and dialogue context to generate an utterance
(Zhang et al., 2018; Li et al., 2019b; Parthasarathi & Pineau, 2018; Madotto et al., 2018). Recently,
Dinan et al. (2019) propose to tackle the knowledge-grounded dialogue by decomposing it into two
sub-problems: first selecting knowledge from a large pool of candidates and generating a response
based on the selected knowledge and context.

In this work, we investigate the issue of knowledge selection in the multi-turn knowledge-grounded
dialogue, since practically the selection of pertinent topics is critical to better engage humans in
conversation, and technically the utterance generation becomes easier with a more powerful and
consistent knowledge selector in the system. Especially, we focus on developing a sequential latent
variable model for knowledge selection, which has not been discussed in previous research. We
believe it brings several advantages for more engaging and accurate knowledge-based chit-chat.
First, it can correctly deal with the diversity in knowledge selection of conversation. Since one can
choose any knowledge to carry on the conversation, there can be one-to-many relations between
dialogue context and knowledge selection. Such multimodality by nature makes the training of a
dialogue system much more difficult in a data-driven way. However, if we can sequentially model
the history of knowledge selection in previous turns, we can reduce the scope of probable knowledge
candidates at current turn. Second, the sequential latent model can better leverage the response
information, which makes knowledge selection even more accurate. It is naturally easy to select the
knowledge in the pool once the response is known, because the response is generated based on the
selected knowledge. Our sequential model can keep track of prior and posterior distribution over
knowledge, which are sequentially updated considering the responses in previous turns, and thus
we can better predict the knowledge by sampling from the posterior. Third, the latent model works
even when the knowledge selection labels for previous dialogue are not available, which is common
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Well, I help make sure people do not drown or
get injured while in or near the water!

(𝟏)A lifeguard is a rescuer who supervises the safety …
(𝟐) Lifeguards are strong swimmers and trained in …
(𝟑) In some areas, lifeguards are part of the emergency…
…
(𝑳 − 𝟐) Despite the considerable amount of activity …
(𝑳 − 𝟏) The season officially started on May in the …
(𝑳) These dates conventionally delimit the period of …

Apprentice

I’ve heard that in some places, lifeguards also
help with other sorts of emergencies!

Wizard

Task 1 : Knowledge Selection

Task 2 : Utterance Prediction

Figure 1: An example of wizard’s tasks in
knowledge-grounded conversation of Wizard of
Wikipedia (Dinan et al., 2019).

Table 1: Accuracy of knowledge selection with
and without knowing the response. We test with
GRU (Cho et al., 2014), Transformer (Vaswani
et al., 2017) and BERT (Devlin et al., 2019) as
the sentence encoder. For human evaluation, we
randomly sample 20 dialogues and ask human
annotators to select the most likely knowledge
sentence from the pool.

Methods w/o response w/ response
GRU 20.0 66.0

Transformer 22.5 70.4
BERT 23.4 78.2

Transformer + GT history 25.4 70.4
BERT + GT history 27.3 79.2

Random 2.7 2.7
Human 17.1 83.7

in practice. For example, if multiple people have discussion about given documents, knowledge
selection of previous turns is done by others. The latent model can infer which knowledge others
are likely to select and use.

Finally, the contributions of this work are as follows.

1. We propose a novel model named sequential knowledge transformer (SKT). To the best of
our knowledge, our model is the first attempt to leverage a sequential latent variable model
for knowledge selection, which subsequently improves the knowledge-grounded chit-chat.

2. Our experimental results show that the proposed model improves not only the knowledge
selection accuracy but also the performance of utterance generation. As a result, we achieve
the new state-of-the-art performance on Wizard of Wikipedia (Dinan et al., 2019) and a
knowledge-annotated version of Holl-E (Moghe et al., 2018) dataset.

2 PROBLEM STATEMENT AND MOTIVATION

As a main testbed of our research, we choose the Wizard of Wikipedia (WoW) benchmark (Di-
nan et al., 2019), since it is one of the most large-scale and challenging datasets for open-domain
multi-turn knowledge-based dialogue. Moreover, the dataset can evaluate the algorithm’s ability for
solving the two subproblems of knowledge selection and response generation. That is, it provides
ground-truth labels of knowledge selection and clear grounding between the pairs of selected knowl-
edge and response. In our experiments, we also evaluate on Holl-E (Moghe et al., 2018) as another
dataset for knowledge-grounded dialogue, after collecting clearer labels of knowledge sentences.

The Flow of Conversation. The WoW (Dinan et al., 2019) deals with a chit-chat dialogue task
where two speakers discuss in depth about a given topic. One speaker (coined as Wizard) is to be
both engaging and knowledgeable on the topic with access to an information retrieval (IR) system
over Wikipedia to supplement its knowledge. The other speaker (Apprentice) is curious and eager
to learn about the topic. With an example in Figure 1, the conversation flow takes place as follows.

1. One topic is chosen among 1,431 topics and shared between the two speakers.
2. Given an apprentice’s utterance and a wizard’s previous utterance, the IR system retrieves

relevant knowledge, which includes the first paragraph of top 7 articles each for wizard
and apprentice and the first 10 sentences of the original Wikipedia page of the topic (e.g.
the lifeguard wikipage). The knowledge pool contains 67.57 sentences on average. Then.
the wizard must choose a single relevant sentence from them (knowledge selection) and
construct an utterance (response generation).

3. The conversation repeats until a minimum number of turns (5 each) reaches.

The Motivation of Sequential Latent Models. The goal of the task is to model the wizard that
solves the two subproblems of knowledge selection and response generation (Dinan et al., 2019). In
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the knowledge selection step, a single relevant knowledge sentence is chosen from a pool of candi-
dates, and in the response generation step, a final utterance is generated with the chosen knowledge
and dialogue context. This pipeline is originally proposed to tackle open-domain TextQA (Chen
et al., 2017); for example, Min et al. (2018) show its effective for single-document TextQA, to
which the key is to locate the sentences that contain the information about the answer to a question.

For knowledge-grounded dialogue, however, there can be one-to-many relations between the dia-
logue context and the knowledge to be selected unlike TextQA. Except a direct question about con-
text, one can choose any diverse knowledge to carry on the conversation. Therefore, the knowledge
selection in dialogue is diverse (i.e. multimodal) by nature, which should be correctly considered
in the model. It is our main motivation to propose a sequential latent variable model for knowledge
selection, which has not been studied yet. The latent variable not only models such diversity of
knowledge but also sequentially track the topic flow of knowledge in the multi-turn dialogue.

Another practical advantage of the sequential latent model lies in that it is easy to find which knowl-
edge is chosen once the response is known, since the response is written based on the selected
knowledge. Table 1 clearly validates this relation between knowledge and response. In the WoW
dataset, knowing a response boosts the accuracy of knowledge sentence selection for both human
and different models. These results hint that knowledge selection may need to be jointly modeled
with response generation in a sequence of multi-turn chit-chats, which can be done by the sequential
latent models.

3 APPROACH

We propose a novel model for knowledge-grounded conversation named sequential knowledge
transformer (SKT), whose graphical model is illustrated in Figure 2. It is a sequential latent model
that sequentially conditions on previously selected knowledge to generate a response.

We will use 1 ≤ t ≤ T to iterate over dialogue turns, 1 ≤ m ≤ M and 1 ≤ n ≤ N to respectively
iterate over words in the utterance of apprentice and wizard, and 1 ≤ l ≤ L to denote knowledge
sentences in the pool. Thus, T is the dialogue length, M and N are the length of each utterance of
apprentice and wizard, and L is the size of the knowledge pool.

The input to our model at turn t is previous turns of conversation, which consists of utterances from
apprentice x1, ...,xt, utterances from wizard y1, ...,yt−1 and the knowledge pool kt = {kt,l} =
kt,1, ...,kt,L. The output of the model is selected knowledge kts and the wizard’s response yt. Be-
low, we discuss sentence embedding, knowledge selection and utterance decoding in our approach.
Note that our technical novelty lies in the knowledge selection model, while exploiting existing
techniques for text encoding and utterance decoding.

Sentence Encoding. We represent an apprentice utterance xt to an embedding htx using BERT
(Devlin et al., 2019) and average pooling over time steps (Cer et al., 2018):

Ht
x = BERTbase([xt1; ...;x

t
M ]) ∈ RM×768,htx = avgpool(Ht

x) ∈ R768. (1)

Likewise, the utterance of Wizard yt−1 is embedded as ht−1y and knowledge sentences are as
{ht,lk } = ht,1k , ...,ht,Lk . Each apprentice-wizard utterance pair htxy = [htx;h

t
y] at dialog turn t is

jointly represented through a GRU (Cho et al., 2014) layer: dtxy = GRUdialog(dt−1xy ,h
t
xy) ∈ R768.

Sequential Knowledge Selection. Compared to previous works, we make two significant mod-
ifications. First, we regard the knowledge selection as a sequential decision process instead of a
single-step decision process. Second, due to the diversity of knowledge selection in dialogue, we
model it as latent variables. As a result, we can carry out the joint inference of multi-turns of knowl-
edge selection and response generation rather than separate inference turn by turn.

There have been much research on sequential latent variable models (Chung et al., 2015; Fraccaro
et al., 2016; Goyal et al., 2017; Aneja et al., 2019; Shankar & Sarawagi, 2019). For example, Shankar
& Sarawagi (2019) propose a posterior attention model that represents the attention of seq2seq
models as sequential latent variables. Inspired by them, we factorize the response generation with

3



Under review as a conference paper at ICLR 2020

Train/Test
Test only
Train only

𝑞"(𝑘%|𝑥(%, 𝑦(%, 𝑘+%)
Posterior

𝑥-, 𝑦- 𝑥., 𝑦. 𝑥%

𝑘- 𝑘. 𝑘%

𝑦%Dialogue
Context

Knowledge
Pool

𝜋0(𝑘%|𝑥(%, 𝑦+%𝑘+%)
Prior

Sampling Sampling

Figure 2: A graphical representation of the proposed sequential knowledge selection (SKT) model.
At the third turn, the goal is to generate wizard’s response (y3) given dialogue context (x≤3,y<3).
Our model sequentially infer which knowledge is likely to be used (k≤3), from which the utterance
y3 is generated.

latent knowledge selection and derive the variational lower bound as follows:

log p(y|x) = log
∏
t

∑
kt

pθ(y
t|x≤t,y<t,k≤t)πθ(kt|x≤t,y<t,k<t) (2)

≥
∑
t

Eqφ(kt−1)

[
Eqφ(kt)[log pθ(y

t|x≤t,y<t,kt)]−DKL(qφ(k
t) ‖ πθ(kt))

]
, (3)

where qφ(k
t) is shorthand for qφ(kt|x≤t,y≤t,k<t) and πθ(k

t) for πθ(kt|x≤t,y<t,k<t) for
brevity. Note that pθ(yt|·) is a decoder network, πθ(kt) is a categorical conditional distribution
of knowledge given dialogue context and previously selected knowledge, and qφ(kt) is an inference
network to approximate posterior distribution pθ(kt|x≤t,y≤t,k<t).
The conditional probability of generating wizard’s response yt given dialogue context x≤t and y<t,
can be re-written from Eq. (2) as follows:

p(yt|x≤t,y<t) ≈
t−1∏
i=1

∑
ki

qφ(k
i)
(∑

kt

pθ(y
t|x≤t,y<t,kt)πθ(kt)

)
. (4)

The detailed derivation can be found in Appendix. Eq.(4) means that we first infer from the knowl-
edge posterior which knowledge would be used up to previous turn t − 1, estimate the knowledge
for current turn t from prior knowledge distribution and generate an utterance from the inferred
knowledge. Figure 2 shows an example of this generation process at t = 3. We parameterize the
decoder network pθ, the prior distribution of knowledge πθ, and the approximate posterior qφ with
deep neural networks as will be discussed.

From the posterior distribution qφ(kt−1) we draw a sample kt−1s , and then update πθ and qφ with
the sentence embedding of sampled knowledge (ht−1,sk ) and the embeddings of previous and current
utterances (dt−1xy ,d

t
xy,h

t
x). We use an attention mechanism over current knowledge pool {ht,lk } to

compute knowledge distribution given the dialogue context. This process is modeled as

πθ(k
t|x≤t,y<t,k≤t−1s ) = softmax(qtprior[h

t,1
k , ...,ht,Lk ]>) ∈ RL (5)

qφ(k
t|x≤t,y≤t,k≤t−1s ) = softmax(qtpost[h

t,1
k , ...,ht,Lk ]>) ∈ RL, (6)

where

qtprior = Wprior([d
t−1
xy ;htx;GRUhist(dt−2k ,ht−1,sk )]), (7)

qtpost = Wpost([d
t
xy;GRUhist(dt−2k ,ht−1,sk )]), (8)

dtk is the hidden state of GRUhist and we initialize d0
xy = d0

k = 0 ∈ R768, and Wprior,Wpost ∈
R768×(768×2) are the parameters. We here use the GRU (Li et al., 2017; Aneja et al., 2019) to
sequentially condition previously selected knowledge to πθ and qφ.

Finally, we sample knowledge kts over attention distribution in Eq.(5) and pass it to the decoder. At
test time, we select the knowledge with the highest probability.

Decoding with Copy Mechanism. We generate the wizard’s response at turn t, given cur-
rent context xt and selected knowledge sentence kts. We feed their concatenated embedding
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Ht
xks

= [Ht
x;H

t
ks
] to the decoder pθ. To maximize the effect of selected knowledge for response

generation, we choose the Copy mechanism (Xia et al., 2017; Li et al., 2019b) with Transformer
decoder (Vaswani et al., 2017). We obtain the output word probability (Zhao et al., 2019a):

htn = Decoder(Ht
xks ,y

t
<n), qtn,K

t,Vt = htnW
>
q ,H

t
xksW

>
k ,H

t
xksW

>
v , (9)

pgent,n (w) = softmax(Wouth
t
n), pcopyt,n (w) = softmax(qtnK

t), (10)

pt,n(w) = (1− αcopyt,n ) ∗ pgent,n (w) + αcopyt,n ∗ p
copy
t,n (w), (11)

where αcopyt,n = σ(W>
copy

∑
pcopyt,n (w) ·Vt) and σ is a sigmoid. Finally, we select the word with the

highest probability ytn+1 = argmaxw∈V pt,n(w) where V is the dictionary. Unless the word ytn+1

is an EOS token, we repeat generating the next word by feeding ytn+1 to the decoder.

3.1 TRAINING

Obviously, there is a large gap in knowledge selection accuracy between training with or without
true labels (e.g. 23.2 of E2E Transformer MemNet with labels vs 4.8 of PostKS without labels in
Table 2). As one way to take advantage of true labels for training of latent models, prior research has
employed auxiliary losses over latent variables (Wen et al., 2017; Zhao et al., 2017). Similarly, we
use the knowledge loss from Dinan et al. (2019) (i.e. the cross-entropy loss between predicted and
true knowledge sentences) as an auxiliary loss for the latent variable. Thus, the training objective is
a combination of the variational lower-bound from Eq. (3) and the auxiliary knowledge loss as

L = − 1

T

T∑
t=1

Eqφ(kt−1)

[
Eqφ(kt)[log pθ(y

t|x≤t,y<t,kts)]

−DKL(qφ(k
t) ‖ πθ(kt)) + λ log qφ(k

t
a)︸ ︷︷ ︸

Knowledge loss

]
, (12)

where kts is a sampled knowledge from qφ(k
t|x≤t,y≤t,k<t), kta is a true knowledge, and λ is

a hyperparameter. Note that knowledge is sequentially sampled from attention distribution as in
Eq.(5). We train our model by mini-batch gradient descent. We approximate the expectation of one
sample from the posterior by using Gumbel-Softmax function (Jang et al., 2017; Maddison et al.,
2017b). Further details of optimization can be found in Appendix.

4 EXPERIMENTS

We evaluate our model mainly on the Wizard of Wikipedia (Dinan et al., 2019) and additionally
Holl-E (Moghe et al., 2018) as another knowledge-grounded chit-chat dataset. We qualitatively and
quantitatively compare our approach with other state-of-the-art models.

4.1 DATASETS

Wizard of Wikipedia. It contains 18,430 dialogues for training, 1,948 dialogues for validation and
1,933 dialogues for test. The test set is split into two subsets, Test Seen and Test Unseen. Test Seen
contains 965 dialogues on the topics overlapped with the training set, while Test Unseen contains
968 dialogues on the topics never seen before in training and validation set.

Holl-E. It contains 7,228 dialogues for training, 930 dialogues for validation and 913 dialogues for
test. A single document is given per dialogue; the documents include about 58 and 63 sentences on
average for training/validation and test set, respectively. The dataset provides spans in the document
as additional information to provide which parts of a document is used to generate a response.
However, the span labels are highly inconsistent; for example, they are often shorter than a single
sentence or contain multiple consecutive sentences. Thus, it is undesirable to use them without
modifications because it is different from WoW setting where all of the ground-truth (GT) knowledge
are in the form of sentence. Hence, we collect a set of ground-truth (GT) knowledge as follows. If
the span is given as multiple sentences, we select the closest sentence in the span to the response in
terms of F1 scores. Otherwise, we select the closest sentence in the whole document. If all sentences
have zero F1 scores to the response, we tag no passages used as the GT, which amounts to 5% of
GT labels. We will make our set of GT annotations public.
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Table 2: Quantitative results on the Wizard of Wikipedia dataset (Dinan et al., 2019). The method
with [∗] does not use the knowledge loss. The scores of E2E Transformer MemNet† and Transformer
(no knowledge)† are from the original paper. The variant (BERT vocab)‡ is re-runned using the
authors’ code, since the vocabulary is different from original paper due to the use of BERT.

Test Seen Test Unseen
Method PPL R-1 R-2 Acc PPL R-1 R-2 Acc

Random knowledge selection n/a 8.4 1.4 2.7 n/a 8.0 1.2 2.3
Repeat last utterance n/a 14.5 3.1 n/a n/a 14.1 2.9 n/a

Transformer (no knowledge)† (Dinan et al., 2019) 41.8 17.8 n/a n/a 87.0 14.0 n/a n/a
E2E Transformer MemNet† (Dinan et al., 2019) 63.5 16.9 n/a 22.5 97.3 14.4 n/a 12.2

E2E Transformer MemNet (BERT vocab)‡ 53.2 17.7 4.8 23.2 137.8 13.6 1.9 10.5
PostKS∗ (Lian et al., 2019) 79.1 13.0 1.0 4.8 193.8 13.1 1.0 4.2

E2E Transformer MemNet + BERT 53.5 16.8 4.5 23.7 105.7 13.5 2.2 13.6
PostKS + Knowledge Loss 54.5 18.1 5.3 23.4 144.8 13.5 2.0 9.4

E2E Transformer MemNet + BERT + PostKS 54.6 17.8 5.3 25.5 113.2 13.4 2.3 14.1
Ours 52.1 19.3 6.7 26.8 79.9 16.2 4.2 19.2

Table 3: Quantitative results on the Holl-E dataset (Moghe et al., 2018) with single reference and
multiple references test set.

Single Reference Multiple References
Method PPL R-1 R-2 Acc PPL R-1 R-2 Acc

Random knowledge selection n/a 7.4 1.8 1.9 n/a 10.3 3.6 3.5
Repeat last utterance n/a 11.4 1.5 n/a n/a 13.6 2.0 n/a

E2E Transformer MemNet (Dinan et al., 2019) 140.6 20.1 10.3 22.7 83.6 24.3 12.8 32.3
PostKS∗ (Lian et al., 2019) 196.6 15.2 6.0 1.5 114.1 19.2 7.9 3.2

E2E Transformer MemNet + BERT 112.6 25.9 18.3 28.2 66.9 31.1 22.7 37.5
PostKS + Knowledge Loss 135.1 19.9 10.7 22.5 81.9 23.8 12.9 32.2

E2E Transformer MemNet + BERT + PostKS 119.9 27.8 20.1 27.6 66.7 33.7 25.8 37.3
Ours 51.8 29.5 23.0 30.3 29.6 36.4 29.7 40.5

4.2 EXPERIMENTAL SETTING

Evaluation Metrics. We follow the evaluation protocol of WoW (Dinan et al., 2019). We measure
unigram F1 (R-1), bigram F1 (R-2) and perplexity (PPL) for response generation, and the accuracy
for knowledge selection. For n-gram metrics, we remove all the punctuations and (a, an, the) before
computing the score. We remind that lower perplexity and higher n-gram (R-1, R-2) scores indicate
better performance.

The test set for Holl-E is split into two subsets, single reference and multiple references. The dataset
basically provides a single response per context (denoted as single reference). However, for some
conversations, more responses (e.g. 2–13) are collected from multiple annotators per context (mul-
tiple references). For evaluation of multiple references, we take the best score over multiple GTs by
following Moghe et al. (2018). For knowledge accuracy, we regard the model’s prediction is correct
if it matches at least one of the correct answers.

Baselines. We closely compare with two state-of-the-art knowledge-grounded dialogue models.
The first one is E2E Transformer MemNet (Dinan et al., 2019), which uses a Transformer memory
network for knowledge selection and a Transformer decoder for utterance prediction. The second
one is PostKS (Lian et al., 2019), which uses the posterior knowledge distribution as a pseudo-
label for knowledge selection. For fair comparison, we replace all GRU layers in PostKS with
Transformers. We also compare with three variants of these models as an ablation study: (i) E2E
Transformer MemNet + BERT, where we replace the Transformer memory network with pre-trained
BERT, (ii) PostKS + Knowledge loss, where we additionally use the knowledge loss and (iii) E2E
Transformer MemNet + BERT + PostKS, which combines all the components of baselines. We use
official BERT tokenizer to tokenize the words and use pre-defined BERT vocabulary (V = 30522)
to convert token to index1. All the baselines use the exactly same inputs with our model except
PostKS, which does not make use of knowledge labels as proposed in the original paper.

1https://github.com/tensorflow/models/tree/master/official/nlp/bert.
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Table 4: Human evaluation results on the Wizard of Wikipedia. We report the mean ratings and their
standard errors of different methods for engagingness and knowledgeability scores.

Test Seen Test Unseen
Method Engagingness Knowledgeability Engagingness Knowledgeability
PostKS 1.65 (0.05) 1.72 (0.06) 1.66 (0.06) 1.74 (0.06)

E2E Transformer MemNet 2.57 (0.05) 2.47 (0.06) 2.39 (0.06) 2.21 (0.06)
Ours 2.59 (0.05) 2.53 (0.06) 2.52 (0.06) 2.35 (0.06)

Human 3.14 (0.05) 3.09 (0.05) 3.11 (0.05) 2.99 (0.05)

4.3 QUANTITATIVE RESULTS

Table 2 compares the performance of different methods on the Wizard of Wikipedia dataset. Our
model outperforms the state-of-the-art knowledge-grounded dialogue models in all metrics for
knowledge selection (accuracy) and utterance generation (unigram F1, bigram F1). The PostKS that
is trained with no knowledge label shows low accuracy on knowledge selection, which is slightly
better than random guess. However, it attains better performance than E2E Transformer MemNet
with the knowledge loss in the WoW Test Seen, which shows that leveraging prior and posterior
knowledge distribution is effective for knowledge-grounded dialogue, although using sequential la-
tent variable improves further. BERT improves knowledge selection accuracy, but not much as in
TextQA because of diversity in knowledge selection of conversation. The E2E Transformer Mem-
Net + BERT + PostKS performs the best among baselines, but not as good as ours, which validates
that sequential latent modeling is critical for improving the accuracy of knowledge selection and
subsequently utterance generation. Additionally, the performance gaps between ours and baselines
are larger in Test Unseen. It can be understood that the sequential latent variable can generalize bet-
ter. Transformer (no knowledge) shows the lowest perplexity in the WoW Test Seen, and it is mainly
due to that it may generate only general and simple utterances since no knowledge is grounded. This
behavior can be advantageous for the perplexity, while the other knowledge-based models take a risk
of predicting wrong knowledge, which is unfavorable for perplexity.

Table 3 compares the performance of our model on Holl-E dataset. Similarly, our model outperforms
all the baselines in all metrics. One notable trend is that BERT considerably reduces the perplexity
in all models, which may be due to that the dataset size of Holl-E is much smaller than WoW and
BERT prevents overfitting (Hao et al., 2019).

4.4 QUALITATIVE RESULTS

User Studies. We perform human evaluation to complement the limitation of automatic language
metrics. We evaluate several aspects of utterance generation using the similar setting in Guu et al.
(2018). We randomly sample 100 test examples, and each sample is evaluated by three unique
human annotators on Amazon Mechanical Turk (AMT). At test, we show dialogue context and
generated utterance by our method or baselines. We ask turkers to rate the quality of each utterance
in two aspects, which are referred to Li et al. (2019a): (i) Engagingness: how much do you like the
response? and (ii) Knowledgeability: how much is the response informative? Each item is scored
from 1 to 4, where 1 means not at all, 2 is a little, 3 is somewhat, and 4 is a lot. Note that human
evaluation on knowledge selection is not possible, since any knowledge can be fine for a given
context, which is key motivation for our sequential latent model – diversity of knowledge selection.

Table 4 summarizes the results of the human evaluation, which validates that annotators prefer our
results to those of baselines. Again, the performance gaps between ours and baselines are larger in
Test Unseen, thank to better generality of our sequential latent model. However, the gaps in Test
Seen are not large, since the evaluation is not done in a multi-turn setting, for which our sequential
model’s merit would be more salient, due to the difficulty of multi-turn tasks for AMT turkers.

Dialogue Examples. Figure 3 shows selected examples of utterance prediction. In each set, we
show dialogue context, human response, and utterances generated by our method and baselines.
Thanks to the use of latent variables, our model can better capture the changes in dialogue topics
and thus generate more appropriate responses.
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Unseen Test (Topic: Hunting)

W:

A:

That is true but we always have to watch out for excessive 
hunting. It has caused some species to be endangered.
Yes I agree. I don’t believe in the useless hunting that poachers 
do. Its so cruel.

(Ours) i agree , poaching has been defined as the illegal hunting or 
capturing of wild animals .
(TMN) i thinks so , i ’ m not sure if you ’ re talking about 
poaching , but i know that poodles are the second most intelligent 
breed behind the poodle .
(TMN+KL+BERT) i agree . i think it ’ s a great way to catch fish .
(Human) agreed , i remember reading one time that unless you 
plan to kill the animals its not considered hunting .

Seen Test (Topic: Italian Cuisine)

A:

W:
A:

I love chicken parmigiana as well, but I think my ultimate 
favorite is beef lasagna… Extra cheese please!
Chicken with sauce and mozzarella…. Be still my heart!
Truthfully, anything with cheese is the best

(Ours) i love pizza too ! it ’ s a traditional italian dish 
consisting of yeasted flatbread typically topped with tomato 
sauce and cheese
(TMN) i love cheese !
(TMN+KL+BERT) i like mine topped with vegetables , 
meats , and condiments .
(Human) especially cheddar cheese ! it ’ s the second most 
popular cheese in the use !

… …

Figure 3: Examples of generated responses by our model and baselines on Wizard of Wikipedia.
TMN stands for E2E Transformer MemNet, and A and W for apprentice and wizard.

5 RELATED WORK

Knowledge-based conversations have been studied much including collecting new datasets (Qin
et al., 2019; Zhang et al., 2018; Ghazvininejad et al., 2018; Zhou et al., 2018; Dinan et al., 2019;
Moghe et al., 2018) or developing new models (Lian et al., 2019; Li et al., 2019b; Yavuz et al.,
2019; Zhao et al., 2019b; Dinan et al., 2019; Liu et al., 2019). Most works on the models have less
investigated the knowledge selection issue but instead focused on how to effectively combine given
knowledge and dialogue context to improve response informativeness. For example, Ghazvininejad
et al. (2018) aid a Seq2Seq model with an external knowledge memory network, and Li et al. (2019b)
propose an Incremental Transformer to encode multi-turn utterances along with knowledge in related
documents. Recently, Dinan et al. (2019) propose both a dataset of Wizard of Wikipedia and a model
to leverage the two-step procedure of selecting knowledge from the pool and generating a response
based on chosen knowledge and given context.

One of the most related models to ours may be Lian et al. (2019), who also focus on the knowl-
edge selection issue in the two-stage knowledge-grounded dialogue. However, our work is novel in
that we model it as a sequence decision process with latent variables and introduce the knowledge
loss. Thanks to these updates, our model achieves significantly better performance as shown in the
experiments.

Sequential Latent Variable Models. There have been many studies about sequential latent vari-
able models. Chung et al. (2015) propose one of the earliest latent models for sequential data, named
VRNN. Later, this architecture is extended to SRNN (Fraccaro et al., 2016) and Z-Forcing (Goyal
et al., 2017). There have been some notable applications of sequential latent models, including doc-
ument summarization (Li et al., 2017), image captioning (Aneja et al., 2019) and text generation
(Shao et al., 2019). Another related class of sequential latent models may be latent attention mod-
els (Deng et al., 2018; Wang et al., 2018; Yang et al., 2017), which exploit the latent variables to
model the attention mapping between input and output sequences. Although our method is partly
influenced by such recent models, it is novel to propose a sequential latent model for the knowledge-
grounded chit-chat problem.

6 CONCLUSION

This work investigated the issue of knowledge selection in multi-turn knowledge-grounded dia-
logue, and proposed a sequential latent variable model, for the first time, named sequential knowl-
edge transformer (SKT). Our method achieved the new state-of-the-art performance on the Wiz-
ard of Wikipedia benchmark (Dinan et al., 2019) and a knowledge-annotated version of Holl-E
dataset (Moghe et al., 2018). There are several promising future directions beyond this work. First,
we can explore other inference models such as sequential Monte Carlo methods using filtering vari-
ational objectives (Maddison et al., 2017a). Second, we can study the interpretability of knowledge
selection such as measuring the uncertainty of attention (Heo et al., 2018).
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A DERIVATION OF CONDITIONAL PROBABILITY

In Section 3, we re-write the conditional probability of wizard’s response yt given dialogue context
x≤t and y<t from Eq. (2) to Eq. (4). We can simply derive it as follows:

p(y|x) (13)

=
∏
t

∑
kt

pθ(y
t|x≤t,y<t,k≤t)πθ(kt) (by Eq. (2)) (14)

=

t−1∏
i=1

∑
ki

pθ(y
i|x≤i,y<i))pθ(ki)

(∑
kt

pθ(y
t|x≤t,y<t,k≤t)πθ(kt)

)
(by Bayes’ rule) (15)

≈
t−1∏
i=1

∑
ki

pθ(y
i|x≤i,y<i))qφ(ki)

(∑
kt

pθ(y
t|x≤t,y<t,k≤t)πθ(kt)

)
(16)

=

t−1∏
i=1

∑
ki

qφ(k
i)
(∑

kt

pθ(y
t|x≤t,y<t,kt)πθ(kt)

)
(x≤t and y<t are given) (17)

≈ p(yt|x≤t,y<t), (18)

where qφ(ki) is an approximated posterior distribution and pθ(ki) is a true posterior distribution.

B TRAINING DETAILS

All the parameters except pretrained parts are initialized with Xavier method (Glorot & Bengio,
2010). We use Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, ε = 1e − 07.
For the models without BERT, we set the learning rate to 0.001 and initialize the embedding matrix
with fastText (Bojanowski et al., 2016) trained on the Common Crawl corpus. For the models
with BERT, we set the learning rate to 0.00002 and initialize encoder weights with BERT-Base,
Uncased pretrained weights. We apply label smoothing (Pereyra et al., 2017; Edunov et al., 2017;
Vaswani et al., 2017) for both knowledge selection and utterance generation, and set 0.1 and 0.05
for each. We set the temperature of Gumbel-Softmax to τ = 0.1 and the hyperparameter for the
knowledge loss to λ = 1.0. For efficiency, we batch the dialogues rather than individual turns. We
train our model up to 5 epochs on a single NVIDIA TITAN Xp GPU.
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