
Under review as a conference paper at ICLR 2020

CONVOLUTIONAL BIPARTITE ATTRACTOR NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In human perception and cognition, a fundamental operation that brains perform
is interpretation: constructing coherent neural states from noisy, incomplete, and
intrinsically ambiguous evidence. The problem of interpretation is well matched to
an early and often overlooked architecture, the attractor network—a recurrent neural
net that performs constraint satisfaction, imputation of missing features, and clean
up of noisy data via energy minimization dynamics. We revisit attractor nets in light
of modern deep learning methods and propose a convolutional bipartite architecture
with a novel training loss, activation function, and connectivity constraints. We
tackle larger problems than have been previously explored with attractor nets and
demonstrate their potential for image completion and super-resolution. We argue
that this architecture is better motivated than ever-deeper feedforward models and
is a viable alternative to more costly sampling-based generative methods on a range
of supervised and unsupervised tasks.

1 INTRODUCTION

Under ordinary conditions, human visual perception is quick and accurate. Studying circumstances
that give rise to slow or inaccurate perception can help reveal the underlying mechanisms of visual
information processing. Recent investigations of occluded (Tang et al., 2018) and empirically
challenging (Kar et al., 2019) scenes have led to the conclusion that recurrent brain circuits can play
a critical role in object recognition. Further, recurrence can improve the classification performance
of deep nets (Tang et al., 2018; Nayebi et al., 2018), specifically for the same images with which
humans and animals have the most difficulty (Kar et al., 2019).

Recurrent dynamics allow the brain to perform pattern completion, constructing a coherent neural
state from noisy, incomplete, and intrinsically ambiguous evidence. This interpretive process is
well matched to attractor networks (ANs) (Hopfield, 1982; 1984; Krotov and Hopfield, 2016; Zemel
and Mozer, 2001), a class of dynamical neural networks that converge to fixed-point attractor states
(Figure 1a). Given evidence in the form of a static input, an AN settles to an asymptotic state—an
interpretation or completion—that is as consistent as possible with the evidence and with implicit
knowledge embodied in the network connectivity. We show examples from our model in Figure 1b.

ANs have played a pivotal role in characterizing computation in the brain (Amit, 1992; McClelland
and Rumelhart, 1981), not only perception (e.g., Sterzer and Kleinschmidt, 2007), but also language
(Stowe et al., 2018) and awareness (Mozer, 2009). We revisit attractor nets in light of modern deep
learning methods and propose a convolutional bipartite architecture for pattern completion tasks with
a novel training loss, activation function, and connectivity constraints.

layer l layer l+1
layer l

avg. pool

𝑾

𝑾′
(a) (c) (d)

visible?visible
hidden

1,7 2,6 3,5 48
update order

(b)

ta
rg
et

co
m
pl
et
io
n

ev
id
.

Figure 1: (a) Hypothetical activation flow dynamics of an attractor net over a 2D state space; the
contours depict an energy landscape. (b) top-to-bottom: original image, completion, and evidence. (c)
Bipartite architecture with layer update order. (d) Convolutional architecture with average pooling.

1

Under review as a conference paper at ICLR 2020

2 BACKGROUND AND RELATED RESEARCH

Although ANs have been mostly neglected in the recent literature, attractor-like dynamics can be seen
in many models. For example, clustering and denoising autoencoders are used to clean up internal
states and improve the robustness of deep models (Liao et al., 2016; Tang et al., 2018; Lamb et al.,
2019). In a range of image-processing domains, e.g., denoising, inpainting, and super-resolution,
performance gains are realized by constructing deeper and deeper architectures (e.g., Lai et al.,
2018). State-of-the-art results are often obtained using deep recursive architectures that replicate
layers and weights (Kim et al., 2016; Tai et al., 2017), effectively implementing an unfolded-in-time
recurrent net. This approach is sensible because image processing tasks are fundamentally constraint
satisfaction problems: the value of any pixel depends on the values of its neighborhood, and iterative
processing is required to converge on mutually consistent activation patterns. Because ANs are
specifically designed to address constraint-satisfaction problems, our goal is to re-examine them from
a modern deep-learning perspective.

Interest in ANs seems to be narrow for two reasons. First, in both early (Hopfield, 1982; 1984) and
recent (Li et al., 2015; Wu et al., 2018a;b; Chaudhuri and Fiete, 2017) work, ANs are characterized
as content-addressable memories: activation vectors are stored and can later be retrieved with only
partial information. However, memory retrieval does not well characterize the model’s capabilities:
like its probabilistic sibling the Boltzmann machine (Hinton, 2007; Welling et al., 2005), the AN is a
general computational architecture for supervised and unsupervised learning. Second, ANs have been
limited by training procedures. In Hopfield’s work, ANs are trained with a simple procedure—an
outer product (Hebbian) rule—which cannot accommodate hidden units and the representational
capacity they provide. Recent explorations have considered stronger training procedures (e.g., Wu
et al., 2018b; Liao et al., 2018); however, as for all recurrent nets, training is complicated by the issue
of vanishing/exploding gradients. To facilitate training and increase the computational power of ANs,
we propose a set of extensions to the architecture and training procedures.

ANs are related to several popular architectures. Autoencoding models such as the VAE (Kingma and
Welling, 2013) and denoising autoencoders (Vincent et al., 2008) can be viewed as approximating one
step of attractor dynamics, directing the input toward the training data manifold (Alain et al., 2012).
These models can be applied recursively, though convergence is not guaranteed, nor is improvement
in output quality over iterations. Flow-based generative models (FBGMs) (e.g., Dinh et al., 2016) are
invertible density-estimation models that can map between observations and latent states. Whereas
FBGMs require invertibility of mappings, ANs require only a weaker constraint that weights in one
direction are the transpose of the weights in the other direction.

Energy-based models (EBMs) are also density-estimation models that learn a mapping from input
data to energies and are trained to assign low energy values to the data manifold (LeCun et al., 2006;
Han et al., 2018; Xie et al., 2016; Du and Mordatch, 2019). Whereas AN dynamics are determined by
an implicit energy function, the EBM dynamics are driven by optimizing or sampling from an explicit
energy function. In the AN, lowering the energy for some states raises it for others, whereas the
explicit EBM energy function requires well-chosen negative samples to ensure it discriminates likely
from unlikely states. Although the EBM and FBGM seem well suited for synthesis and generation
tasks, due to their probabilistic underpinnings, we show that ANs can be used for conditional
generation (maximum likelihood completion) tasks.

3 CONVOLUTIONAL BIPARTITE ATTRACTOR NETS

Various types of recurrent nets have been shown to converge to activation fixed points, including fully
interconnected networks of asynchronous binary units (Hopfield, 1982) and networks of continuous-
valued units operating in continuous time (Hopfield, 1984). Most relevant to modern deep learning,
Koiran (1994) identified convergence conditions for synchronous update of continuous-valued units
in discrete time: given a network with state x, parallel updates of the full state with the standard
activation rule,

x← f(xW + b), (1)
will asymptote at either a fixed point or a limit cycle of 2. Sufficient conditions for this result are:
initial x ∈ [−1,+1]n, W = W T, wii ≥ 0, and f(.) piecewise continuous and strictly increasing

2

Under review as a conference paper at ICLR 2020

with limη→±∞ f(η) = ±1. The proof is cast in terms of an energy function,

E(x) = −1

2
xWxT − xbT +

∑
i

∫ xi

0

f−1(ξ)dξ. (2)

With f ≡ tanh, we have the barrier function:

ρ(xi) ≡
∫ xi

0

f−1(ξ)dξ = (1 + xi) ln(1 + xi) + (1− xi) ln(1− xi) (3)

To ensure a fixed point (no limit cycle > 1), asynchronous updates are sufficient because the solution
of ∂E/∂xi = 0 is the standard update for unit i (Equation 1). Because the energy function additively
factorizes for units that have no direct connections, parallel updates of these units still ensure
non-increasing energy, and hence attainment of a fixed point.

We adopt the bipartite architecture of a stacked restricted Boltzmann machine (Hinton and Salakhut-
dinov, 2006), with bidirectional symmetric connections between adjacent layers of units and no
connectivity within a layer (Figure 1c). We distinguish between visible layers, which contain inputs
and/or outputs of the net, and hidden layers. The bipartite architecture allows for units within a
layer to be updated in parallel while guaranteeing strictly non-increasing energy and attainment of
a local energy minimum. We thus perform layerwise updating of units, defining one iteration as a
sweep from one end of the architecture to the other and back. The 8-step update sequence for the
architecture in Figure 1c is shown above the network.

3.1 CONVOLUTIONAL WEIGHT CONSTRAINTS

Weight constraints required for convergence can be achieved within a convolutional architecture as
well (Figure 1d). In a feedforward convolutional architecture, the connectivity from layer l to l + 1 is
represented by weights W l = {wlqrab}, where q and r are channel indices in the destination (l + 1)
and source (l) layers, respectively, and a and b specify the relative coordinate within the kernel, such
that the weight wlqrab modulates the input to the unit in layer l + 1, channel q, absolute position
(α, β)—denoted xl+1

qαβ—from the unit xlr,α+a,β+b. If W l+1 = {wl+1
qrab} denotes the reverse weights

to channel q in layer l from channel r in layer l + 1, symmetry requires that
wlq,r,a,b =w

l+1
r,q,−a,−b . (4)

This follows from the fact that the weights are translation invariant: the reverse mapping from
xl+1
q,α,β to xlr,α+a,β+b has the same weight as from xl+1

q,α−a,β−b to xlr,α,β , embodied in Equation 4.
Implementation of the weight constraint is simple: W l is unconstrained, andW l+1 is obtained
by transposing the first two tensor dimensions of W l and flipping the indices of the last two. The
convolutional bipartite architecture has energy function:

E(x) = −
L−1∑
l=1

∑
q

xl+1
q •

(
W l

q ∗ xl
)
+

L∑
l=1

∑
q,α,β

ρ(xlqαβ)− blq xlqαβ (5)

where xl is the activation in layer l, bl are the channel biases, and ρ(.) is the barrier function
(Equation 3), ‘∗’ is the convolution operator, and ‘•’ is the element-wise sum of the Hadamard
product of tensors. The factor of 1

2 ordinarily found in energy functions is not present in the first term
because, in contrast to Equation 2, each second-order term in x appears only once. For a similar
formulation in stacked restricted Boltzmann machines, see Lee et al. (2009).

3.2 LOSS FUNCTIONS

Evidence provided to the CBAN consists of activation constraints on a subset of the visible units.
The CBAN is trained to fill-in or complete the activation pattern over the visible state. The manner in
which evidence constrains activations depends on the nature of the evidence. In a scenario where
all features are present but potentially noisy, one should treat them as soft constraints that can be
overridden by the model; in a scenario where the evidence features are reliable but other features are
entirely missing, one should treat the evidence as hard constraints.

We have focused on this latter scenario in our simulations, although we discuss the use of soft
constraints in Appendix A. For a hard constraint, we clamp the visible units to the value of the
evidence, meaning that activation is set to the observed value and not allowed to change. Energy is
minimized conditioned on the clamped values. One extension to clamping is to replicate all visible

3

Under review as a conference paper at ICLR 2020

units and designate one set as input, clamped to the evidence, and one set as output, which serves as
the network read out. We considered using the evidence to initialize the visible state, but initialization
is inadequate to anchor the visible state and it wanders. We also considered using the evidence as a
fixed bias on the input to the visible state, but redundancy of the bias and top-down signals from the
hidden layer can prevent the CBAN from achieving the desired activations.

An obvious loss function is squared error, LSE =
∑
i ||vi − yi||2, where i is an index over visible

units, v is the visible state, and y is the target visible state. However, this loss misses out on a key
source of error. The clamped units have zero error under this loss. Consequently, we replace vi with
ṽi, the value that unit i would take were it unclamped, i.e., free to take on a value consistent with the
hidden units driving it:

LSE =
∑
i ||ṽi − yi||2.

An alternative loss, related to the contrastive loss of the Boltzmann machine (see Appendix B),
explicitly aims to ensure that the energy of the current state is higher than that of the target state.
With x = (y,h) being the complete state with all visible units clamped at their target values and the
hidden units in some configuration h, and x̃ = (ṽ,h) being the complete state with the visible units
unclamped, one can define the loss

L∆E = E(x)− E(x̃) =
∑
i f
−1(ṽi)(ṽi − yi) + ρ(yi)− ρ(ṽi).

We apply this loss by allowing the net to iterate for some number of steps given a partially clamped
input, yielding a hidden state that is a plausible candidate to generate the target visible state. Note
that ρ(yi) is constant and although it does not factor into the gradient computation, it helps interpret
L∆E : when L∆E = 0, ṽ = y. This loss is curious in that it is a function not just of the visible state,
but, through the term f−1(ṽi), it directly depends on the hidden state in the adjacent layer and the
weights between these layers. A variant on L∆E is based on the observation that the goal of training
is only to make the two energies equal, suggesting a soft hinge loss:

L∆E+ = log (1 + exp(E(x)− E(x̃))) .
Both energy-based losses have an interpretation under the Boltzmann distribution: L∆E is related to
the conditional likelihood ratio of the clamped to unclamped visible state, and L∆E+ is related to the
conditional probability of the clamped versus unclamped visible state:

L∆E = − log p(y|h)
p(ṽ|h) and L∆E+ = − log p(y|h)

p(ṽ|h)+p(y|h) .

3.3 PREVENTING VANISHING/EXPLODING GRADIENTS

Although gradient descent is a more powerful method to train the CBAN than Hopfield’s Hebb rule
or the Boltzmann machine’s contrastive loss, vanishing and exploding gradients are a concern as with
any recurrent net (Hochreiter et al., 2001), particularly in the CBAN which may take 50 steps to fully
relax. We address the gradient issue in two ways: through intermediate training signals and through a
soft sigmoid activation function.

The aim of the CBAN is to produce a stable interpretation asymptotically. The appropriate way to
achieve this is to apply the loss once activation converges. However, the loss can be applied prior
to convergence as well, essentially training the net to achieve convergence as quickly as possible,
while also introducing loss gradients deep inside the unrolled net. Assume a stability criterion θ that
determines the iteration t∗ at which the net has effectively converged:

t∗ = mint [maxi |xi(t)− xi(t− 1)| < θ] .

Training can be logically separated into pre- and post-convergence phases, which we will refer
to as transient and stationary. In the stationary phase, the Almeida/Pineda algorithm (Pineda,
1987; Almeida, 1987) leverages the fact that activation is constant over iterations, permitting a
computationally efficient gradient calculation with low memory requirements. In the transient
phase, the loss can be injected at each step, which is exactly the temporal-difference method TD(1)
(Sutton, 1988). Casting training as temporal-difference learning, one might consider other values
of λ in TD(λ); for example, TD(0) trains the model to predict the visible state at the next time step,
encouraging the model to reach the target state as quickly as feasible while not penalizing it for being
unable to get to the target immediately.

Any of the losses, LSE , L∆E , and L∆E+, can be applied with a weighted mixture of training in the
stationary and transient phases. Although we do not report systematic experiments in this article, we
consistently find that transient training with λ = 1 is as efficient and effective as weighted mixtures

4

Under review as a conference paper at ICLR 2020

including stationary-phase-only training, and that λ = 1 outperforms any λ < 1. In our results, we
thus conduct simulations with transient-phase training and λ = 1.

We propose a second method of avoiding vanishing gradients specifically due to sigmoidal activation
functions: a leaky sigmoid, analogous to a leaky ReLU, which allows gradients to propagate through
the net more freely. The leaky sigmoid has activation and barrier functions

f(z) =


α(z + 1)− 1 z < −1
z −1 ≤ z ≤ 1

α(z − 1) + 1 z > 1

, ρ(x) =


1

2α

[
x2 + (1− α)(1 + 2x)

]
if x < −1

1
2x

2 if − 1 ≤ x ≤ 1
1

2α

[
x2 + (1− α)(1− 2x)

]
if x > 1

.

Parameter α specifies the slope of the piecewise linear function outside the |x| < 1 interval. As
α→ 0, loss gradients become flat and the CBAN fails to train well. As α→ 1, activation magnitudes
can blow up and the CBAN fails to reach a fixed point. In Appendix C, we show that convergence to
a fixed point is guaranteed when α||W ||1,∞ < 1, where ||W ||1,∞ = maxi ||wi||1. In practice, we
have found that restricting W is unnecessary and α = 0.2 works well.

4 SIMULATIONS

We report on a series of simulation studies of increasing complexity. First, we explore fully connected
bipartite attractor net (FBAN) on a bar imputation task and then supervised MNIST image completion
and classification. Second, we apply CBAN to unsupervised image completion tasks on Omniglot
and CIFAR-10 and compare CBAN to CBAN-variants and denoising-VAEs. Lastly, we revision
CBAN for the task of super-resolution and report promising results against competing models, such
as DRCN and LapSRN. Details of architectures, parameters, and training are in Appendix D.

4.1 BAR TASK

We studied a simple inference task on partial images that have exactly one correct interpretation.
Images are 5× 5 binary pixel arrays consisting of two horizontal bars or two vertical bars. Twenty
distinct images exist, shown in the top row of Figure 2. A subset of pixels is provided as evidence;
examples are shown in the bottom row of Figure 2. The task is to fill in the masked pixels. Evidence
is generated such that only one consistent completion exists. In some cases, a bar must be inferred
without any white pixels as evidence (e.g., second column from the right). In other cases, the local
evidence is consistent with both vertical and horizontal bars (e.g., first column from left).

An FBAN with one layer of 50 hidden units is sufficient for the task. Evidence is generated randomly
on each trial, and evaluating on 10k random states after training, the model is 99.995% correct.
The middle row in Figure 2 shows the FBAN response after one iteration. The net comes close to
performing the task in a single shot, but after a second iteration of clean up and the asymptotic state
is shown in the top row.

Figure 3 shows some visible-hidden weights learned by the FBAN. Each 5× 5 array depicts weights
to/from one hidden unit. Weight sign and magnitude are indicated by coloring and area of the

completion

evidence

iteration 1

Figure 2: Bar task: Input consists of 5× 5 pixel arrays with the target being either two rows or two
columns of pixels present.

Figure 3: Bar task: Weights between visible and first hidden layers

5

Under review as a conference paper at ICLR 2020

target

completion

evidence

dream

Figure 4: MNIST completions. Row 1: target test examples, with class label coded in the bottom row.
Row 2: completions produced by the FBAN. Row 3: Evidence with masked regions (including class
labels) in red. Row 4: the top-down ‘dream’ state produced by the hidden representation.

square, respectively. Units appear to select one row and one column, either with the same or opposite
polarity. Same-polarity weights within a row or column induce coherence among pixels. Opposite-
polarity weights between a row and a column allow the pixel at the intersection to activate either the
row/column depending on the sign of the unit’s activation.

4.2 SUPERVISED MNIST

We trained an FBAN with two hidden layers on a supervised version of MNIST in which the visible
state consists of a 28 × 28 array for an MNIST digit and an additional vector to code the class
label. For the sake of graphical convenience, we allocate 28 units to the label, using the first 20 by
redundantly coding the class label in pairs of units, and ignoring the final 8 units. Our architecture
had 812 inputs, 200 units in the first hidden layer, and 50 units in the second. During training, all
bits of the label were masked as well as one-third of image pixels. The image was masked with
thresholded Perlin coherent noise (Perlin, 1985), which produces missing patches that are far more
difficult to fill in than the isolated pixels produced by Bernoulli masking.

Figure 4 shows evidence provided to FBAN for 20 random test set items in the third row. The red
masks indicate unobserved pixels; the other pixels are clamped in the visible state. The unobserved
pixels include those representing the class label, coded in the bottom row of the pixel array. The top
row of the Figure shows the target visible representation, with class labels indicated by the isolated
white pixels. Even though the training loss treats all pixels as equivalent, the FBAN does learn to
classify unlabeled images. On the test set, the model achieves a classification accuracy of 87.5% on
Perlin-masked test images and 89.9% on noise-free test images. Note that the 20 pixels indicating
class membership are no different than any other missing pixels in the input. The model learns
to classify by virtue of the systematic relationship between images and labels. We can train the
model with fully observed images and fully unobserved labels, and its performance is like that of any
fully-connected MNIST classifier, achieving an accuracy of 98.5%.

The FBAN does an excellent job of filling in missing features in Figure 4 and in further examples in
Appendix E. The FBAN’s interpretations of the input seem to be respectable in comparison to other
recent recurrent associative memory models (Figures 8a,b). We mean no disrespect of other research
efforts—which have very different foci than ours—but merely wish to indicate we are obtaining
state-of-the-art results for associative memory models. Figure 8c shows some weights between visible
and hidden units. Note that the weights link image pixels with multiple digit labels. These weights
stand apart from the usual hidden representations found in feedforward classification networks.

4.3 UNSUPERVISED OMNIGLOT

We trained a CBAN with the Omniglot images (Lake et al., 2015). Omniglot consists of multiple
instances of 1623 characters from 50 different alphabets. The CBAN has one visible layer containing
the character image, 28× 28× 1, and three successive hidden layers with dimensions 28× 28× 128,
14× 14× 256, and 7× 7× 256, all with average pooling between the layers and filters of size 3× 3.
Other network parameters and training details are presented in Appendix D. To experiment with a
different type of masking, we used random square patches of diameter 3–6, which remove on average
roughly 30% of the white pixels in the image.

We compared our CBAN to variants with critical properties removed: one without weight symmetry
(CBAN-asym) and one in which the TD(1) training procedure is substituted for a standard squared

6

Under review as a conference paper at ICLR 2020

Target

Evidence

CBAN

CBAN-noTD

CBAN-asym

VAE

CD-VAE

CD-VAE

CD-

Figure 5: Omniglot image completion comparison examples (left) and quantitative results (right).
The top two rows of the examples show the target image and the evidence provided to the model
(with missing pixels depicted in red), respectively. The subsequent rows show the image completions
produced by CBAN, CBAN-asym, CBAN-noTD, and the denoising VAE. The quantitative measures
evaluate each model on PSNR and SSIM metrics; black lines indicate +1 standard error of the mean.

loss at the final step (CBAN-noTD). We also compare to a convolutional denoising VAE (CD-VAE),
which takes the masked image as input and outputs the completion. The CBAN with symmetric
weights reaches a fixed point, whereas CBAN-asym appears to attain limit cycles of 2-10 iterations.
Qualitatively, CBAN produces the best image reconstructions (Figure 5). CBAN-asym and CBAN-
noTD tend to hallucinate additional strokes; and CBAN-noTD and CD-VAE produce less crisp edges.
Quantitatively, we assess models with two measures of reconstruction quality, peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM, Wang et al., 2004); larger is better on each measure.
CBAN is strictly superior to the alternatives on both measures (Figure 5, right panel). CBAN
completions are not merely memorized instances; the CBAN has learned structural regularities of
the images, allowing it to fill in big gaps in images that—with the missing pixels—are typically
uninterpretable by both classifiers and humans. Additional CBAN image completion examples for
Omniglot can be found in Appendix E.

4.4 UNSUPERVISED CIFAR-10

We trained a CBAN with one visible and three hidden layers on CIFAR-10 images. The visible
layer is the size of the input image, 32 × 32 × 3. The successive hidden layers had dimensions
32 × 32 × 40, 16 × 16 × 120, and 8 × 8 × 440, all with filters of size 3 × 3 and average pooling
between the hidden layers. Further details of architecture and training can be found in Appendix D.
Figure 6 shows qualitative and quantitative comparisons of alternative models. Here, CBAN-asym
performs about the same as CBAN. However, CBAN-asym typically attains bi-phasic limit cycles,
and CBAN-asym sometimes produces splotchy artifacts in background regions (e.g., third image
from left). CBAN-noTD and the CD-VAE are clearly inferior to CBAN. Additional CBAN image
completions can be found in Appendix E.

Target

Evidence

CBAN

CBAN-noTD

CBAN-asym

VAE

CD-VAE

CD-VAE

CD-

Figure 6: CIFAR-10 image completion comparison examples (left) and quantitative results (right).
Layout identical to that of Figure 5.

7

Under review as a conference paper at ICLR 2020

Algorithm Set5
PSNR / SSIM

Set14
PSNR / SSIM

BSD100
PSNR / SSIM

Urban100
PSNR / SSIM

Bicubic (baseline) 32.21 / 0.921 29.21 / 0.911 28.67 / 0.810 25.63 / 0.827
DRCN (Kim et al., 2016) 37.63 / 0.959 32.94 / 0.913 31.85 / 0.894 30.76 / 0.913
LapSRN (Lai et al., 2018) 37.52 / 0.959 33.08 / 0.913 31.80 / 0.895 30.41 / 0.910
CBAN (ours) 34.18 / 0.947 30.79 / 0.953 30.12 / 0.872 27.49 / 0.915

Table 1: Quantitative benchmark presenting average PSNR/SSIMs for scale factor×2 on four test sets.
Red indicates superior performance of CBAN. CBAN consistently outperforms baseline Bicubic.

Figure 7: Examples of super-resolution, with the columns in a given image group comparing high-
resolution ground truth, CBAN, and bicubic interpolation (baseline method).

4.5 SUPER-RESOLUTION

Deep learning models have proliferated in many domains of image processing, perhaps none more
than image super-resolution, which is concerned with recovering a high-resolution image from a
low-resolution image. Many specialized architectures have been developed, and although common
test data sets exist, comparisons are not as simple as one would hope due to subtle differences
in methodology. (For example, even the baseline method, bicubic interpolation, yields different
results depending on the implementation.) We set out to explore the feasibility of using CBANs
for super-resolution. Our architecture processes 40× 40 color image patches, and the visible state
included both the low- and high-resolution images, with the low-resolution version clamped and the
high-resolution version read out from the net. Details can be found in Appendix D.

Table 1 presents two measures of performance, SSIM and PSNR, for the CBAN and various published
alternatives. CBAN beats the baseline, bicubic interpolation, on both measures, and performs well on
SSIM against some leading contenders (even beating LapSRN and DRCN on Set14 and Urban100),
but poorly on PSNR. It is common for PSNR and SSIM to be in opposition: SSIM rewards crisp
edges, PSNR rewards averaging toward the mean. The border sharpening and contrast enhancement
that produce good perceptual quality and a high SSIM score (see Figure 7) are due to the fact that
CBAN comes to an interpretation of the images: it imposes edges and textures in order to make
the features mutually consistent. We believe that CBAN warrants further investigation for super-
resolution; regardless of whether it becomes the winner in this competitive field, one can argue that it
is performing a different type of computation than feedforward models like LapSRN and DRCN.

5 DISCUSSION

In comparison to recent published results on image completion with attractor networks, our CBAN
produces far more impressive results (see Appendix, Figure 8, for a contrast). The computational cost
and challenge of training CBANs is no greater than those of training deep feedforward nets. CBANs
seem to produce crisp images, on par with those produced by generative (e.g., energy- and flow-based)
models. CBANs have potential to be applied in many contexts involving data interpretation, with the
virtue that the computational resources they bring to bear on a task is dynamic and dependent on the
difficulty of interpreting a given input. Although this article has focused on convolutional networks
that have attractor dynamics between levels of representation, we have recently recognized the value
of architectures that are fundamentally feedforward with attractor dynamics within a level. Our
current research explores this variant of the CBAN as a biologically plausible account of intralaminar
lateral inhibition.

8

Under review as a conference paper at ICLR 2020

REFERENCES

G. Alain, Y. Bengio, and S. Rifai. Regularized auto-encoders estimate local statistics. CoRR,
abs/1211.4246, 2012.

L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In IEEE First International Conference on Neural Networks, pages 608–18. IEEE
Press, San Diego, CA, 1987.

D. J. Amit. Modeling brain function: The world of attractor neural networks. Cambridge University
Press, Cambridge, England, 1992.

M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding. In British Machine Vision Conference.
BMVA press, 2012.

R. Chaudhuri and I. Fiete. Associative content-addressable networks with exponentially many robust
stable states. arXiv preprint arXiv:1704.02019 q-bio.NC, 2017.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. arXiv preprint
arXiv:1605.08803 cs.LG, 2016.

Y. Du and I. Mordatch. Implicit generation and generalization in energy-based models. arXiv preprint
arXiv:1903.08689 cs.LG, 2019.

T. Han, E. Nijkamp, X. Fang, M. Hill, S.-C. Zhu, and Y. Nian Wu. Divergence triangle for joint
training of generator model, energy-based model, and inference model. arXiv e-prints, art.
arXiv:1812.10907, Dec 2018.

G. E. Hinton. Boltzmann machine. Scholarpedia, 2(5):1668, 2007. doi: 10.4249/scholarpedia.1668.
revision #91076.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

S. Hochreiter, Y. Bengio, and P. Frasconi. Gradient flow in recurrent nets: The difficulty of learning
long-term dependencies. In J. Kolen and S. Kremer, editors, Field Guide to Dynamical Recurrent
Networks. IEEE Press, 2001.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, 1982. doi: 10.1073/pnas.79.
8.2554.

J. J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088–3092, 1984.

J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5197–5206, 2015.

K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo. Evidence that recurrent circuits are
critical to the ventral stream’s execution of core object recognition behavior. Nature neuroscience,
2019 Apr 29 2019. ISSN 1546-1726. doi: 10.1038/s41593-019-0392-5. URL https://www.
nature.com/articles/s41593-019-0392-5.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive convolutional network for image super-
resolution. In Computer Vision and Pattern Recognition, pages 1637–1645, 06 2016. doi:
10.1109/CVPR.2016.181.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

P. Koiran. Dynamics of discrete time, continuous state Hopfield networks. Neural Computation, 6(3):
459–468, 1994. doi: 10.1162/neco.1994.6.3.459. URL https://doi.org/10.1162/neco.
1994.6.3.459.

9

https://www.nature.com/articles/s41593-019-0392-5
https://www.nature.com/articles/s41593-019-0392-5
https://doi.org/10.1162/neco.1994.6.3.459
https://doi.org/10.1162/neco.1994.6.3.459

Under review as a conference paper at ICLR 2020

D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. In Advances in
Neural Information Processing Systems, pages 1172–1180, 2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Fast and accurate image super-resolution
with deep Laplacian pyramid networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-Level Concept Learning through
Probabilistic Program Induction. Science, 350(6266):1332–1338, 2015. ISSN 0036-8075. doi:
10.1126/science.aab3050.

A. Lamb, J. Binas, A. Goyal, S. Subramanian, I. Mitliagkas, D. Kazakov, Y. Bengio, and M. C.
Mozer. State-reification networks: Improving generalization by modeling the distribution of
hidden representations. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 96 of Proceedings of Machine Learning
Research, Long Beach, CA, 2019.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.-J. Huang. A tutorial on energy-based learning.
In G. Bakir, T. Hofman, B. Schölkopf, A. Smola, and B. Taskar, editors, Predicting Structured
Data. MIT Press, Boston, MA, 2006.

H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In Proceedings of the 26th International
Conference on Machine Learning, 2009.

G. Li, K. Ramanathan, N. Ning, L. Shi, and C. Wen. Memory dynamics in attractor networks.
Computational Intelligence and Neuroscience, 2015.

R. Liao, A. Schwing, R. Zemel, and R. Urtasun. Learning deep parsimonious representations. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 5076–5084. Curran Associates, Inc., 2016.

R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and R. Zemel. Reviving and
improving recurrent back-propagation. In J. Dy and A. Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 3082–3091, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.
URL http://proceedings.mlr.press/v80/liao18c.html.

D. Martin, C. Fowlkes, D. Tal, J. Malik, et al. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings of the International Conference on Computer Vision (ICCV), 2001.

J. L. McClelland and D. E. Rumelhart. An interactive activation model of context effects in letter
perception: I. an account of basic findings. Psychological Review, 88(5):375–407, 1981.

M. C. Mozer. Attractor networks. In P. Wilken, A. Cleeremans, and T. Bayne, editors, Oxford
Companion to Consciousness, pages 86–89. Oxford University Press, Oxford, UK, 2009.

A. Nayebi, D. Bear, J. Kubilius, K. Kar, S. Ganguli, D. Sussillo, J. J. DiCarlo, and D. L. Yamins. Task-
driven convolutional recurrent models of the visual system. In Advances in Neural Information
Processing Systems, pages 5290–5301, 2018.

K. Perlin. An image synthesizer. In Proceedings of the 12th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’85, pages 287–296, New York, NY, USA, 1985.
ACM. ISBN 0-89791-166-0. doi: 10.1145/325334.325247. URL http://doi.acm.org/10.
1145/325334.325247.

F. J. Pineda. Generalization of back-propagation to recurrent neural networks. Physical Review
Letters, 59:2229–2232, 1987.

P. Sterzer and A. Kleinschmidt. A neural basis for inference in perceptual ambiguity. Proceedings of
the National Academy of Sciences, 104(1):323–328, 2007. ISSN 0027-8424. doi: 10.1073/pnas.
0609006104. URL https://www.pnas.org/content/104/1/323.

10

http://proceedings.mlr.press/v80/liao18c.html
http://doi.acm.org/10.1145/325334.325247
http://doi.acm.org/10.1145/325334.325247
https://www.pnas.org/content/104/1/323

Under review as a conference paper at ICLR 2020

L. A. Stowe, E. Kaan, L. Sabourin, and R. C. Taylor. The sentence wrap-up dogma. Cognition, 176:
232–247, 2018.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:9–44,
1988. doi: 10.1007/BF00115009. URL https://doi.org/10.1007/BF00115009.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep recursive residual network. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2790–2798, 2017.

H. Tang, M. Schrimpf, W. Lotter, C. Moerman, A. Paredes, J. O. Caro, W. Hardesty, D. Cox, and
G. Kreiman. Recurrent computations for visual pattern completion. Proceedings of the National
Academy of Sciences, 115(35):8835–8840, 2018.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pages 1096–1103, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
205-4. doi: 10.1145/1390156.1390294. URL http://doi.acm.org/10.1145/1390156.
1390294.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, April
2004. doi: 10.1109/TIP.2003.819861.

M. Welling, M. Rosen-zvi, and G. E. Hinton. Exponential family harmoniums with an
application to information retrieval. In L. K. Saul, Y. Weiss, and L. Bottou, edi-
tors, Advances in Neural Information Processing Systems 17, pages 1481–1488. MIT
Press, 2005. URL http://papers.nips.cc/paper/2672-exponential-family-
harmoniums-with-an-application-to-information-retrieval.pdf.

Y. Wu, G. Wayne, A. Graves, and T. Lillicrap. The Kanerva machine: A generative distributed
memory. In International Conference on Learning Representations, 2018a. URL https://
openreview.net/forum?id=S1HlA-ZAZ.

Y. Wu, G. Wayne, K. Gregor, and T. Lillicrap. Learning attractor dynamics for generative memory.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 9379–9388. Curran Associates,
Inc., 2018b. URL http://papers.nips.cc/paper/8149-learning-attractor-
dynamics-for-generative-memory.pdf.

J. Xie, Y. Lu, S.-C. Zhu, and Y. N. Wu. A theory of generative ConvNet. In Proceedings of
the 33rd International Conference on International Conference on Machine Learning - Volume
48, ICML’16, pages 2635–2644. JMLR.org, 2016. URL http://dl.acm.org/citation.
cfm?id=3045390.3045668.

J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE
transactions on image processing, 19(11):2861–2873, 2010.

R. S. Zemel and M. C. Mozer. Localist attractor networks. Neural Computation, 13(5):1045–1064,
2001. doi: 10.1162/08997660151134325.

R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In
Proceedings of the International conference on curves and surfaces, pages 711–730. Springer,
2010.

11

https://doi.org/10.1007/BF00115009
http://doi.acm.org/10.1145/1390156.1390294
http://doi.acm.org/10.1145/1390156.1390294
http://papers.nips.cc/paper/2672-exponential-family-harmoniums-with-an-application-to-information-retrieval.pdf
http://papers.nips.cc/paper/2672-exponential-family-harmoniums-with-an-application-to-information-retrieval.pdf
https://openreview.net/forum?id=S1HlA-ZAZ
https://openreview.net/forum?id=S1HlA-ZAZ
http://papers.nips.cc/paper/8149-learning-attractor-dynamics-for-generative-memory.pdf
http://papers.nips.cc/paper/8149-learning-attractor-dynamics-for-generative-memory.pdf
http://dl.acm.org/citation.cfm?id=3045390.3045668
http://dl.acm.org/citation.cfm?id=3045390.3045668

Under review as a conference paper at ICLR 2020

APPENDIX

A USING EVIDENCE

The CBAN is probed with an observation—a constraint on the activation of a subset of visible
units. For any visible unit, we must specify how an observation is used to constrain activation. The
possibilities include:

• The unit is clamped, meaning that the unit activation is set to the observed value and is not
allowed to change. Convergence is still guaranteed, and the energy is minimized conditional
on the clamped value. However, clamping a unit has the disadvantage that any error signal
back propagated to the unit will be lost (because changing the unit’s input does not change
its output).
• The unit is initialized to the observed value, instead of 0. This scheme has the disadvantage

that activation dynamics can cause the network to wander away from the observed state. This
problem occurs in practice and the consequences are so severe it is not a viable approach.
• In principle, we might try an activation rule which sets the visible unit’s activation to be a

convex combination of the observed value and the value that would be obtained via activation
dynamics: α× observed + (1− α)× f(net input). With α = 1 this is simply the clamping
scheme; with α = 0 and appropriate start state, this is just the initialization scheme.
• The unit has an external bias proportional to the observation. In this scenario, the net input

to a visible unit is:
xi ← f(xwT

i + bi + ei), (6)
where ej ∝ observation. The initial activation can be either 0 or the observation. One
concern with this scheme is that the ideal input to a unit will depend on whether or not the
unit has this additional bias. For this reason the magnitude of the bias should probably be
small. However, in order to have an impact, the bias must be larger.
• We might replicate all visible units and designate one set for input (clamped) and one set

for output (unclamped). The input is clamped to the observation (which may be zero). The
output is allowed to settle. The hidden layer(s) would synchronize the inputs and outputs,
but it could handle noisy inputs, which isn’t possible with clamping. Essentially, the input
would serve as a bias, but on the hidden units, not on the inputs directly.

In practice, we have found that external biases work but are not as effective as clamping. Partial
clamping with 0 < α < 1 has partial effectiveness relative to clamping. And initialization is not
effective; the state wanders from the initialized values. However, the replicated-visible scheme seems
very promising and should be explored further.

B LOSS FUNCTIONS

The training procedure for a Boltzmann machine aims to maximize the likelihood of the training
data, which consist of a set of observations over the visible units. The complete states in a Boltzmann
machine occur with probabilities specified by

p(x) ∝ e−E(x)/T , (7)
where T is a computational temperature and the likelihood of a visible state is obtained by marginal-
izing over the hidden states. Raising the likelihood of a visible state is achieved by lowering its
energy.

The Boltzmann machine learning algorithm has a contrastive loss: it tries to maximize the energy of
states with the visible units clamped to training observations and minimize the energy of states with
the visible units unclamped and free to take on whatever values they want. This contrastive loss is
an example of an energy-based loss, which expresses the training objective in terms of the network
energies.

In our model, we will define an energy-based loss via matched pairs of states: x is a state with the
visible units clamped to observed values, and x̃ is a state in which the visible units are unclamped,
i.e., they are free take on values consistent with the hidden units driving them. Although x̃ could be

12

Under review as a conference paper at ICLR 2020

any unclamped state, it will be most useful for training if it is related to x (i.e., it is a good point of
contrast). To achieve this relationship, we propose to compute (x̃,x) pairs by:

1. Clamp some portion of the visible units with a training example.

2. Run the net to some iteration, at which point the full hidden state is h. (The point of this
step is to identify a hidden state that is a plausible candidate to generate the target visible
state.)

3. Set x to be the complete state in which the hidden component of the state is h and the
visible component is the target visible state.

4. Set x̃ to be the complete state in which the hidden component of the state is h and the visible
component is the fully unclamped activation pattern that would be obtained by propagating
activities from the hidden units to the (unclamped) visible units.

Note that the contrastive pair at this iteration, (x̃i,xi), are states close to the activation trajectory that
the network is following. We might train the net only after it has reached convergence, but we’ve
found that defining the loss for every iteration i up until convergence improves training performance.

B.1 LOSS 1: THE DIFFERENCE OF ENERGIES

L∆E = E(x)− E(x̃)

=

−1

2
xWxT − bxT +

∑
j

∫ xj

0

f−1(ξ)dξ

−
−1

2
x̃W x̃T − bx̃T +

∑
j

∫ x̃j

0

f−1(ξ)dξ


=
∑
i

(wix+ bi)(ṽi − vi) +
∫ vi

0

f−1(ξ)dξ −
∫ ṽi

0

f−1(ξ)dξ

=
∑
i

f−1(ṽi)(ṽi − vi) + ρ(vi)− ρ(ṽi)

with ρ(s) =
1

2
(1 + s) ln(1 + s) +

1

2
(1− s) ln(1− s)

This reduction depends on x and x̃ sharing the same hidden state, a bipartite architecture in which
visible and hidden are interconnected, all visible-to-visible connections are zero, a tanh activation
function, f , for all units, and symmetric weights.

B.2 LOSS 2: THE CONDITIONAL PROBABILITY OF CORRECT RESPONSE

This loss aims to maximize the log probability of the clamped state conditional on the choice between
unclamped and clamped states. Framed as a loss, we have a negative log likelihood:

L∆E+ = − lnP (x | x ∨ x̃)

= − ln
p(x)

p(x̃) + p(x)

= ln

(
1 + exp

(
E(x)− E(x̃)

T

))
The last step is attained using the Boltzmann distribution (Equation 7).

13

Under review as a conference paper at ICLR 2020

C PROOF OF CONVERGENCE OF CBAN WITH LEAKY SIGMOID ACTIVATION
FUNCTION

(1)

x fCWxtb xelR

f is applied element wise
xCzH I 2 s 1

feef
Z laze

L Z 1 I Z 1

where o a I

Assume llblla.si
bglelHxtHEltm where mso

Vgillwyll Er

Then for Hx HIM to hold
we need

llfcwxttbdla ltm

Vglfcwjxth.pl Itm

2

if 12 14 we are done

if Z 1 analogously 2 a l (2)

f z _LEZ l 11

x WE by 1 I
E L HughHXena l l 11
E L ration 11

we want the last term to be

at most Itm
Lv Itm 11 E l 1M

Are Ci ar m

drei Let
maxgllwyll

In fact there is a degree
of freedom here so we can simply
use c Xr I as the only param
in the analysis so long as we

also re parameterize b accordingly

In conclusion given c xr I

(3)

the region of convergence
must

include the hypercube

i Ea HE

if the barrier is set to be smaller

than the above
region

no
convergence

is guaranteed

D NETWORK ARCHITECTURES AND HYPERPARAMETERS

D.1 BAR TASK

Our architecture was a fully connected bipartite attractor net (FBAN) with one visible layer and two
hidden layers having 48 and 24 channels. We trained using L∆E+ with the transient TD(1) procedure,
defining network stability as the condition in which all changes in unit activation on successive
iterations are less than 0.01 for a given input, tanh activation functions, batches of 20 examples (the
complete data set), with masks randomly generated on each epoch subject to the constraint that only
one completion is consistent with the evidence. Weights between layers l and l + 1 and the biases in
layer l are initialized from a mean-zero Gaussian with standard deviation 0.1(1

2nl +
1
2nl+1 + 1)−

1
2 ,

where nl is the number of units in layer l. Optimization is via stochastic gradient descent with
an initial learning rate of 0.01, dropped to .001; the gradients in a given layer of weights are L2

renormalized to be 1.0 for a batch of examples, which we refer to as SGD-L2.

14

Under review as a conference paper at ICLR 2020

D.2 MNIST

Our architecture was a fully connected bipartite attractor net (FBAN) with one visible layer to one
hidden layer with 200 units to a second hidden layer with 50. We trained using L∆E+ with the
transient TD(1) procedure, defining network stability as the condition in which all changes in unit
activation on successive iterations are less than 0.01 for a given input, tanh activation functions,
batches of 250 examples. Masks are generated randomly for each example on each epoch. The masks
were produced by generating Perlin noise, frequency 7, thresholded such that one third of the pixels
were obscured. Weights between layers l and l + 1 and the biases in layer l are initialized from a
mean-zero Gaussian with standard deviation 0.1(1

2nl +
1
2nl+1 + 1)−

1
2 , where nl is the number of

units in layer l. Optimization is via stochastic gradient descent with learning rate 0.01; the gradients
in a given layer of weights are L∞ renormalized to be 1.0 for a batch of examples, which we refer to
as SGD-Linf. Target activations scaled to lie in [-0.999,0.999].

(a) (b) (c)

Figure 8: (a) Example of recurrent net clean-up dynamics from Liao et al. (2018). Left column is
noisy input, right column is cleaned representation. (b) Example of associative memory model of Wu
et al. (2018a). Column 1 is target, column 2 is input, and remaining columns are retrieval iterations.
(c) Some weights between visible and first hidden layer in FBAN trained on MNIST with labels.

D.3 CIFAR-10

The network architecture consists of four layers: one visible layer and three hidden layers. The visible
layer dimensions match the input image dimensions: (32, 32, 3). The channel dimensions of the three
hidden layers increase by 40, 120, and 440, respectively. We used filter sizes of 3× 3 between all
layers. Beyond the first hidden layer, we introduce a 2× 2 average pooling operation followed by
half-padded convolution going from layer l to layer l + 1, and a half-padded convolution followed by
a 2× 2 nearest-neighbor interpolation going from layer l + 1 to layer l. Consequently, the spatial
dimensions of the hidden states, from lowest to highest, are (32,32), (16,16) and (8,8). A trainable
bias is applied per-channel to each layer. All biases are initialized to 0, whereas kernel weights are
Gaussian initialized with a standard deviation of 0.0001. The CBAN used tanh activation functions
and LSE with TD(1) transient training, as described in the main text.

We trained our model on 50,000 images from the CIFAR10 dataset (test set 10,000). The images
are noised by online-generation of Perlin noise that masks 40% of the image. We optimized our
mean-squared error objective using Adam. The learning rate is initially set to 0.0005 and then
decreased manually by a factor of 10 every 20 epochs beyond training epoch 150. For each batch,
the network runs until the state stabilizes, where the condition for stabilization is specified as the
maximum absolute difference of the full network states between stabilization steps t and t+ 1 being
less than 0.01. The maximum number of stabilization steps was set to 100; the average stabilization
iteration per batch over the course of training was 50 stabilization steps.

D.4 OMNIGLOT

The network architecture consists of four layers: one visible layer and three hidden layers. The visible
layer dimensions match the input image dimensions: (28, 28, 1). The channel dimensions of the three
hidden layers increase by 128, 256, and 512, respectively. We used filter sizes of 3× 3 between all
layers. Beyond the first hidden layer, we introduce a 2× 2 average pooling operation followed by
half-padded convolution going from layer l to layer l + 1, and a half-padded convolution followed by
a 2× 2 nearest-neighbor interpolation going from layer l + 1 to layer l. Consequently, the spatial
dimensions of the hidden states, from lowest to highest, are (28,28), (14,14) and (7,7). A trainable
bias is applied per-channel to each layer. All biases are initialized to 0, whereas kernel weights are

15

Under review as a conference paper at ICLR 2020

Gaussian initialized with a standard deviation of 0.01. The CBAN used tanh activation functions and
LSE with TD(1) transient training, as described in the main text.

We trained our model on 15,424 images from the Omniglot dataset (test set: 3856). The images
are noised by online-generation of squares that mask 20-40% of the white pixels in the image. We
optimized our mean-squared error objective using Adam. The learning rate is initially set to 0.0005
and then decreased manually by a factor of 10 every 20 epochs after training epoch 100. For each
batch, the network runs until the state stabilizes, where the condition for stabilization is specified as
the maximum absolute difference of the full network states between stabilization steps i and i+1 being
less than 0.01. The maximum number of stabilization steps was set to 100; the average stabilization
iteration per batch over the course of training was 50 stabilization steps.

Masks were formed by selecting patches of diameter 3–6 uniformly, in random, possibly overlapping
locations, stopping when at least 25% of the white pixels have been masked.

D.5 SUPER-RESOLUTION

The network architecture consists of four layers: one visible layer and three hidden layers. The visible
layer spatial dimensions match the input patch dimensions, but consists of 6 channels: (40, 40, 6).
The low-resolution evidence patch is clamped to the bottom 3 channels of the visible state; the top 3
channels of the visible state serve as the unclamped output against which the high-resolution target
patch is compared and loss is computed as a mean-squared error. The channel dimensions of the
three hidden layers are 300, 300, and 300. We used filter sizes of 5 × 5 between all layers. All
convolutions are half-padded and no average pooling operations are introduced in the SR network
scheme. Consequently, the spatial dimensions of the hidden states remain constant and match the
input patches of (40, 40). A trainable bias is applied per-channel to each layer. All biases are
initialized to 0, whereas kernel weights are Gaussian initialized with a standard deviation of 0.001.

We trained our model on 91 images from the T91 dataset (Yang et al., 2010) scaled at ×2. We
optimized our mean-squared error objective using Adam. The learning rate is initially set to 0.00005
and then decreased by a factor of 10 every 10 epochs. The stability conditions described in the CBAN
models for CIFAR-10 and Omniglot are repeated for the SR task, except the stability threshold was set
to 0.1 half way through training. We evaluated on four test datasets at ×2 scaling: Set5 (Bevilacqua
et al., 2012), Set14 (Zeyde et al., 2010), DSB100 (Martin et al., 2001), and Urban100 (Huang et al.,
2015).

E ADDITIONAL RESULTS

16

Under review as a conference paper at ICLR 2020

Figure 9: Additional examples of noise completion from supervised MNIST

17

Under review as a conference paper at ICLR 2020

target

completion

evidence

dream

target

completion

evidence

dream

target

completion

evidence

dream

target

completion

evidence

dream

Figure 10: Additional examples of noise completion from color CIFAR-10 images and the letter-like
Omniglot symbols. The rows of each array show the target image, the completion (reconstruction)
produced by CBAN, the evidence provided to CBAN with missing pixels depicted in red, and the
CBAN “dream” state encoded in the latent representation.

18

	Introduction
	Background and Related Research
	Convolutional Bipartite Attractor Nets
	Convolutional Weight Constraints
	Loss Functions
	Preventing vanishing/exploding gradients

	Simulations
	Bar Task
	Supervised MNIST
	Unsupervised Omniglot
	Unsupervised CIFAR-10
	Super-resolution

	Discussion
	Using evidence
	Loss functions
	Loss 1: The difference of energies
	Loss 2: The conditional probability of correct response

	Proof of convergence of CBAN with leaky sigmoid activation function
	Network architectures and hyperparameters
	Bar task
	MNIST
	CIFAR-10
	Omniglot
	Super-resolution

	Additional results

