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ABSTRACT

Knowledge distillation is an effective model compression technique in which a
smaller model is trained to mimic a larger pretrained model. However in order
to make these compact models suitable for real world deployment, not only do
we need to reduce the performance gap but also we need to make them more
robust to commonly occurring and adversarial perturbations. Noise permeates
every level of the nervous system, from the perception of sensory signals to the
generation of motor responses. We therefore believe that noise could be a cru-
cial element in improving neural networks training and addressing the apparently
contradictory goals of improving both the generalization and robustness of the
model. Inspired by trial-to-trial variability in the brain that can result from multi-
ple noise sources, we introduce variability through noise at either the input level
or the supervision signals. Our results show that noise can improve both the gen-
eralization and robustness of the model. ”Fickle Teacher” which uses dropout in
teacher model as a source of response variation leads to significant generalization
improvement. ”Soft Randomization”, which matches the output distribution of
the student model on the image with Gaussian noise to the output of the teacher
on original image, improves the adversarial robustness manifolds compared to the
student model trained with Gaussian noise. We further show the surprising ef-
fect of random label corruption on a model’s adversarial robustness. The study
highlights the benefits of adding constructive noise in the knowledge distillation
framework and hopes to inspire further work in the area.

1 INTRODUCTION

The design of Deep Neural Networks (DNNs) for efficient real world deployment involves careful
consideration of following key elements: memory and computational requirements, performance,
reliability and security. DNNs are often deployed in resource constrained devices or in applications
with strict latency requirements such as self driving cars which leads to a necessity for developing
compact models that generalizes well. Furthermore, since the environment in which the models are
deployed are often constantly changing, it is important to consider their performance on both in-
distribution data as well as out-of-distribution data. Thereby ensuring the reliability of the models
under distribution shift. Finally, the model needs to be robust to malicious attacks by adversaries
(Kurakin et al., 2016).

Many techniques have been proposed for achieving high performance in compressed model such as
model quantization, model pruning, and knowledge distillation. In our study, we focus on knowl-
edge distillation as an interactive learning method which is more similar to human learning. Knowl-
edge Distillation involves training a smaller network (student) under the supervision of a larger
pre-trained network (teacher). In the original formulation, Hinton et al. (2015) proposed mimicking
the softened softmax output of the teacher model which consistently improves the performance of
the student model compared to the model trained without teacher assistance. However, despite the
promising performance gain, there is still a significant performance gap between the student and the
teacher model. Consequently an optimal method of capturing knowledge from the larger network
and transferring it to a smaller model remains an open question. While reducing this generaliza-
tion gap is important, in order to truly make these models suitable for real world deployment, it is
also pertinent to incorporate methods into the knowledge distillation framework that improve the
robustness of the student model to both commonly occurring and malicious perturbations.
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For our proposed methods, we derive inspiration from studies in neuroscience on how humans learn.
A human infant is born with billions of neurons and throughout the course of its life, the connections
between these neurons are constantly changing. This neuroplasticity is at the very core of learning
(Draganski et al., 2004). Much of the learning for a child happens not in isolation but rather through
collaboration. A child learns by interacting with the environment and understanding it through their
own experience as well as observations of others. Two learning theories are central to our approach:
cognitive bias and trial-to-trial response variation. Human decision-making shows systematic sim-
plifications and deviations from the tenets of rationality (‘heuristics’) that may lead to sub-optimal
decisional outcomes (‘cognitive biases’) (Korteling et al., 2018). These biases are strengthened
through repeatedly rewarding a particular response to the same stimuli. Trial-to-trial response varia-
tion in the brain, i.e. variation in neural responses to the same stimuli, encodes valuable information
about the stimuli (Scaglione et al., 2011). We hypothesize that introducing constructive noise in
the student-teacher collaborative learning framework to mimic the trial-to-trial response variation in
humans can act as a deterrent to cognitive bias which is manifested in the form of memorization and
over-generalization in neural networks. When viewed from this perspective, noise can be a crucial
element in improving learning and addressing the apparent contradictory goals of achieving accurate
and robust models.

In this work, we present a compelling case for the beneficial effects of introduction of noise in knowl-
edge distillation. We provide a comprehensive study on the effects of noise on model generalization
and robustness. Our contributions are as follows:

• A comprehensive analysis on the effects of adding a diverse range of noise types in different
aspects of the teacher-student collaborative learning framework. Our study aims to motivate
further work in exploring how noise can improve both generalization and robustness of the
student model.

• A novel approach for transferring teacher model’s uncertainty to a student using Dropout
in teacher model as a source of trial-to-trial response variability which leads to significant
generalization improvement. We call this method ”Fickle Teacher”.

• A novel approach for using Gaussian noise in the knowledge distillation which improves
the adversarial robustness of the student model by an order of magnitude while significantly
limiting the drop in generalization. we refer to this method as ”Soft Randomization”.

• Random label corruption as a strong deterrent to cognitive bias and demonstrating its sur-
prising ability to significantly improve adversarial robustness with minimal reduction in
generalization.

2 RELATED WORK

Many experimental and computational methods have reported the presence of noise in the nervous
system and how it affects the the function of system (Faisal et al., 2008). Noise as a common
regularization technique has been used for ages to improve generalization performance of overpa-
rameterized deep neural networks by adding it to the input data, the weights or the hidden units (An,
1996; Steijvers & Grünwald, 1996; Graves, 2011; Blundell et al., 2015; Wan et al., 2013). Many
noise techniques have been shown to improve generalization such as Dropout (Srivastava et al.,
2014) and injection of noise to the gradient (Bottou, 1991; Neelakantan et al.). Many works show
that noise is crucial for non-convex optimization (Zhou et al., 2017; Li & Yuan, 2017; Kleinberg
et al., 2018; Yim et al., 2017). A family of randomization techniques that inject noise in the model
both during training and inference time are proven to be effective to the adversarial attacks (?Xie
et al., 2017; Rakin et al., 2018; Liu et al., 2018). Randomized smoothing transforms any classifier
into a new smooth classifier that has certifiable l2-norm robustness guarantees (Lecuyer et al., 2018;
Cohen et al., 2019). Label smoothing improves the performance of deep neural networks across a
range of tasks (Szegedy et al., 2016; Pereyra et al., 2017). However, Müller et al. (2019) reports that
label smoothing impairs knowledge distillation. We believe the knowledge distillation framework
with the addition of constructive noise might offer a promising direction towards the design goal
mentioned earlier, i.e. achieving lightweight well generalizing models with improved robustness to
both adversarial and naturally occurring perturbations.
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3 EXPERIMENTAL SETUP

For our empirical analysis, we adopted CIFAR-10 because of its pervasiveness in both knowledge
distillation and robustness literature. Furthermore, the size of the dataset allows for extensive experi-
mentation. To study the effect of noise addition in the knowledge distillation framework, we use Hin-
ton method (Hinton et al., 2015) which trains the student model by minimizing the Kullback–Leibler
divergence between the smoother output probabilities of the student and teacher model. In all of our
experiments we use α = 0.9 and τ = 4. We conducted our experiments on Wide Residual Networks
(WRN) (Zagoruyko & Komodakis, 2016b). Unless otherwise stated, we normalize the images be-
tween 0 and 1 and use standard training scheme as used in (Zagoruyko & Komodakis, 2016a; Tung
& Mori, 2019): SGD with momentum; 200 epochs; batch size 128; and an initial learning rate of 0.1,
decayed by a factor of 0.2 at epochs 60, 120 and 150. For the choice of student and teacher model
architecture, we used WRN-40-2 with 2.2M parameters and WRN-16-2 with 0.7M parameters as
the student model. In all of our experiments, we train each model for 5 different seed values. For
the teacher model, we select the model with highest test accuracy and then use it to train the student
model again for 5 different seed values and report the mean performance.

To evaluate the out of distribution generalization of our models, we used the ImageNet (Krizhevsky
et al., 2012) images from the CINIC dataset (Darlow et al., 2018). For adversarial robustness eval-
uation, we use the Projected Gradient Descent (PGD) attack from Kurakin et al. (2016) and run
for multiple step sizes. We report the worst robustness accuracy for 5 random initialization runs.
Finally, we test the robustness of our models to commonly occurring corruptions and perturbations
proposed by Hendrycks & Dietterich (2019) in CIFAR-C as a proxy for natural robustness. For
details of the methods, please see appendex.

4 EMPIRICAL STUDY OF NOISES

In this section, we propose injecting different types of noise in the student-teacher learning frame-
work of knowledge distillation and analyze their effect on the generalization and robustness of the
model.

4.1 SIGNAL-DEPENDENT NOISE

Here, we add a signal-dependent noise to the output logits of the teacher model. For each sample,
we add zero-mean Gaussian noise with variance that is proportional to the output logits in the given
sample (zi).

ẑi = (1 + δ).zi, δ ∼ N (µ = 0, σ2) (1)

We study the effect for the noise range [0−0.5] at steps of 0.1. Figure 1 shows for noise levels up to
0.1, the random signal-dependent noise improves the generalization to CIFAR-10 test set compared
to the Hinton method without noise while marginally reducing the out-of-distribution generalization
to CINIC-ImageNet. Figure 1 and Figure 11 show a slight increase in the adversarial robustness and
natural robustness of the models.

Müller et al. reported that when the teacher model is trained with label smoothing, the knowledge
distillation to the student model is impaired and the student model performs worse. On the contrary,
for lower level of noise, our method improves the effectiveness of distillation process. Our method
differs from their approach in that we train the teacher model without any noise and only when
distilling knowledge to the student, we add noise to its softened logits.

4.2 FICKLE TEACHER

Inspired by trial-to-trial variability in the brain and its constructive role in learning, we propose us-
ing dropout in the teacher model as a source of variability in the supervision signal from the teacher.
We train the teacher model with dropout and while training the student model, we keep the dropout
active in the teacher model. As a result, repeated representation of the same input image leads to dif-
ferent output prediction of teacher. Gal & Ghahramani used dropout to obtain principled uncertainty
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Figure 1: Lower level of signal-dependent Gaussian noise on supervisory signal from teacher improves (a )
the accuracy of student on the unseen data, but not the generalization to the out-of-distribution data as well as
(b: ) the robustness to PGD attack.

estimates from deep learning networks. Gurau et al. utilize knowledge distillation to better calibrate
a student model with the same architecture as the teacher model by using the soft target distribution
obtained by averaging the Monte Carlo samples. Our proposed method differs from their method in
a number of ways. We use dropout as a source of uncertainty encoding noise for distilling knowl-
edge to a compact student model. Also, instead of averaging Monte Carlo simulations, we used the
logits returned by the teacher model with activate dropout and train the student for more epochs so
that it can capture the uncertainty of the teacher directly.
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Figure 2: Encoding the uncertainty of teacher helps the student to (a )generalize better on both unseen data
and out-of-distribution data, and (b) to ave higher generalization to PGD attack. Note that for higher dropout
rate the performance of teacher drops.

We compare the generalization and robustness of the proposed method for dropout in the range [0−
0.5] at steps of 0.1. For training parameters, please see the appendex. Figure 12a show that training
the student model with dropout using our scheme significantly improves both in-distribution and out-
of-distribution generalization over the Hinton method. Interestingly, even when the performance
of the teacher model used to train the model is decreasing after drop rate 0.2, the student model
performance still improves up to drop rate 0.4. For dropout rate upto 0.2, both PGD Robustness
(Figure 12b) and natural robustness increases (Figure 6). This suggest that as per our hypothesis,
adding trial-to-trial variability helps in distilling knowledge to the student model.

4.3 SOFT RANDOMIZATION

Pinot et al. provided theoretical evidence for the relation between adversarial robustness and the
intensity of random noise injection in the input image. They show that injection of noise drawn
from the exponential family such as Gaussian or Laplace noise leads to guaranteed robustness to
adversarial attack. However this improved robustness comes at the cost of generalization.
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We propose a novel method for adding Gaussian noise in the input image while distilling knowledge
to the student model. Since the knowledge distillation framework provides an opportunity to com-
bine multiple sources of information, we hypothesize that using the teacher model trained on clean
images, to train the student model with random Gaussian noise can retain the adversarial robustness
gain observed with randomized training and mitigate the loss in generalization. Our method involves
minimizing the following loss function in the knowledge distillation framework.

L = (1− α)LCE(S(x+ δ), y) + ατ2DKL(S
τ (x+ δ)||T τ (x)), δ ∼ N (0, σ2) (2)

where S(.) denotes the output of student, Sτ (.) and T τ (.) denote the soften logits of student and
teacher models by temperature τ , respectively. α and τ are the balancing factor and temperature
parameters from the Hinton method.

We trained the models with six Gaussian noise levels and observe a significant increase in adver-
sarial robustness and a decrease in generalization. However, our proposed method outperforms the
compact model trained with Gaussian noise without teacher assistance for both generalization and
robustness (Figures: 3 and 4). Our method is able to increase the adversarial robustness even at
lower noise intensity For σ = 0.05, our method achieves 33.85% compared to 3.53% for the student
model trained alone. In addition, our method also improves the robustness to common corruptions.
Figure 5 shows that the robustness to noise and blurring corruptions improves significantly as the
Gaussian noise intensity increases. For weather corruptions, it improves robustness except for fog
and frost. Finally for digital corruption except for contrast and saturation, the robustness improves.
We also observe changes in the effect at different intensities, for example for frost, the robustness
increases at lower noise level and then decreases for higher intensities. Our method allows the use of
lower noise intensity for increasing adversarial robustness while keeping the loss in generalization
very low compared to other adversarial training methods.
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Figure 3: Even adding a small Gaussian noise on input level affects both the accuracy on unseen data and the
generalization to out-of-distribution data.
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Figure 4: Gaussian noise on input improves the robustness to PGD attack massively.

4.4 RANDOM LABEL CORRUPTION

Following the analogy with cognitive bias in humans, and relating it to the memorization and over
generalization in deep neural networks, we propose a counter intuitive regularization technique
based on label noise. For each sample in the training process, with probability p, we randomly
change the one hot encoded target labels to an incorrect class. The intuition behind this method is
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Figure 5: Training student with input corrupted with Gaussian noise improves robustness to most natural
distortions.

that by randomly relabeling a fraction of the samples in each epoch, we encourage the model to not
be overconfident in its predictions and discourage memorization.

There has been a number of studies on improving the tolerance of the DNNs to noisy labels (Hu
et al., 2019; Han et al., 2019; Wang et al., 2019). However, to the best of our knowledge, random
label noise has not been explored as a source of constructive noise to improve the generalization of
the model.
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Figure 6: .

We extensively study the effect of random label corruption on a range of p values and at multiple
levels: teacher model alone, student model alone, both student and teacher model. When the label
corruption is only used during knowledge distillation to student (Corrupted-S), both in-distribution
and out-of-distribution generalization increases even for very high corruption levels. When the
label corruption is used for training the teacher model and then used to train the student model
with (Corrupted-TS) and without (Corrupted-T) label corruption, the generalization drops (Figure
7). In general. knowledge, for high level of label corruption, knowledge distillation outperforms
the teacher model. Interestingly, random label corruption leads to a huge increase in adversarial
robustness. Just by training with 5% random labels, the PGD-20 robustness of the teacher model
increases from 0% to 10.89%. We see this increase in robustness for Corrupted-T and Corrupted-TS.
Up to 40% random label corruption, the adversarial robustness increases and slightly decreases for
50%. We believe that this observed phenomenon warrants further study.
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Figure 7: Knowledge distillation of corrupted teacher to both corrupted and clean student decreases the test
and generalization accuracy, but from clean teacher to corrupted student the test accuracy improves.
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5 CONCLUSION

Inspired by trial-to-trial variability in the brain, we introduce variability in the knowledge distilla-
tion framework through noise at either the input level or the supervision signals. For this purpose,
we proposed novel ways of introducing noise at multiple levels and studied their effect on both
generalization and robustness. Fickle teacher improves the both in-distribution and out of distribu-
tion generalization significantly while also slightly improving robustness to common and adversarial
perturbations. Soft randomization improves the adversarial robustness of the student model trained
alone with Gaussian noise by a huge margin for lower noise intensities while also reducing the drop
in generalization. We also showed the surprising effect of random label corruption alone in increas-
ing the adversarial robustness by an order of magnitude in addition to improving the generalization.
Our strong empirical results suggest that injecting noises which increase the trial-to-trial variability
in the knowledge distillation framework is a promising direction towards training compact models
with good generalization and robustness.
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A APPENDIX

A.1 PRELIMINARIES

In this section we provide details for the methods relevant our study.

A.2 KNOWLEDGE DISTILLATION

Hinton et al. proposed to use the final softmax function with a raised temperature and use the smooth
logits of the teacher model as soft targets for the student model. The method involves minimizing
the Kullback–Leibler divergence between the smoother output probabilities:

L = (1− α)LCE(σ(zS), y) + ατ2DKL(σ(
zS
τ
)||σ(zT

τ
)) (3)

where LCE denotes cross-entropy loss, σ(.) denotes softmax function, zS student output logit, zT
teacher output logit, τ and α are the hyperparameters which denote temperature and balancing ratio,
respectively.

A.3 OUT-OF-DISTRIBUTION GENERALIZATION

Neural networks tend to generalize well when the test data comes from the same distribution as the
training data (Deng et al., 2009; He et al., 2015). However, models in the real world often have to
deal with some form of domain shift which adversely affects the generalization performance of the
models ((Shimodaira, 2000; Moreno-Torres et al., 2012; Kawaguchi et al., 2017; Liang et al., 2017).
Therefore, test set performance alone is not the optimal metric for evaluation the generalization
of the models in test environment. To measure the out-of-distribution performance, we used the
ImageNet (Krizhevsky et al., 2012) images from the CINIC dataset (Darlow et al., 2018). CINIC
contains 2100 images randomly selected for each of the CIFAR-10 categories from the ImageNet
dataset. Hence the performance of models trained on CIFAR-10 on these 21000 images can be
considered as a approximation for a model’s out-of-distribution performance.

A.3.1 ADVERSARIAL ROBUSTNESS

Deep Neural Networks have been shown to be highly vulnerable to carefully crafted imperceptible
perturbations designed to fool a neural networks by an adversary (Szegedy et al., 2013; Biggio et al.,
2013). This vulnerability poses a real threat to deep learning model’s deployment in the real world
(Kurakin et al., 2016). Robustness to these adversarial attacks has therefore gained a lot of traction
in the research community and progress has been to better evaluate robustness to adversarial attacks
(Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017) and defend our
models against these attacks (Madry et al., 2017; Zhang et al., 2019).

To evaluate the adversarial robustness of models in this study, we use the Projected Gradient Descent
(PGD) attack from Kurakin et al. (2016). The PGD-N attack initializes the adversarial image with
the original image with the addition of a random noise within some epsilon bound, ε. For each step
it takes the loss with respect to the input image and moves in the direction of loss with the step size
and then clips it within the epsilon bound and the range of valid image.

Xadv
0 = X + U(−ε,+ε) (4)

Xadv
N+1 =

∏
ε,d

{Xadv
N + α.sgn(∇XJ(Xadv

N , ytrue))} (5)

where ε denote epsilon-bound, α step size and X original image. The projection operator
∏
ε,d(A)

denotes element-wise clipping, with Ai,j clipped to the range [Xi,j − ε,Xi,j + ε] and within valid
data range. In all of our experiments, we use 5 random initializations and report the worst adversarial
robustness.
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A.3.2 NATURAL ROBUSTNESS

While robustness to adversarial attack is important from security perspective, it is an instance of
worst case distribution shift. The model also needs to be robust to naturally occurring perturbations
which it will encounter frequently in the test environment. Recent works have shown that Deep
Neural Networks are also vulnerable to commonly occurring perturbations in the real world which
are far from the adversarial examples manifold. Hendrycks et al. (2019) curated a set of real-world,
unmodified and naturally occurring examples that causes classifier accuracy to significantly degrade.
Gu et al. (2019) measured model’s robustness to the minute transformations found across video
frames which they refer to as natural robustness and found state-of-the-art classifier to be brittle
to these transformations. In their study, they found robustness to synthetic color distortions as a
good proxy for natural robustness. In our study we use robustness to the common corruptions
and perturbations proposed by Hendrycks & Dietterich (2019) in CIFAR-C as a proxy for natural
robustness.

A.3.3 TRADE OFF BETWEEN GENERALIZATION AND ADVERSARIAL ROBUSTNESS

While making our model’s robust to adversarial attacks, we need to be careful not to overemphasize
robustness to norm bounded perturbation and rigorously test their effect on model’s in-distribution
and out-of-distribution generalization as well as robustness to naturally occurring perturbation and
distribution shift. Recent study have highlighted the adverse affect of adversarially trained model
on natural robustness. Ding et al. (2019) showed that even a semantics-preserving transformations
on the input data distribution significantly degrades the performance of adversarial trained models
but only slightly affects the performance of standard trained model. Yin et al. (2019) showed that
adversarially trained models improve robustness to mid and high frequency perturbations but at the
expense of low frequency perturbations which are more common in the real world. Furthermore, in
the adversarial literature, a number of studies has shown an inherent trade-off between adversarial
robustness and generalization Tsipras et al. (2018); Ilyas et al. (2019); Zhang et al. (2019). We would
like to point out that these studies were conducted under adversarial setting and do not necessarily
hold true for general robustness of the model.

A.4 RANDOM SWAPPING

To exploit the uncertainty of the teacher model for a sample, we propose random swapping noise
methods that select a sample with some probability p and then swap the softened softmax logits if
the difference is below a threshold.

We propose two variants of random swapping:

1. Swap Top 2: Swap the top two logits if the difference between them is below the threshold.
2. Swap All: Consider all consecutive pairs iteratively and swap them if the difference is

below the threshold value.

These methods improve the in-distribution generalization but adversely affects the out-of-
distribution generalization (Figure 9. It does not have a pronounced affect on the robustness (Figures:
9b, 10).

A.5 TRAINING SCHEME FOR DISTILLATION WITH DROPOUT

Because of the variability in the teacher model, the student model needs to be trained to more epochs
in order for it to converge and effectively capture the uncertainty of the teacher model.

We used the same initial learning rate of 0.1 and decay factor of 0.2 as per the standard training
scheme. For dropout rate of 0.1 and 0.2, we train for 250 epochs and reduce learning rate at 75, 150
and 200 epochs. For dropout rate 0.3, we train for 300 epochs and reduce learning rate at 90, 180
and 240 epochs. Finally for drop rate of 0.4 and 0.5, due to the increased variability, we train for
350 epochs and reduce learning rate at 105, 210 and 280 epochs.
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Figure 9: Noise on the supervision from teacher by swapping all logits or the top 2 ( a) improves the accuracy
of student on unseen data, but not the generalization to out-of-distribution data.
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Figure 10: Swapping all logits or the top two if does not improve the robustness to natural distortions, pre-
serves it.
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Figure 11: Additive signal-dependent noise maintains the natural robustness to the same level as no noise.
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Figure 12: Effect of fix label corruption.
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