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ABSTRACT

The principle of compositionality, which enables natural language to represent
complex concepts via a structured combination of simpler ones, allows us to con-
vey an open-ended set of messages using a limited vocabulary. If compositionality
is indeed a natural property of language, we may expect it to appear in communi-
cation protocols that are created by neural agents via grounded language learning.
Inspired by the iterated learning framework, which simulates the process of lan-
guage evolution, we propose an effective neural iterated learning algorithm that,
when applied to interacting neural agents, facilitates the emergence of a more
structured type of language. Indeed, these languages provide specific advantages
to neural agents during training, which translates as a larger posterior probability,
which is then incrementally amplified via the iterated learning procedure. Our ex-
periments confirm our analysis, and also demonstrate that the emerged languages
largely improve the generalization of the neural agent communication.

1 INTRODUCTION

Natural language understanding (NLU), which is exemplified by challenging problems such as ma-
chine reading comprehension, question answering and machine translation, plays a crucial role in
artificial intelligence systems. So far, most of the existing methods focus on building statistical asso-
ciations between textual inputs and semantic representations, e.g. using first-order logic (Manning
et al., 1999) or other types of representations such as abstract meaning representation (Banarescu
et al., 2013). Recently, grounded language learning has gradually attracted attention in various
domains, inspired by the hypothesis that early language learning was focused on problem-solving
and tasks relevant to survival (Kirby & Hurford, 2002). While related to NLU, it focuses on the
pragmatics (Clark, 1996) of learning natural language, as it implies learning language from scratch,
grounded in experience. This research is often practiced through the development of neural agents
which are made to communicate with each other to accomplish specific tasks (for example, playing
a game). During this process, the agents build mappings between the concepts they wish to com-
municate about and the symbols used to represent them. These mappings are usually referred to as
‘emergent language’.

So far, an array of recent work (Havrylov & Titov, 2017; Mordatch & Abbeel, 2018; Kottur et al.,
2017; Foerster et al., 2016) has shown that in many game settings, the neural agents can use their
emergent language to exchange useful coordinating information. While the best way to design
games to favour language emergence is still open to debate, there is a consensus on the fact that we
should gear these emergent languages towards sharing similarities with natural language. Among the
properties of natural language, compositionality is considered to be critical, because it enables rep-
resentation of complex concepts through the combinination of several simple ones. While work on
incorporating compositionality into emergent languages is still in its early stage, several experiments
have already demonstrated that by properly choosing the maximum message length and vocabulary
size, the agents can be brought together to develop a compositional language that shares similarities
with natural language (Li & Bowling, 2019; Lazaridou et al., 2018; Cogswell et al., 2019).

In a different body of language research literature, evolutionary linguists have already modelled the
origins of compositionality for decades (Kirby & Hurford, 2002; Kirby et al., 2014; 2015). They
proposed a cultural evolutionary account of the origins of compositionality and designed a frame-
work called iterated learning to simulate the language evolution process, based on the idea that the
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Figure 1: Referential communication game and architectures of the agents.

simulated language must be learned by new speakers at each generation, while also being used for
communication. Their experiments show that highly compositional languages may indeed emerge
through iterated learning. However, the models they introduced were mainly studied in the context of
Bayesian agents and human participants in the experiment lab. When using Bayesian agents, these
researchers designed a prior probability distribution that favors compositional languages1. In the
case of experiments with human participants, it is argued that participants presumably favor those
compositional languages because the human brain prefers structure. Although some early works at-
tempted to combine iterated learning and neural network (Hurford et al., 1998; Batali, 1998; Kirby
& Hurford, 2002), due to the specific design of the neural agents, directly applying this framework
to grounded language learning is not straightforward.

In this project, we plan to build on the work of evolutionary linguistics and previous neural models
by encouraging neural agents to invent highly compositional languages through iterated learning.
To achieve this goal, we propose a three-phase neural iterated learning algorithm and a probabilistic
explanation of it. The experimental results demonstrate that our algorithm can significantly enhance
the topological similarity2 between the emergent language and the original meaning space in a sim-
ple referential game (Lewis, 1969), without hindering the general game performance. Following
our previous analysis, we confirm that as a result, neural agents have better generalization abilities,
by highlighting the correlation between the topological similarity of the emergent language and the
game performance in a zero-shot setting. Our contributions are as follows:

• We propose a three-phase iterated learning algorithm specifically adapted to neural agents.

• We propose a probabilistic approach to explain the mechanisms of our algorithm, allowing
us to track the posterior distribution of the emergent languages used by the neural agents.

• We provide an analysis of the advantages offered by languages with high topological sim-
ilarity for training both neural agents (speaker and listener), and explain how these advan-
tages are gradually improved by the iterated procedure.

2 BACKGROUND

In this section, we present the necessary background to our approach: the game to be played by the
neural agents, the neural agents themselves, and the topological similarity, measure that we will use
as a way to evaluate the compositionality of the emerging languages.

2.1 REFERENTIAL GAME

We analyze a typical and straightforward object selection game, in which a speaking agent (Alice, or
speaker) and a listening agent (Bob, or listener) must cooperate to accomplish a task. In each round
of the game, we show Alice a target object xt selected from an object space X and let her send a
discrete-sequence message mt to Bob. We then show Bob c different objects (xt must be one of
them) and use c1, ..., cc ∈ X to represent these candidates. Bob must use the message received from

1Such languages can use different symbols to represent different attributes of meaning and combine these
symbols in a systematic way to form a message such that the meaning of the whole message is formed from a
simple combination of the meaning of its parts.

2This is a common measurement of language compositionality (Brighton & Kirby, 2006)
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Alice to select the object that Alice refers among the c candidates. If Bob’s selection c̄ is correct, i.e.
c̄ = xt, then both Alice and Bob are rewarded. The objects are shuffled and candidates are randomly
selected in each round to avoid the agents building mappings between the objects and their order of
presentation.

In our game, each object in X has Na attributes (color and shape are often used in the literature),
and each attribute has Nv possible values. To represent objects, similarly to the settings chosen in
(Kottur et al., 2017), we encode each attribute as a one-hot vector and concatenate the Na one-hot
vectors to represent one object. One simple example is the object space X={blue box, blue circle,
red box, red circle}, where Na = 2 and Nv = 2.

The message delivered by Alice is a fixed-length discrete sequence m = (m1, ...,mNL
), in which

each mi is selected from a fixed size meaningless vocabulary V . To ensure that the message can
unambiguously describe all possible objects, we usually assume NL ≥ Na and |V | ≥ Nv . For
example, to work with the previously defined example X , a vocabulary V containing only 2 symbols
and a message length NL = 2 would suffice.

2.2 NEURAL AGENT STRUCTURES

Neural agents usually have separate modules for speaking and listening, which we name Alice and
Bob. Their architectures, shown in Figure 1, are similar to those studied in (Havrylov & Titov, 2017)
and (Lazaridou et al., 2018). Alice first applies a multi-layer perceptron (MLP) to encode xt into an
embedding, then feeds it to an encoding LSTM (Hochreiter & Schmidhuber, 1997). Its output will
go through a softmax layer, which we use to generate the message mt. Bob uses a decoding LSTM
to read the message and uses multiple MLPs to encode c1, ..., cc into embeddings. Bob then takes
the dot product between the hidden states of the decoding LSTM and the embeddings and applies a
softmax layer to select the right object. As Alice and Bob are trained using reinforcement learning,
we can use pA(mt|xt; θA) and pB(c̄|mt, c1, ..., cc; θB) to represent their respective policies, where
θA and θB contain the parameters of each of the neural agents. When the agents are trained to play
the game together, we use the REINFORCE algorithm (Williams, 1992) to maximize the expected
reward under their policies, and add the entropy regularization term to encourage exploration during
training, as explained in (Mnih et al., 2016). The gradients of the objective function J(θA, θB) are:

∇θAJ = E [R(c̄, xt)∇ log pA(mt|xt)] + λA∇H[pA(mt|xt)] (1)
∇θBJ = E [R(c̄, xt)∇ log pB(c̄|mt, c1, ..., cc)] + λB∇H[pB(c̄|mt, c1, ..., cc)], (2)

where R(c̄, xt) = 1(c̄, xt) is the reward function, H is the standard entropy function, and λA, λB >
0 are hyperparameters controlling regularization.

2.3 MEASURING COMPOSITIONALITY

Compositionality is a crucial feature of natural languages, allowing us to use small building blocks
(e.g., words, phrases) to generate more complex structures (e.g., sentences), with the meaning of
the larger structure being determined by the meaning of its parts (Clark, 1996). However, there is
no consensus on how to quantitatively assess the compositionality of a language. Besides a subjec-
tive human evaluation, topological similarity has been proposed as a possible quantitative measure
(Brighton & Kirby, 2006).

To define topological similarity, we first need to define the languages studied in this work. A
language L is a function mapping items from the object space X to the message space M, i.e.,
L(·) : X 7→ M. To compute topological similarity, we first need to measure the distances be-
tween pairs of objects: ∆ij

X = dX (xi, xj), where dX (·) is a distance in X . Similarly, we compute
the corresponding quantity for the associated messages mi = L(xi) in the message space M with
∆ij

M = dM (mi,mj), where dM(·) is a distance in M. Then the topological similarity is defined
as the correlation between these quantities across X :

ρ(L) ≜
∑

xi,xj∈X

(
∆ij

X − E[∆X ]
)(

∆ij
M − E[∆M]

)
√∑

xi,xj∈X

(
∆ij

X − E[∆X ]
)2 (

∆ij
M − E[∆M]

)2
, (3)
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Figure 2: A simple representation of two languages corresponding to topological similarities of
ρ = 1 (top) and ρ = 0.5 (bottom).

where E[∆X ] and E[∆M] are the average distances among all possible pairs in each space. We
should note that ρ ∈ [−1, 1]. Following the setup of (Lazaridou et al., 2018) and (Li & Bowling,
2019), we use the negative cosine similarity in the object space and Levenshtein distances (Leven-
shtein, 1966) in the message space.

To give a better intuition of what topological similarity is, we can apply it to a simple example:
considering the previously introduced object space X={blue box, blue circle, red box, red circle}
and space of potential messages M={aa,ab,ba,bb}, we show in Figure 2 an example of a high-ρ
language (with ρ = 1) and a low-ρ language (ρ = 0.5). We can see that the mapping function of the
high-ρ language is smoother and has less inflection points than the low-ρ language. That is because
a high topological similarity implies that any pair of objects that are close to each other will have
their mappings close in the message space.

3 NEURAL ITERATED LEARNING MODEL

In iterated learning, the outputs of the agents training during one generation serve as input for train-
ing the agents in the next generation. This framework is proven to be effective when experimenting
with both Bayesian agents and human participants. However, directly applying it to games played by
neural agents is not trivial: for example, we cannot easily give high-ρ languages a large prior prob-
ability via a neural network. Besides, as Alice and Bob usually have different architectures, their
way of obtaining information from the previous generation should be carefully designed. Hence in
this section we propose an adapted iterated learning procedure where each generation is divided in
three phases: the learning phase, the interacting phase, and the transmitting phase. We also provide
a probabilistic analysis of our neural iterated learning algorithm, allowing us to tailor it to favoring
high-ρ languages.

3.1 NEURAL ITERATED LEARNING AND PROBABILISTIC ANALYSIS

Our neural iterated learning algorithm for the referential game is detailed in Algorithm 1. The
algorithm runs for I generations: at the beginning of each generation i, both the agents are re-
initialized. They are then pre-trained using the data generated at the previous generation, which we
denote Di−1: this is the learning phase. As Alice and Bob have different structures, we pre-train
them differently (see line 5-7 for Alice and line 8-12 for Bob): Alice is pre-trained via categorical
cross-entropy and Bob is pre-trained with REINFORCE. We note Ia and Ib their respective number
of pre-training iterations. Alice and Bob then play the game together for Ig rounds in the interacting
phase, in which both agents are updated via REINFORCE. Finally, in the transmitting phase, we
feed all objects to Alice and let it output the corresponding messages to be stored in Di for the
learning phase of the next generation.

To better understand how iterated learning can favor and let high-ρ languages dominate, we examine
the posterior probability of all possible languages. Alice maps an object xt ∈ X to a message mt ∈
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Randomly initialize D0

for i = 1, 2, ..., I do
Re-initialize Alice and Bob, get Alicei and Bobi

// ======= Learning Phase =======
for ia = 1, 2, ..., Ia do

Randomly sample an example pair from Di−1 and use it to update Alicei with
cross-entropy training

end for
for ib = 1, 2, ..., Ib do

Alicei generates message based on input objects
Bobi receives message and selects the target
Bobi updates its parameters if rewarded

end for
// ======= Interacting Phase =======
for ig = 1, 2, ..., Ig do

Alicei generates message based on input objects
Bobi receives message and selects the target
BOTH Alicei and Bobi update parameters if rewarded

end for
// ======= transmitting Phase =======
for is = 1, 2, ..., Is do

Generate object-message pairs by feeding all objects to Alicei and save them to data set
Di

end for
end for

Algorithm 1: Our main neural iterated learning algorithm. Di is the set of training pairs used to
pre-train Alicei at generation i. Ia, Ib and Ig are the number of iterations used to pre-train Alice,
Bob, and to play the game at each generation.

M via its softmax function. The message that is actually selected (and which mapping corresponds
to the agents ‘emergent language’) corresponds to the argmax of this output. However, the other
values allow us to compute the posterior distribution of a message given an input object P (mt|D,xt)
by Alice, where D is the set of training samples it observed. Since languages are defined as mapping
functions from X to M, we can compute the posterior probability of any language using:

P (L|D) = P (m1, ...|D,x1, ...) =
∏

⟨xt,mt⟩∈L

P (mt|D,xt), (4)

assuming the mappings of different objects are independent. Denoting as Pi(L) the posterior prob-
ability of a language L during the i-th generation, we can track the progress of any language during
the iterated learning procedure.

While the distribution of languages is supposed to be close to uniform at the beginning of any gener-
ation i, pre-training the agents should bring the posterior probability of a language L to Pi(L|Di−1)
(which is similar but not exactly the same with the distribution that generates Di−1). New informa-
tion is brought during the interacting phase, when the neural agents are only updated by successfully
recognized objects-message pairs: we note this set of examples Ri. Then, the new posterior proba-
bility of L is Pi(L|Di−1, Ri), and the set of examples for the next generation Di is sampled from
this new posterior distribution of languages.

From this analysis, we gain the intuition that posterior probability of languages represented by the
object-message pairs in Ri would keep increasing over generations. We can already conjecture that
ambiguous languages, that represent different objects with the same message, will necessarily see
their probability decrease after a while. However, high-ρ languages only represent a small portion of
all possible unambiguous languages (Brighton, 2002), even if this portion becomes relatively larger
when NL and |V | are small3. While high-ρ language do not seem to be directly preferred during

3Hence, the agents have more chances to develop a high-ρ languages when NL and |V | are small, as
illustrated by the experiments in (Lazaridou et al., 2018) and (Cogswell et al., 2019).

5



Under review as a conference paper at ICLR 2020

Le
ar

ni
ng

 A
cc

ur
ac

y

# Pre-training Rounds

Advantage

High-ρ
Language

Bottleneck

Low-ρ
Language

(a) Intuition of high-ρ advantage.

0 500 1000 1500 2000 2500 3000

Number of pre-train rounds
0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 a
cc

ur
ac

y

=1.0
=0.85
=0.62
=0.21

(b) Experiments on Alice.
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(c) Experiments on Bob.

Figure 3: Illustration of the learning speed of Alice and performance improving speed of Bob when
pre-training is done with various languages of different topological similarities. The game settings,
network structures and hyperparameter settings are the same than for the experiments described in
Section 4. We generate a perfect high-ρ language (ρ = 1) using the method proposed in (Kirby
et al., 2015), and permute the messages to generate a low-ρ language with ρ = 0.21. The other two
languages are intermediate languages generated during iterated learning.

the interacting phase, they can be favored by the neural agents during the learning phase, via careful
setting of the hyperparameters of the pre-training procedure. We will make this explicit in the next
two subsections.

3.2 LEARNING SPEED ADVANTAGE FOR THE SPEAKING AGENT

In language evolution, highly compositional languages are favored because they are structurally
simple and hence are easier to learn (Carr et al., 2017). We believe that a similar phenomenon
applies to communication between neural agents:

Hypothesis 1: High topological similarity improves the learning speed of the speaking neural agent.

We speculate that high-ρ languages are easier to emulate for a neural agent than low-ρ languages.
Concretely, that means that Alice, when pre-trained with object-message pairs describing a high-
ρ language at a given generation, will be faster to successfully output the right message for each
object. This principle is illustrated in Figure 3-(a). Intuitively, this is because the structured mapping
described by a high-ρ language has a lower sample complexity, which makes resulting examples
easier to learn for the speaker agent (Vapnik, 2013). To test our hypothesis, we observe the capacity
of Alice to learn to reproduce object-message pairs corresponding to manually chosen languages
during the learning phase. The experimental results confirm our hypothesis, as shown in Figure
3-(b).

This difference in learning speed will mechanically make the agent reproduce samples from high-ρ
languages, which implies they will have higher posterior probabilities. As the training samples are
randomly drawn from Di−1, which we can interpret as a mixture of all possible languages weighted
by their posterior probability at generation (i − 1), we translate our hypothesis as the following
principle: the expected ρ of the set of possible languages in generation i should be higher than for
generation i− 1,

EL[ρ(L)|Di] ≥ EL[ρ(L)|Di−1]. (5)

As intuited in Figure 3-(a) and observed in Figure 3-(b), the gap between the two curves (which we
call the ‘advantage’) varies with the number of training rounds. If the number of rounds Ia is too
small, the agent will not have time to extract information from Di−1 well: the posterior distribution
of languages will resemble its prior (uniform) version, which favors low-ρ languages. If Ia is too
large, the agent will perfectly learn Di−1, and equality will hold in equation 5: no improvement
will be made. Computing an appropriate value for Ia is not trivial, since the learning speed depends
on many other parameters, such as the learning rate, the optimizer, and the size of search space.
We propose a simple approach, consisting in pre-training Alice with pairs describing a high-ρ and
a low-ρ language, with all other hyper-parameters fixed. This gives us an approximate idea of the
‘advantage’ interval shown in Figure 3: we can then choose a value of Ia corresponding to this
interval. Experiments specifically related to this issue are presented in Section 4.2
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3.3 LEARNING SPEED ADVANTAGE FOR THE LISTENING AGENT

In language evolution, highly compositional languages facilitate the description of new concepts,
allowing using the attributes of the concepts that were previously learnt (Kirby et al., 2015). We
believe a parallel can be drawn with how the structured mappings of high-ρ languages facilitate the
task of learning to recognize these objects for the listening agent in our game:

Hypothesis 2: High topological similarity allows the listening agent to successfully recognize more
concepts, using less samples.

Here, we speculate that high-ρ-languages are easier for a neural agent to recognize. That means that
Bob, when pre-trained with message-object pairs corresponding to a high-ρ language, will be faster
to successfully choose the right object: the recognition accuracy curves corresponding to a high-ρ
and a low-ρ language for the listening agent should also exhibit the trend illustrated in Figure 3-(a).

Intuitively, the lower topological similarity is, the more difficult it will be to infer unseen object-
message pairs from seen examples. The more complex mapping of a low-ρ language implies that
more object-message pairs need to be provided to describe it (the worst case being all possible
pairs but one). This translates as an inability for the listening agent to generalize the information
it obtained from one object-message associated to a low-ρ language to other examples. Thus, the
general performance of Bob on any example will improve much faster when trained with pairs
corresponding to a high-ρ language than with a low-ρ language. To test this hypothesis, we randomly
sample message-object pairs from languages associated to various values of ρ which we feed to four
different instances of Bob, and observe their accuracy when recognizing objects. Again, the results
match our hypothesis well: the high-ρ language indeed helps Bob to generalize faster than low-ρ
languages, as shown in Figure 3-(c).

Similarly to Ia, the number of rounds Ib for which we pre-train the listening agent in the learning
phase can be chosen by approximately finding the interval corresponding to this advantage, via
separate pre-training using samples from a high-ρ language and a low-ρ language.

4 EXPERIMENTS AND DISCUSSIONS

We now turn to an experimental study of the behavior of our proposed neural iterated learning algo-
rithm. First, we examine the behavior and performance of the neural agents, as well as the posterior
distribution of languages, at each generation. We conduct an ablation study, to examine the effect of
pre-training Alice and Bob separately. We then investigate more thoroughly the advantages brought
by high-ρ languages, and highlight the ‘interval of advantage’ in pre-training rounds described in
Sections 3.2 and 3.3. Finally, we conduct a series of experiments on zero-shot playing of the object
selection game, to highlight the positive effect of high-ρ languages on the neural agents general-
ization ability — which we believe shows the potential of iterated learning for NLU tasks. Details
about our experimental setup and our choice of hyper-parameters can be found in the appendix.

4.1 CONVERGENCE BEHAVIOR

We are first interested in the evolution of the game performance and mean topological similarity
during the iterated learning procedure, and if (and how) they converge. We set the number of rounds
of the object selection game to be played in each generation at Ig = 4000 and set the number
of generations to I = 80. We record the game performance (i.e., the rate of successful object
selections) and mean ρ of the object-message pairs exchanged by the neural agents every 20 rounds.
We run the simulation 10 times, with a different random number seed each time. Although the
results are different, they all follow the same trend.

In this first series of experiments, we compare the following 4 different methods:

• Iterated learning, with resetting both Alice and Bob at the beginning of each generation.

• Iterated learning, only resetting Alice at the beginning of each generation;

• Iterated learning, only resetting Bob at the beginning of each generation;

• No iterated learning: neither Alice nor Bob are reset during training.

7



Under review as a conference paper at ICLR 2020

0 10 20 30 40 50 60 70 80
Number of generatoins

0.0

0.2

0.4

0.6

0.8

1.0

Ga
m

e 
ac

cu
ra

cy

Reset Alice and Bob
Only reset Alice
None reset

(a) Game performance

0 10 20 30 40 50 60 70 80
Number of generations

0.0

0.2

0.4

0.6

0.8

1.0

To
po

lo
gi

ca
l s

im
ila

rit
y:

Reset Alice and Bob
Only reset Alice
Only reset Bob
None reset

(b) Average ρ of emergent language

Figure 4: Game performance and average topological similarity for the possible resetting strategies
of our proposed iterated learning procedure of 80 generations.

Let us first examine game performance: from Figure 4-(a), we can see that for the 3 displayed
variants of the procedure, neural agents can play the game almost perfectly after a few generations4.
The curve of the no-reset method will directly converge while the curves of the other two iterated
learning procedures will show a loss of accuracy at the beginning of each generation. That is because
one or both agents are reset, and are not able to completely re-learn from the data kept from the
previous generation during the pre-training phase. However, at the end of each generation, all these
algorithms can ensure a perfect game performance.

While the use of an iterated learning procedure has little effect on the game performance given a
sufficient number of rounds, these procedures have a clear positive effect on topological similarity.
In Figure 4-(b), we can see that the no-reset case has the lowest average ρ while the iterated learning
cases all have higher means (and increasing). We will provide examples of the mixtures of languages
associated to the no-reset and both-reset cases in Appendix D, showing that the high-ρ language ex-
hibits a clear structure. We also examine in detail the posterior probability of languages according to
their topological similarity, which is illustrated in Appendix D, confirming our current observations
and providing a detailed account of the inner working of our procedure. We leave the discussion
on the specific impact of each agent and why the reset-Alice and reset-Bob behave differently for
Section 5.

4.2 HIGH TOPOLOGICAL SIMILARITY AND INTERVAL OF ADVANTAGE

In this section, we explore further the phenomenon described in Section 3.2 and 3.3. First, we take
a look at the resulting topological similarity of the language sampled by Alice when pre-trained
with languages corresponding to various initial ρ, depending on the number of pre-training rounds
Ia. Results are displayed in Figure 5-(a). We can see that the same interval appears: the average
topological similarity of the sampled language first increases, and then converges to a value close to
the initial one.

Then, we examine the behavior of 3 different metrics for full runs of the iterated learning algorithm,
for various values of Ia and Ib, while all other hyperparameters are fixed:

• E[r71:80]: The average reward of the last ten generations;

• E[ρ1:10]: The average value of ρ for the first ten generations;

• E[ρ71:80]: The average value of ρ for the last ten generations.

From the results presented in Table 1, we can see the importance of the number of pre-training
rounds not being too large nor too small. The suitable Ia and Ib are shown in bold. From Figure 3,
5, and Table 1, we can see that the interval of advantage of Ia lies between 1000 to 2000 while it
lies between 100 to 200 for Ib.

4We do not display the last case to avoid cluttering the figure.
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Figure 5: Transformation of ρ: we display the topological similarity of the language sampled by
Alice depending of the number of pre-training rounds and the topological similarity of pre-training
examples.

Ia 100 200 400 800 1200 1500 2000 3000 5000 8000
E[r71:80] 0.293 0.828 0.928 0.951 0.958 0.961 0.952 0.956 0.955 0.949
E[ρ1:10] 0.225 0.429 0.452 0.483 0.556 0.575 0.566 0.494 0.481 0.443
E[ρ71:80] 0.203 0.706 0.836 0.886 0.899 0.935 0.936 0.929 0.889 0.837

Ib 10 20 40 80 120 160 200 300 400 800
E[r71:80] 0.954 0.946 0.961 0.954 0.962 0.959 0.962 0.957 0.961 0.944
E[ρ1:10] 0.415 0.381 0.488 0.496 0.591 0.535 0.557 0.498 0.488 0.448
E[ρ71:80] 0.927 0.937 0.929 0.928 0.936 0.891 0.888 0.897 0.891 0.880

Table 1: Values of 3 metrics when varying Ia or Ib, highlighting an interval where the topological
similarity grows high. Compositionality is maximised when the amount of data is neither too high
nor too low.

4.3 TOPOLOGICAL SIMILARITY AND ZERO-SHOT PERFORMANCE

In this last series of experiments, we aim to explore the relationship between topological similarity
and the generalisation ability of our neural agents, which can also indirectly reflect the expressivity
of a language. We measure this ability by looking at their zero-shot game performance: we restrict
the training examples to a limited numbers of objects (i.e., the training set), and look at how good
are the agents at playing the game on the others (i.e., the validation set). Figure 6-(a) demonstrates
the strength of the iterated learning procedure in a zero-shot setting. To illustrate the relationships
between ρ and zero-shot performance, we randomly choose Ia ∈ [60, 4000] and Ib ∈ [5, 200] and
conduct a series of experiments. As many experiments do not have optimal Ia and Ib, they will
yield a worse performance on both zero-shot test and topological similarity. In Figure 6-(b), we
record the results from different experimental settings and draw the zero-shot performance given the
topological similarity of the emergent language. This shows the linear correlation between these two
metrics, and a significance test confirms it: the correlation coefficient is 0.928, and the associated
p-value is 3.8 ∗ 10−104. Hence, under various experimental settings, the zero-shot performance and
the topological similarity are strongly correlated. Table 2 illustrates that when the size of validation
set increases, using iterated learning can always improve the zero-shot performance: in all the cases,
both-reset algorithm always yields the best performance comparing with others. The fact that Alice-
reset setting performs better than Bob-reset setting also matches our analysis well.

Valid set size 0 8 16 32
Train Valid Train Valid Train Valid Train Valid

No-reset 0.985 - 0.986 0.136 0.990 0.132 0.995 0.102
Bob-reset 0.967 - 0.943 0.094 0.962 0.152 0.947 0.116
Alice-reset 0.981 - 0.976 0.598 0.979 0.280 0.947 0.210
Both-reset 0.988 - 0.986 0.847 0.984 0.755 0.973 0.558

Table 2: Zero-shot performance under different validation set size.
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Figure 6: Zero-shot performance and topological similarity with validation size equals eight. Iterated
learning leads to the evolution of languages which allow agents to perform well on unseen items.

5 DISCUSSION: A PARALLEL WITH LANGUAGE EVOLUTION

We can observe an interesting phenomenon in Figure 4-(b)5: the topological similarity of the emer-
gent language always increases at first, whether we use iterated learning or not. This is akin to
the effect apparent for ρ in Figure 5: continuing training will imply fine-tuning to examples that
are not necessarily of good quality. However, through the generational resets and limited number
of pre-training examples, iterated learning allow small generational improvements: this is because
constraining the agent to learn with smaller amounts of data at each generation — through a ‘bot-
tleneck’ (Kirby & Hurford, 2002) — forces the emergence of a more structured language. This
limitation on the amounts of data available corresponds in our algorithm to limiting the number of
pre-training rounds of the agents, to a number in what we denoted as the ‘interval of advantage’.
Extending this parallel with the evolution of natural language, we can relate the learning speed ad-
vantage provided by high-ρ languages to the speaking agent (from Section 3.2) to the compressibility
pressure (Kirby et al., 2015), and the better ability to generalize provided by high-ρ languages to the
listening agent (from Section 3.3) to the expressivity pressure (Kirby et al., 2015). This comparison
allows us to address one important difference between our neural iterated learning algorithm and the
original version: our speaking and listening agents are not identical. From Figure 4-(b) and Figure
6-(a), it is clear that Alice and Bob are affected differently by the generational resets, and thus do
not offer the same contribution to the final performance6. From this parallel, we retain that iter-
ated learning is also linked to the emergence of a certain form of compositionality when applied to
neural agents. Besides, we believe that the correlation between topological similarity and zero-shot
performance that we highlight in Section 4.3 is another argument in favor of a relationship between
compositionality and generalization, which has recently been explored (Kottur et al., 2017; Choi
et al., 2018; Andreas, 2019).

6 CONCLUSION

In this paper, we propose a neural iterated learning algorithm to encourage the dominance of high
compositional language in a multi-agent communication game. We show that our procedure, con-
sisting in resetting neural agents playing a referential game and pre-training them on data generated
by their predecessors, can incrementally advantage emergent languages with high topological sim-
ilarity. We demonstrate its interest by obtaining large performance improvements in a zero-shot
game-playing setting, linking compositionality and ability to generalize to new examples. In the
future, we plan to explore alternative pre-training strategies for the neural agents, and to extend our
procedure to more complex neural-agents-based systems.

5This can be viewed in more details when looking at the probabilistic analysis presented in the appendix
6However, this parallel may not explain how differently they contribute to gains in topological similarity,

since we must factor in the differences between their pre-training procedures, and especially the fact that Alice
is pre-trained by minimizing cross-entropy.
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APPENDIX A: PARAMETER SETTINGS

Unless specifically stated, the experiments mentioned in this paper use the hyper-parameters given
in Table 3. The code used to realise our experiments will be released upon publication.

Notation Value Description
Na 2 Number of all attributes
Nv 8 Number of possible values for each attribute
NL 2 Message length
|V | 8 Vocabulary size. (Here we have V = {abcdefgh})
I 80, 100 Maximum number of generations
Ia ≥ 100, ≤ 8000 Maximum pre-train rounds for Alice
Ib ≥ 10, ≤ 800 Maximum pre-train batches for Bob
Ig ≥ 100, ≤ 8000 Maximum interacting rounds
Is 1000 Maximum rounds for transmitting phase
Nh 128 Hidden layer size
Nb 64 Batch size
c 15 Number of candidates (including the target)
lr ≥ 10−5, ≤ 10−3 Learning rate

Table 3: Value of hyper-parameters.

APPENDIX B: TOPOLOGICAL SIMILARITY - A TOY EXAMPLE

Group Compsitional (8) low-ρ (16) Other (232)
blue box = aa blue box = aa blue box = aa

Language red box = ba red box = bb red box = bb
Examples blue circle = ab blue circle = ab blue circle = aa

red circle = bb red circle = ba red circle = bb
ρ 1 0.5 0.1∼ 0.7

Table 4: Different groups of language and their topological similarity.

To better understand how topological similarity can measure the compositionality of one language,
and to provide some intuition on how mapping functions of languages corresponding to different
values of ρ would be like, we extend here the toy example mentioned in section 2. In this ex-
ample, the object space are X = {blue box, blue circle, red box, red circle} and message space
M = {aa, ab, ba, bb}. Any set of mappings from four distinct objects to four messages forms a lan-
guage (a language may assign the same message to different object). Hence, we have 256 possible
languages in this toy example, but only some of them can unambiguously describe the four possible
objects: in this example, there is 24. Following the principles provided in (Kirby et al., 2015), we
divide these 24 languages into two groups: compositional languages and holistic languages. We la-
bel the remaining 232 languages as ‘Other’, as illustrated in Table 4. The compositional languages,
exhibit systematic structure when forming messages, while the holistic languages do not. In the
compositional language in Table 4, m1 and m2 stands for the color and shape, respectively. We can
hence use S → XY , and X : blue → b;X : red :→ b;Y : box → a;X : circle :→ b to represent
such a language. But in holistic or other languages, such a structure may not exist.

Note that the number of compositional languages is usually smaller than that of holistic languages.
When the neural agent is randomly initialized, all possible mappings (i.e., languages) in the search-
ing space follow a uniform distribution. Hence the initial probability of specific groups of languages
can be calculated using the ratio of such language types to all possible language types. Using per-
mutation and combination, we can calculate the numbers of unambiguous language, compositional

13



Under review as a conference paper at ICLR 2020

language and holistic language as:

# unambiguous languages =
(|V |NL)!

(|V |NL −NNa
v )!

(6)

# compositional languages = Na! ·
(

|V |!
(|V | −Nv)!

)Na

(7)

# holistic languages = # unambiguous languages −# compositional languages (8)

From the above equations, we can see that when NL and |V | increase, the gap between the number
of compositional languages and holistic languages will become larger, which means that it is harder
for us to select a compositional language when choosing at random. That is why the expected
topological similarity of the emergent language may increase when smaller NL and |V | are applied,
as illustrated in (Lazaridou et al., 2018; Cogswell et al., 2019).

Besides their initial probabilities, another key difference between these two types of languages can
be illustrated using topological similarity. As the language studied in this paper is defined as a map-
ping function from a meaning (i.e., the object) to a message, a compositional mapping must ensure
that the meaning of a symbol is a function of the meaning of its parts. In other words, the compo-
sitional language is neighborhood related: nearby meanings tend to map to nearby signals, because
nearby meanings usually share similar attributes and hence are likely to share similar message sym-
bols (Brighton & Kirby, 2006).

APPENDIX C: MORE ON THE LEARNING SPEED ADVANTAGE

x

x
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x
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x
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x
x
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Update directions at specific positions 
Blue arrow means decreasing of MSE 

Red arrow means increasing of MSE 

x Training samples 

True function that generate training samples 

Learned function of neural agentHigh-ρ

Language

Low-ρ

Language

o Predicting samples 

Figure 7: Illustration of learning a high-ρ language and low-ρ language.

Following the intuition that a language with higher ρ tends to be smoother and to have fewer in-
flection points than one with lower ρ, the learning speed advantage given by highly compositional
languages can be illustrated by the example provided in Figure 7. In this example, language is
considered to be a one-dimensional mapping function, which is represented by the dotted lines in
the figure. The object-message pairs, which are represented by the cross marks, are the points that
satisfy the mapping function. The solid line represents the mapping function of the learning agent.
In the learning phase, the training data is randomly sampled from Di−1. Suppose the target output
(i.e., the third cross mark in each figure) is larger than the predicting output (i.e., the circle mark), the
optimizer will update the parameters of the neural network following the direction of the gradient,
as illustrated by the bold arrows in the figure. Such an update will also pull the neighbouring parts
of the function up, as illustrated by the smaller arrows on the solid curve. The smoothness of high-ρ
languages implies that the MSE of neighbouring positions will also be reduced by this update, while
it would be increased in the case of a low-ρ language. Such a trend is represented by the blue and red
arrows in the figure: the blue one means a decrease of the MSE at the specific position while the red
one means the MSE is increasing. In other words, with high-ρ languages, an update corresponding
to one data sample is likely to have a bigger effect, hence ensure a higher learning speed.
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APPENDIX D: SUPPLEMENTARY EXPERIMENTS

Looking at the emergent languages

We first take a look at the number of different messages used by Alice in each generation, shown
in Figure 8. There are 64 different objects in X and 64 possible messages in M: hence, we expect
that each possible message is allocated to a different object. In this figure, we can see that the
speaking agents in all methods can use at least 56 different messages.After several generations, the
resetting-both method performs slightly better than the others.

We then provide two examples of converged language (i.e., the language generated by Alice in the
last generation) using the none-reset method and the resetting-both method in Table 5 and 6, respec-
tively. In these examples, both languages can almost unambiguously represent all 64 different types
of objects in X , and hence they can help Alice and Bob to play the game successfully. However,
the language generated using iterated learning has a clear compositional structure: the first position
of the message represents different colors, and the second position represents the shape. Such a
structure is quite similar to what humans do, e.g., combine an adjective and a noun to represent a
complex concept.

Examining the posterior probability distributions

To better illustrate the posterior probability of emergent languages as a function of the corresponding
value of ρ and the generation, we provide the 3D views of P (ρ(L)|Di−1, Ri) in 80 generations in
Figure 10 and 11. The heat-map provided in Figure 9 can be considered as the top views of these
3D illustrations. In these two figures, the x-axis and y-axis represent the index of generation and the
topological similarity, and the z-axis represents the probability of languages with a specific value of
ρ, in a specific generation. To make the figures easier to read, we smooth the distribution of ρ in
each generation using linear interpolation (Boyd & Vandenberghe, 2004).

Figure 12-(a) and (b) compare the posterior distributions at some typical generations, which can also
be considered as the side views of the 3D illustration from the direction of x-axis. In these figures,
we find that the initial distribution of ρ is not flat. That is because even the prior probability for each
language is uniform, the amounts of languages with extremely high ρ and low ρ only occupy a small
portion among all possible languages, as stated in (Brighton, 2002). Hence the initial probability
of ρ(L) is no longer uniform and has a bell shape which is similar to the Gaussian distribution.
One new trend provided by these figures is that, in the none-reset case, the width of the curves in
different generations do not change much, while in the resetting-both case, the width of the curves
will gradually decrease (i.e., becomes more peaky). Such a trends means when iterated learning is
applied, language tend to converge to some high-ρ types.

Figure 13-(a) and (b) track the ratio of languages with different values of ρ, which can also be
considered as the side views of the 3D illustration from the direction of y-axis. In these figures, we
divide all possible languages into five groups based on their topological similarity, i.e., languages
with ρ ≤ 0.2, 0.2 < ρ ≤ 0.4, 0.4 < ρ ≤ 0.6, 0.6 < ρ ≤ 0.8, and 0.8 < ρ. We plot the ratio of these
five different groups of languages at the end of each generation. From Figure 13-(a), we can see that
the high-ρ language, which is represented by the bold curve, always occupy a small portion. The
topological similarity of the dominant languages are ρ < 0.4. However, in the resetting-both case, as
illustrated in Figure 13-(b), the portion of high-ρ language will increase significantly, which further
verifies that the iterated learning can gradually make the high-ρ language dominate in posterior.
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Figure 8: Message types of different settings.

blue green cyan brown red black yellow white
box aa fh af hh cg fc ha hf

circle da df hb db fa da dh fb
triangle gc ff ge gf gg fg ge he
square ae fb be bb bg fb gb ba

star ad fd de db dg fd ce hc
diamond ac dd dc db dg fd dc dd
pentagon ad fe ef bd eg fc ee ed
capsule aa dd de db dg gd de fh

Table 5: Example of the converged language in none-reset case ρ = 0.23

blue green cyan brown red black yellow white
box aa ea ba ga da ca ha fa

circle ab eb bb gb db cb hb fb
triangle ae eb be ge de ce he fe
square af ef bf gf df cf hf ff

star ac ec bc gc dc cc dh fc
diamond ad ed bd gd dd cd hd fd
pentagon ag eg bg gg dg cg hg fg
capsule ah eh bh gh hc ch hh fh

Table 6: Example of the converged language in resetting-both case ρ = 0.93
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(a) The none-reset case.
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(b) The resetting-both case.

Figure 9: Distribution of P (ρ(L)|Di−1, R(Gi)) through 80 generations. Values of ρ are divided
into ten groups. The distribution of ρ in each generation is smoothed using linear interpolation.
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Figure 10: Language evolution of none-reset case in a 3D illustration.
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Figure 11: Language evolution of resetting-both case in a 3D illustration.
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(a) None-reset case.
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(b) Resetting-both case.

Figure 12: Distribution of ρ(L) at different generations.
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(a) None-reset case.
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(b) Resetting-both case.

Figure 13: Evolution of language with different values of ρ.
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