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ABSTRACT

Recent works have developed several methods of defending neural networks against
adversarial attacks with certified guarantees. We propose that many common
certified defenses can be viewed under a unified framework of regularization. This
unified framework provides a technique for comparing different certified defenses
with respect to robust generalization. In addition, we develop a new regularizer
that is both more efficient than existing certified defenses and can be used to train
networks with higher certified accuracy. Our regularizer also extends to an `0 threat
model and ensemble models. Through experiments on MNIST, CIFAR-10 and
GTSRB, we demonstrate improvements in training speed and certified accuracy
compared to state-of-the-art certified defenses.

1 INTRODUCTION

Although deep neural networks (DNNs) have achieved tremendous success in various applications, it
becomes widely-known that they are vulnerable to adversarial examples (also known as adversarial
attacks), namely, crafted examples with human-imperceptible perturbations to cause misclassification
(Goodfellow et al., 2015; Szegedy et al., 2013). Many attack generation methods have been proposed
in order to find the possible minimum adversarial perturbation, commonly evaluated by its `p norm
for p ∈ {0, 1, 2,∞} (Papernot et al., 2016; Carlini & Wagner, 2017; Athalye & Sutskever, 2017; Su
et al., 2019; Xu et al., 2018; Chen et al., 2018). Meanwhile, various defense methods were proposed
to enhance the robustness of DNNs against adversarial attacks. However, many of them are built on
heuristic strategies, which are thus easily bypassed by stronger adversaries (Athalye et al., 2018). The
work Madry et al. (2018) proposed a stronger defense method, adversarial training, which minimizes
the worst-case training loss under adversarial perturbations. However, it is restricted to a specific type
of adversarial perturbations and not generalized to other types of perturbations (Tramèr & Boneh,
2019).

Motivated by the limitation of heuristic defense, another line of research (known as verified/certified
robustness) aims to provide provable robust guarantees of DNNs against an input with arbitrary
perturbation within a certain `p ball region (Katz et al., 2017; Cheng et al., 2017; Carlini et al., 2017;
Kolter & Wong, 2018; Raghunathan et al., 2018; Weng et al., 2018; Zhang et al., 2018; Boopathy
et al., 2019; Dvijotham et al., 2018b; Wong et al., 2018; Xiao et al., 2019; Gowal et al., 2018; Mirman
et al., 2018; Dvijotham et al., 2018a). The recent progress on verification spans from the exact
verification method (Katz et al., 2017; Cheng et al., 2017; Carlini et al., 2017) to the approximate
(relaxed) verification method (Kolter & Wong, 2018; Raghunathan et al., 2018; Weng et al., 2018;
Zhang et al., 2018; Boopathy et al., 2019; Dvijotham et al., 2018b; Wong et al., 2018). Here the
former uses expensive computation methods, e.g., mixed-integer programming (MIP), to find the
exact robustness bound, and the latter considers a relaxed verification problem by convexifying the
adversarial polytope but significantly improves the computation efficiency compared to the exact
method. Besides resorting to approximate verification method, the recent work Xiao et al. (2019)
proposed the principle of co-design between training and verification, and showed that the exact
verification method can be accelerated by imposing weight sparsity and activation stability (so-called
ReLU stability) on trainable network models. On the other hand, it was shown in Kolter & Wong
(2018); Raghunathan et al. (2018); Gowal et al. (2018); Mirman et al. (2018); Dvijotham et al. (2018a)
that by incorporating the relaxed but computationally efficient verification methods into the training
process, the learnt model yields strengthened robustness with certificate. Following this line of
research, in this work:
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• We develop a unified framework of certified defense and propose that many common certified
defenses can be incorporated as different types of regularization. We theoretically analyze general
regularizations and provide guidelines on how to select regularization.

• We propose an efficient regularizer that better quantifies adversarial sensitivity during the training
process to yield more certifiable models. Through experiments on six different architectures,
we demonstrate our method’s computational efficiency and higher certified accuracies on large
perturbations compared to all current state-of-the-art certification based training methods. In
particular, we demonstrate up to a 55% increase in certified accuracy at ε = 0.2 on MNIST, up to
a 20.5% increase at ε = 2/255 on CIFAR, and up to a 24% increase at ε = 8/255 on GTSRB. In
addition, on all architectures and datasets we achieve faster training than any other certification
based training methods.

• We extend our regularizer to an `0 threat model and model ensembles. We demonstrate empirically
that our regularizer achieves high certified accuracy on this threat model. We also empirically show
that model ensembling of models trained with our regularizer achieve higher certified accuracies.

2 BACKGROUND AND RELATED WORK

2.1 VERIFICATIONS

Assuming a norm-bounded threat model, finding the minimum adversarial distortion exactly is an NP-
complete problem, making it computationally infeasible (Katz et al., 2017). Fortunately, finding lower
bounds on the minimum adversarial distortion is computationally tractable. Several techniques find
these lower bounds only as a function of model weights (Szegedy et al., 2013; Peck et al., 2017; Hein
& Andriushchenko, 2017; Raghunathan et al., 2018), but these methods typically provide very loose
bounds for neural networks with more than 2 layers. Using an input-specific certification method,
it is possible to find non-trivial bounds for fully connected ReLU networks (Kolter & Wong, 2018;
Weng et al., 2018; Wang et al., 2018), as well as networks with general activation functions (Zhang
et al., 2018) and architectures (Singh et al., 2018). An “any-time” certifier has also been developed
that allows for a trade-off between certification time and bound quality (Dvijotham et al., 2018b).

2.2 CERTIFIED DEFENSES

Recent works have also developed methods of defending against adversarial attacks. One line of work
uses adversarial training with adversarial attacks and empirically demonstrates high resistance to
attacks (Madry et al., 2018; Sinha et al., 2018). However, adversarial training is not targeted towards
verification or certification methods, and we therefore do not consider it a certified defense. One
step towards certified defenses is natural regularization such as sparsity-inducing weight magnitude
penalization. This method combined with adversarial training yields highly verifiable models (Xiao
et al., 2019). Using an additional ReLU stability regularizer to enhance ease-of-verification allows
for even more verifiable models.

Other defenses specifically target certifiers or use certification methods as part of the training
procedure. We note that these “certified” defenses are not truly certified since they cannot ensure
robustness to unseen points without using a certifier on these points. These defenses instead produce
models that are empirically more certifiable on unseen test points. Using convex outer bounds to
bound the adversarial loss function has been shown to be effective at producing certifiable models,
although training is relatively slow (Kolter & Wong, 2018; Wong et al., 2018). Using interval bounds
propagation (IBP) to bound the adversarial loss is much cheaper to train (Gowal et al., 2018) and
has surprisingly become the state-of-the-art certifiably robust training method (Gowal et al., 2018;
Salman et al., 2019) despite IBP performing much more poorly than the convex outer bounds (Kolter
& Wong, 2018; Wong et al., 2018) in certifications. In this paper, we unify certified defenses under a
unified framework of regularization. We also develop an efficient certified defense that has similar
computation overhead as IBP-based defense (Gowal et al., 2018) while yielding better performance
than existing methods.
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2.3 CERTIFICATION METHODS

Threat model In this paper, we will use the notation of fully-connected neural networks for
exposition, but our method works for general convolutional neural networks including residual
networks. Appendix B Table 3 includes descriptions of the main notations used in this paper.
Consider an n layer neural network f(x) with input x where the first layer of the network z0 is set
to x. Given weights Wi, biases bi and an activation function σ, for i = 0, . . . , n− 1, subsequent
layers are defined as:

zi+1 = Wi+1σ(zi) + bi+1, (1)
with f(x) = zn. With this expression, the first layer of the network is defined by using the identity
activation at the first layer. We assume the following threat model: a nominal input xnom is perturbed
by perturbation δ to produce a perturbed input x = xnom + δ, where ||δ||p ≤ ε and || · ||p represents
an `p norm. Suppose the correct classification is given by c. Then the minimum distortion ε∗ is the
minimal ε ∈ R+ satisfying: maxj 6=c z

n
j − znc > 0.

Interval Bounds Propagation There exist several methods to efficiently find certified lower bounds
on the minimum distortion necessary for misclassification. One such method is interval bounds
propagation (IBP) (Gowal et al., 2018; Gehr et al., 2018) which bounds each layer in a network
with a fixed upper and lower bound. These bounds are then propagated at each layer of the network
using the previous layer’s bounds. Specifically, given layer-wise bounds where li ≤ zi ≤ ui, the next
layer’s bounds are found as:

ui+1 = Wi+1
+ σ(ui) +Wi+1

− σ(li) + bi+1, (2)
where W+ and W− denote the positive and negative components of W respectively with other
entries being zeros otherwise. Lower bounds are found similarly. Intuitively, IBP finds a box bounding
each layer, which can result in very loose bounds for general network as demonstrated in (Kolter &
Wong, 2018; Gehr et al., 2018).

Linear Bounding Framework Certified bounds can also be found using a linear bounding frame-
work as first proposed in Fast-Lin (Weng et al., 2018) and later in the Neurify (Wang et al.,
2018) and DeepZ (Singh et al., 2018) frameworks. This approach typically finds tighter bounds
on minimum distortion than IBP. This framework bounds each activation layer σ(zi) as follows:
αi � zi + βiL ≤ σ(zi) ≤ αi � zi + βiU , where αi represents the slopes of linear bounds on the
activation and βiL,βiU representing intercepts of linear bounds on the activation. When σ is ReLU
activation, Fast-Lin sets the coefficients to be:

αij =
ziu,j

ziu,j − zil,j
, βiL,j = 0, βiU,j = −

ziu,jz
i
l,j

ziu,j − zil,j
,

if the neuron j is uncertain, meaning zil,j < 0, ziu,j > 0 and zil,j ≤ zij ≤ ziu,j . When both bounds are
positive or negative, the bound on the activation is exactly the linear component on the corresponding
side (i.e. when zil,j > 0 for example, αij=1, βiL,j = βiU,j = 0). Using these layer-wise bounds,
Fast-Lin finds a pair of linear bounds on the network: Ax+bL ≤ f(x) ≤ Ax+bU . Then Fast-Lin
bounds the network output over all possible adversarial distortion measured by ε-`p ball by:

Axnom + bL − ε||A||:,q ≤ f(x) ≤ Axnom + bU + ε||A||:,q,
where || · ||:,q denotes a row-wise q norm, dual to the norm p of the assumed attack threat model. ε
is the assumed attack norm size. Intuitively, Fast-Lin finds linear upper and lower bounds on the
entire network to analyze the output layer. Because Fast-Lin finds linear bounds on the network as
an intermediate step to finding output bounds zu, zl, the bounds are tighter than the corresponding
IBP bounds u, l. Fast-Lin is equivalent to using convex outer bounds to bound the set of possible
values at each layer of the network. Fast-Lin has been extended to general activation functions and
asymmetric upper and lower bounds with different values of αi in CROWN (Zhang et al., 2018), and
has been extended to general network architectures in CNN-Cert (Boopathy et al., 2019).

3 UNIFIED FRAMEWORK OF CERTIFIED DEFENSE

We propose a unified framework of certified defense under which many common certified defenses can
be viewed as regularizations of a particular form. We first use our framework to provide analysis of
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Training Method R(θ) Training cost
`2 Regularization

∑
i ||Wi||2F or

∏
i ||Wi||F ×1

`1 Regularization
∑
i ||Wi||op,∞ or

∏
i ||Wi||op,∞ ×1

ReLU Stability Loss (Xiao et al., 2019) E[−
∑
i tanh(1+ ui � li)] ×1

Interval Bounds Propagation (Gowal et al., 2018) E[L+(u
n) + L−(l

n)− L(zn)] ×3
TRADES (Zhang et al., 2019) E[maxδ:||δ||p≤ε g(f(xnom + δ), f(xnom))] > 10 (empirically)

Convex Outer Bounds (Kolter & Wong, 2018) E[L+(u
n
c ) + L−(l

n
c )− L(zn)] > 100 (empirically)

MMR (Croce et al., 2019) E[max(0, 1− dB
γB

) +max(0, 1− dD
γD

)] > 10000 (empirically)

Double Margin E[L+(z
n + sn + vn) + L−(z

n − sn − vn)− L(zn)] ×3

Table 1: ui and li are layer-wise bounds found using interval bounds propagation, and uic and lic are
layer-wise bounds using convex outer bounds. � denotes element-wise multiplication. || · ||op,∞
denote the `∞ induced operator norm. g is a classification-calibrated loss function. dB and dD are
quantities relating to lower bounds on the minimum adversarial distortion. Expectations are taken
over training data. The training cost is compared to the standard training.

general certified defenses. Under this framework, we then propose our regularizer which outperforms
other current certified defense methods as suggested by the experiments. Because IBP has been
shown to be the current state-of-the-art in efficiently training certifiable models, we consider it as
our main baseline and highlight our method’s advantages. Finally, we discuss extensions of our
regularization.

3.1 ANALYSIS OF REGULARIZERS

A Unified Regularizer Framework for Certified Defense Many different training methods can
often be formulated as different regularizations added to a standard loss function. Given model param-
eters θ, a loss function L(θ) and a regularizerR(θ), the total regularized loss with a regularization
parameter λ is given by:

L(θ) + λR(θ)
Note that we denote a model’s parameters in general as θ, and we use calligraphic symbols to denote
functions of general parameters θ and standard symbols to denote functions varying at different data
points. Standard regularizations chosen to enhance generalization include weight-based regularization
where the regularizer is chosen to be

∑
i ||Wi||l with l being some matrix norm. In fact, many

certification-based robust training methods can also be viewed as different regularizations R(θ) as
seen in Table 1. Therefore, both standard regularizations and many robust training methods can
be viewed under a unified framework. Training methods can be designed by selecting a particular
regularizer according to the designer’s objective.

Regularizer Construction Certified defenses such as IBP construct a regularizer by using bounds
on the last layer of the network un and ln to find an upper bound on the adversarial loss. Suppose a
standard loss function L(θ) of model parameters θ is defined as a function of the last layer of the
network zn: L(θ) = E[L(zn)], where the expectation is taken over the training set. For many loss
functions L, including softmax cross-entropy loss and squared loss, it is possible to decompose the
loss into an increasing and decreasing component:

L(zn) = L+(z
n) + L−(z

n), (3)

where L+(z
n) increases element-wise with zn and L−(zn) decreases element-wise with zn. For

example in the case of softmax cross-entropy loss:

L(zn) = −yT log (ez
n

/(1T ez
n

)) = log 1T ez
n

− yT zn,

where ex is element-wise exponential function and y are one-hot encoded labels, the first term can be
mapped to L+(z

n) while the second corresponds to L−(zn) in (3). IBP then constructs the following
regularizer: R(θ) = E[L+(u

n)+L−(l
n)−L(znnom)], where un and ln are defined by (2) and znnom

is the value of layer zn with unperturbed input xnom. When this regularizer is added to the standard
loss function L(θ) computed with unperturbed input xnom, the resulting quantity L(θ) +R(θ) is an
upper bound on the adversarial loss since: L(znnom)+(L+(u

n)+L−(l
n)−L(znnom)) ≥ L(zn),where

zn is a function of perturbed input x, obtained by monotonicity of L+ and L− and ln ≤ zn ≤ un.
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Note that the adversarial loss L(zn) is unknown, but the upper bound constructed here depends
only on the IBP bounds un and ln which are known. Typically, the model is trained with objective
L(θ) + λR(θ) with λ < 1 instead of λ = 1 in order to ensure stable training.

Connecting regularization to robustness and generalization A regularized loss function often
can be seen as an upper bound on a particular robustness or generalization objective. As shown
previously, adding a robust training regularizer such as IBP is equivalent to minimizing an upper
bound on the adversarial loss: 1

m

∑
imaxx:||x−xi||p≤ε L(f(x)) ≤ L(θ) + λR(θ), for sufficiently

large λ where there are m points xi in the training set. Similarly `1 and `2 regularization can be seen
as minimizing a probabilistic upper bound on the test set loss: Ltest(θ) ≤ L(θ) + λR(θ). This is
because many generalization error bounds (Bartlett & Mendelson, 2002; Neyshabur et al., 2015) are
statements of the following form: with high probability,

Ltest(θ) ≤ L(θ) +
K
∏
j ||Wj ||+ C
√
m

, (4)

where Ltest(θ) is the test set error, || · || is either a Frobenius or `∞ operator norm, m represents the
number of training set points, and K and C are constants depending on the network architecture.
It is possible to analyze the effect of general regularizations under the assumption that λ is close
to zero. This corresponds to ε close to zero for robustness-based regularizers or m very large for
generalization-based regularizers such as `1 or `2 weight regularization that can be interpreted as
minimizing a generalization bound of the form in Equation 4.

Proposition 1. Given a classifier with parameters θ and loss L(θ) with a local minimum θ̂, then for
λ near 0, the local minimum of L(θ) + λR(θ) is approximately:

θ̂ − λH(L(θ̂))−1∇θR(θ̂), (5)

where H(L(θ̂)) is the Hessian of the loss at the original local minimum θ̂.

This statement provides a method of relating a regularizer to its effect on the classifier. Please refer to
Appendix E for the proof and additional intuition.

Proposition 2. Given a classifier with parameters θ and loss L(θ) with a local minimum θ̂. For λ
near 0, suppose θ∗ is the corresponding local minimum of a regularized loss L(θ) + λR1(θ). Then,
for λ near 0, L(θ∗) + λR2(θ

∗) < L(θ̂) + λR2(θ̂) if and only if:

||∇θR1(θ̂)−∇θR2(θ̂)||H(L(θ̂))−1 < ||∇θR2(θ̂)||H(L(θ̂))−1 , (6)

where ||a||B =
√
aTBa.

This statement can be used to provide guidelines on regularization selection. Intuitively, the condition
implies that selecting regularizers with close gradient to a particular "optimal" regularizerR2(θ

∗) is
advantageous where distance is defined using the left hand side of the Equation 6. Please refer to
Appendix F for the proof and additional intuition.

3.2 OUR REGULARIZER

Double Margin: Motivation and Rationale IBP is one way to propagate the adversarial sensitivity
at different layers of the neural network and construct a robust loss function, but there exist other
methods of quantifying sensitivity in the network. Different from IBP that bounds the input of each
layer z through u and l in (2), we introduce double margins s and v such that [znom− s− v, znom+
s+ v] represents the approximate range of values each layer z can take, where znom represents the
value of the layer for unperturbed input xnom. In the similar spirit of IBP, we define the s term to
approximate error margins at each layer of the network, but this margin s only requires propagation
of one quantity while IBP requires two quantities u and l.

Existing certifiers such as Fast-Lin (Weng et al., 2018) and Reluplex (Katz et al., 2017) rely on
activations to be locally linear in order to achieve tight bounds. However, using the s term by itself
does not necessarily result in local linearity at activations. Thus, we also include the v term which
penalizes a finite difference approximation of the second derivative of the activation function. This
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margin has the property that when the network is locally linear in the sense that σ(zij) ≈ azij + b

for some a, b at all layers i, all margins vi ≈ 0. Intuitively, the s term can be seen as measuring
a 1st order, linear level of adversarial sensitivity, while the v term measures 2nd order, nonlinear
sensitivity (see Appendix C Figure 2 for a visual illustration). The inclusion of the v margin is the
key qualitative difference between our approach and IBP. Because our approach explicitly penalizes
non-linearity, it results in tighter certification and therefore more certifiable networks compared to
IBP.

Double Margin: Formal Definition Assuming a known `p perturbation size ε, our margins si

and vi at layer i have the same dimensionality as zi, whether they are vectors in fully connected
layers or tensors in convolutional layers. Only the margins at the second layer depend on p.

These margins are initialized as: s0 = ε1,v0 = 0. For i = 0, . . . , n− 1, subsequent layer margins
are defined as:

si+1 =
1

2
|Wi+1|

(
σ(zinom + si)− σ(zinom − si)

)
(7)

vi+1 =
1

2
|Wi+1|

(
σ(zinom + vi)− σ(zinom − vi)

)
(8)

+
1

2
|Wi+1||σ(zinom + si + vi) + σ(zinom − si − vi)− 2σ(zinom)|

For general `p norms p 6=∞, the second layer margins are modified so that s1 is exactly half the range
of values z1 can take. To motivate the form of Equation (7), note that IBP can be reparameterized in
terms of the half bound gap h = (u− l)/2 and bound average m = (u+ l)/2. Then the half bound
gap h is propagated as:

hi+1 =
1

2
|Wi+1|(σ(mi + hi)− σ(mi − hi))

The s margin is propagated similarly, with the difference being that IBP uses (ui + li)/2 instead of
zi as the centering point. This supports the intuition that the s margin by itself approximates the IBP
bounds. The v margin is propagated the same way, with an additional term that uses a finite difference
approximation of the second derivative of σ(·) at zi. Specifically, note that given a 2nd order Taylor
expansion of σ(·) at a specific scalar point x0, σ(x− x0) ≈ 1

2a(x− x0)
2 + b(x− x0) + c, then the

second derivative of σ(·) at x0 is given by: σ′′(x0) = a ≈ 1
γ2 (σ(x0 + γ) + σ(x0 − γ)− 2σ(x0)),

where γ > 0 is small. Applying this approximation to the second term in Equation (8):

1

2
|Wi+1||σ(zinom+ si+vi)+ σ(zinom− si−vi)− 2σ(zi)| ≈ 1

2
|Wi+1||σ′′(zinom)� (si+vi)2|,

where all operators are applied element-wise. By approximating the second derivative of the activation,
this term penalizes a level of non-linearity. To motivate our use of a finite difference instead of
a second derivative directly, note that in the case of ReLU, using a second derivative would not
work since ReLU has second derivative zero almost everywhere. A finite difference approximation
also quantifies nonlinearity over a larger neighborhood; see Eq. 1 in Moosavi-Dezfooli et al.
(2018) for a similar justification. Because we add two additional margins s and v in addition to the
original network, we call our method double margin. Although the margins are defined for a fully
connected network, the margins can be computed analogously for special cases or extensions such
as convolutional neural networks or residual networks. Our regularizer is defined implicitly as a
function of the model parameters θ:

R(θ) = E[L+(z
n
nom + sn + vn) + L−(z

n
nom − sn − vn)− L(znnom)] (9)

We note that our regularizer when added to the standard loss function is not a true upper bound on the
adversarial loss since the margins do not provide exact bounds on each layer. However, as shown by
Proposition 2, the gradient of a regularizer rather than its bound validity determines its certified test
loss. Therefore, and as we also show experimentally, using an upper bound on the adversarial loss is
not necessary to train certifiable models.

Training Procedure Training proceeds by using standard optimizers on the regularized loss. See
Appendix D Algorithm 1 for the full procedure. Note that using a value of λ = 0 corresponds to
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standard training while using λ = 1 corresponds to using only the regularizer (i.e. robust loss).
In practice, robust training methods such as IBP typically increase the value of λ during training
process. IBP specifically uses a warm-up period where λ = 0 first, then linearly increases λ until it
reaches λ = 0.5. Note that the value of λ is separate from the value of ε used during training which
parameterizes the regularizerR(θ). A value of ε = 0 also corresponds to regular training, and higher
values of ε correspond to defending against larger perturbation attacks. In addition to increasing
λ during training, robust training methods also typically increase ε during training. IBP uses a
piece-wise linear schedule for ε with warm-up and ramp-up periods coinciding with the schedule for
λ. We use a similar piece-wise linear schedule as IBP.

3.3 EXTENSIONS

We extend our method to an `0 threat model by modifying the double margin propagation at the
second layer as done for general `p perturbations. We also extend our method to ensembles of models
trained with our regularizer. Additional details are provided in Appendix H.

4 EXPERIMENTS

We conduct experiments comparing our regularizer to other robust training methods including `1
weight regularization, adversarial training, IBP, ReLU stability and convex outer bounds (Bounded).

4.1 SETUP, MODELS, DATASET

Implementation, Architectures, Training Parameters Training methods are implemented in
Python with Tensorflow (Abadi et al., 2016) and training is conducted on a NVIDIA Tesla P100 GPU.
We evaluate the training methods on networks trained on the MNIST, CIFAR-10 and GTSRB (Stal-
lkamp et al., 2012) datasets. We consider 6 model architectures listed roughly in increasing model
size: (i) Small CNN, (ii) Pureconv CNN, (iii) Resnet CNN, (iv) Pooling CNN, (v) Medium CNN,
(vi) Large CNN. For a fair comparison among training methods, we used fixed training parameters.
Architecture and hyperparameter details are deferred to Appendix G.

Comparative Methods We train networks with (i) normal training, (ii) `1 weight regularization,
(iii) adversarial training, (iv) IBP, (v) ReLU stability, (vi) Bounded, (vii) MMR (Croce et al., 2019),
(viii) TRADES (Zhang et al., 2019) and (ix) our method (Double Margin). Due to the computational
cost of running Bounded training, we train this method only on the small CNN architecture. For
training Bounded models, we use the technique of random projections as proposed by (Wong et al.,
2018), using 50 random projections. For the small CNN architecture, we try additional robust training
methods including (x) combining adversarial training with the ReLU stability loss and weight pruning
(Adv+RS+Pruning), and (xi) combining `1 weight regularization with ReLU stability and weight
pruning (L1+RS+Pruning). We also (xii) add `1 weight regularization to our regularizer (Double
Margin + L1).

Evaluation Although our regularizer applies to a general `p threat model, we primarily conduct
experiments assuming a `∞ threat model. The networks are evaluated on certified accuracy computed
using CNN-Cert-ReLU, which efficiently finds a lower bound on the worst-case adversarial accuracy
under norm bounded perturbations. We use CNN-Cert due to the high computational cost of using
other methods such as Mixed Integer Optimization (MIO) (Tjeng & Tedrake, 2019), even with using
a optimization timeout as done by Gowal et al. (2018). In particular, we found that the initialization
stage of the MIO verifier itself typically took longer than CNN-Cert. Baseline certified accuracies are
generally higher in prior works because they are computed using slower certifiers. Certified accuracies
are computed for 200 test set points (unless otherwise noted) over a range of perturbation sizes ε
in [0, 0.4] for MNIST and [0, 9/255] for CIFAR and GTSRB. In addition, for selected networks we
compute certified accuracies using IBP. For all certified accuracy comparisons, we use the same
randomly selected set of test points. For two selected networks, we also compute certified accuracies
on the entire test set and verify that the certified accuracies are similar to ensure that our randomly
chosen test points are representative (see Appendix I).
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(a) MNIST (b) CIFAR

Figure 1: CNN-Cert certified accuracy against perturbation size for models trained normally and with
several robust training methods including Bounded, IBP and our method, Double Margin. Results are
shown for different values of εtrain. (a) shows results on MNIST and (b) on CIFAR. Refer to Table 2
for additional baselines including MMR and TRADES.

4.2 RESULTS

Baselines Comparison In all CNN-Cert comparison tables, the best methods in each column
are highlighted, excluding normal training and standard weight regularization. Table 2 provides a
summary of the comparative experiments. We first highlight that over all tested datasets, our training
methods train in less time than IBP, Bounded, TRADES and MMR. On MNIST, our methods, in
bold, outperform ReLU stability based methods and adversarial training for ε = 0.01 and larger, and
outperform IBP and Bounded for large perturbation sizes beyond ε = 0.07. We note that adding
`1 weight regularization to our regularizer further enhances our certified accuracies. On CIFAR,
our method outperforms ReLU stability based methods and adversarial training for ε = 1/255 and
larger, and outperforms IBP and Bounded for perturbation sizes beyond ε = 0.5/255. On MNIST
and CIFAR, we observe that due to high hyperparameter sensitivity, Bounded and ReLU stability
sometimes have low clean accuracy and TRADES achieves low certified accuracy. Certified accuracy
results for selected small MNIST and CIFAR networks are also presented visually in Figure 1. On
GTSRB, our method outperforms IBP and MMR for ε = 3/255 and larger. Additional results on
MNIST, CIFAR and GTSRB are shown in Appendix J, Tables 9, 10 and 7 respectively. In brief,
all the experiments show that our method achieves higher CNN-Cert accuracy for large ε than
any prior work.

Ablation Experiments and Hyperparameter Analysis In addition, we separately analyze the
effect of s and v margins in Double Margin by running the following comparisons: training with only
the s margin (Variation 1: ‘s only’), and training Double Margin with IBP bounds u, l replacing s
(Variation 2: ‘IBP+v’). Table 2 shows that Variation 1 performs comparably to or outperforms IBP
while requiring only fewer propagation during training, supporting the intuition that the s margin
by itself approximates IBP. Variation 2 performs comparably to Double Margin but it requires one
additional propagation during training (10-40% increased training time). These observations suggest
that the ‘v’ margin is primarily responsible for Double Margin’s improved certifiable robustness
for large perturbations, but at the expense of lower clean accuracy compared to IBP. In order to
improve the clean accuracy of networks trained with our method, we also train under a different
hyperparameter setting where λ is halved during training, reducing its final value from 1

2 to 1
4 . As

seen in Table 2 Double Margin still outperforms IBP on the largest ε (60.4 vs 0.0% on MNIST and
46.4 vs 26.8% on GTSRB) while achieving a higher clean accuracy (91.1% on MNIST and 75.6%
on GTSRB). These results suggest that fine-tuning hyperparameters can improve clean accuracy to
be more comparable to prior work while maintaining our better certified accuracy on large ε.

Extensions We find that our method’s high certified accuracy extends to an `0 norm threat model.
In addition, we find that using model ensembles with our method can be used to enhance certified
accuracy. Results are shown in Appendix I.
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5 CONCLUSION

In this paper, we propose a unified framework of certified defense as regularization. We introduce
a new efficient regularizer under this framework, and extend it to a `0 threat model and model
ensembles. Through comparative experiments on several model architectures, we demonstrate that
our method outperforms state-of-the-art certification based training methods in terms of training time
and certified accuracy.

Method (200 points)
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Small CNN MNIST, 4 layer

Normal 185.7 98.5% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 626.3 99.5% 81.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.3

8760.5 99.5% 98.5% 91.5% 38.5% 1.0% 0.0% 0.0% 0.0% 0.0%
Bounded 27966.8 30.0% 30.0% 30.0% 30.0% 30.0% 29.5% 28.5% 25.0% 0.0%
IBP 611.2 95.5% 95.5% 95.5% 90.5% 76.5% 39.5% 0.0% 0.0% 0.0%
ReLU Stabilty 595.8 94.0% 90.0% 65.0% 23.0% 5.0% 0.5% 0.0% 0.0% 0.0%
L1+RS+Pruning 686.5 95.0% 88.0% 53.5% 13.5% 3.0% 0.5% 0.0% 0.0% 0.0%
Adv+RS+Pruning 9657.1 90.0% 86.5% 70.5% 55.0% 30.5% 13.5% 0.0% 0.0% 0.0%
Double Margin 520.0 90.0% 89.0% 88.5% 88.0% 87.5% 86.5% 80.0% 66.5% 0.0%
Double Margin +L1 547.1 91.0% 90.5% 90.0% 89.5% 89.0% 87.5% 83.5% 68.0% 0.0%

Method (200 points)
Training

εcert = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Small CNN CIFAR, 4 layer

Normal 141.1 61.5% 22.0% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 1062.8 58.0% 24.0% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 8/255

51893.6 60.5% 25.0% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Bounded 21918.7 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 3.5% 3.5% 3.5%
IBP 410.0 37.5% 35.0% 32.5% 20.0% 17.5% 2.5% 0.0% 0.0% 0.0%
ReLU Stabilty 396.1 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0%
Double Margin 409.7 45.5% 45.0% 43.5% 40.5% 39.5% 28.0% 22.5% 19.5% 15.0%

Pooling CNN CIFAR, 5 layer

Normal 1164.9 65.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 828.8 59.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 8/255

4015.1 43.0% 15.5% 8.5% 3.0% 3.0% 0.0% 0.0% 0.0% 0.0%
ReLU Stabilty 1676.9 58.5% 8.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 2899.5 40.0% 32.5% 30.5% 24.0% 23.5% 5.0% 1.0% 1.0% 0.5%

Pureconv CNN GTSRB, 4 layer

Normal 119.6 92.0% 77.5% 57.5% 37.0% 35.0% 6.5% 1.0% 0.0% 0.0%

IBP
ε = 8/255

287.7 64.0% 63.0% 62.0% 58.5% 57.0% 44.5% 31.5% 26.0% 22.0%
Double Margin 283.1 68.0% 67.5% 67.0% 65.0% 64.5% 58.0% 52.5% 50.0% 45.5%

Method (1000 points)
Training

εcert = 0 0.05 0.10 0.20 0.30Time (sec)

Small CNN MNIST, 4 layer

TRADES

ε = 0.3

8264.6 99.5 (0.7)% 0.0 (0.0)% 0.0 (0.0)% 0.0 (0.0)% 0.0 (0.0)%
IBP 611.2 96.3 (1.7)% 92.2 (2.5)% 46.5 (5.1)% 0.0 (0.0)% 0.0 (0.0)%
IBP * 460.9 96.7 (1.4)% 90.3 (2.6)% 39.3 (4.6)% 0.0 (0.0)% 0.0 (0.0)%
DM Variation 1 273.3 94.0 (2.1)% 92.7 (2.5)% 90.1 (3.0)% 78.0 (3.9)% 33.1 (4.7)%
DM Variation 2 589.6 90.1 (2.5)% 88.9 (3.1)% 86.5 (3.2)% 79.3 (3.7)% 59.0 (5.0)%
Double Margin 520.0 88.2 (2.6)% 86.7 (3.1)% 84.6 (3.4)% 76.2 (3.9)% 61.9 (4.6)%
Double Margin * 415.3 91.1 (2.6)% 90.1 (2.9)% 87.6 (3.2)% 78.4 (3.9)% 60.4 (4.7)%

Method (500 points)
Training

εcert = 0 1/255 3/255 5/255 8/255Time (sec)

Small CNN CIFAR, 4 layer

TRADES

ε = 8/255

56391.6 62.2 (4.4)% 7.2 (2.5)% 0.0 (0.0)% 0.0 (0.0)% 0.0 (0.0)%
IBP 2446.6 38.0 (4.2)% 32.8 (4.0)% 14.6 (3.1)% 6.0 (2.2)% 1.2 (0.8)%
DM Variation 1 1475.8 45.0 (5.1)% 41.0 (3.8)% 33.8 (4.4)% 22.8 (3.9)% 10.4 (2.6)%
DM Variation 2 3062.8 43.0 (4.6)% 40.6 (4.2)% 34.2 (4.0)% 27.0 (4.1)% 18.2 (3.2)%
Double Margin 2198.7 43.2 (4.0)% 40.4 (4.6)% 32.8 (4.4)% 28.6 (4.4)% 19.8 (3.5)%

Pureconv CNN GTSRB, 4 layer

MMR (4 epochs)

ε = 8/255

85377.2 88.2 (2.8)% 53.6 (4.0)% 18.2 (3.7)% 4.2 (1.8)% 0.0 (0.0)%
IBP 287.7 71.8 (3.9)% 68.0 (4.3)% 60.8 (4.3)% 47.6 (4.7)% 28.2 (3.5)%
IBP * 266.6 78.0 (3.7)% 74.8 (3.7)% 62.2 (4.3)% 45.6 (4.7)% 26.8 (3.5)%
Double Margin 283.1 67.8 (4.4)% 66.8 (4.3)% 61.4 (4.3)% 56.4 (4.7)% 48.2 (4.5)%
Double Margin * 258.1 75.6 (3.9)% 73.8 (4.2)% 65.0 (4.5)% 57.2 (4.4)% 46.4 (4.4)%

Table 2: CNN-Cert certified accuracies and training times. std in (·). * denotes a different setting
of regularization parameter λ, decreased from 1

2 to 1
4 . MMR is trained for 4 epochs due to its long

training time. Our methods or variants are in blue.
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APPENDIX

A APPENDIX OUTLINE

A. Appendix Outline
B. Table of Notation
C. Double Margin Visual Illustration
D. Double Margin Algorithm
E. Proof of Proposition 1
F. Proof of Proposition 2
G. Architecture and Hyperparameter Details
H. Extensions

1. `0 Norm Threat Model
2. Model Ensemble

I. Additional Results
1. Comparing Different Certification Methods
2. Effectiveness on Other Norms
3. Model Ensemble
4. GTSRB
5. Medium CNN Model
6. Full Test Set

J. Additional Tables
1. Comparing Different Certification Methods
2. Effectiveness on Other Norms
3. Model Ensemble
4. Additional GTSRB Results
5. Double Margin `p
6. Complete MNIST Results
7. Complete CIFAR Results
8. Full Test Set
9. Additional IBP Certified Accuracy

B TABLE OF NOTATION

Notation Definition Notation Definition
xnom unperturbed input Wi,bi weights, biases of layer i
δ input perturbation zi input of layer i
ε maximum `p perturbation size ||δ||p ui, li pre-activation interval bounds
x perturbed input si,vi double margins
f neural network classifier αi, βiU , β

i
L linear bounding parameters

σ neural network activation A,bL,bU linear network bounds
n number of network layers L : θ → R training loss function
m number of training points Ltest : θ → R test loss function

L : zn → R point-wise loss function R : θ → R regularizer
θ model parameters λ regularizer coefficient

Table 3: Table of Notation
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C DOUBLE MARGIN VISUAL ILLUSTRATION

Figure 2: A visual illustration of Double Margin’s sensitivity quantification. s is propagated as s =
1
2 |W| (σ(z+ s)− σ(z− s)). v is propagated as v = 1

2 |W| (σ(z+ v)− σ(z− v)) + 1
2 |W||σ(z+

s+ v) + σ(z− s− v)− 2σ(z)|.

D DOUBLE MARGIN ALGORITHM

Algorithm 1: Double Margin Training Algorithm

Data: Training data D, Randomly initialized weights and biases Wi,bi, i = 1 : N , Number of
epochs E, Perturbation size ε, Regularization weight λ

Result: Trained weights and biases Wi,bi

for epoch = 1:E do
for xnom in D do

z0 = xnom, s
0 = ε1,v0 = 0;

for i = 1:N do
Propagate zi+1 with Equation (1)
Propagate si+1 with Equation (7)
Propagate vi+1 with Equation (8)

end
Construct regularized loss
L+ λR = λL+(z

n + sn + vn) + λL−(z
n − sn − vn) + (1− λ)L(zn)

Compute gradients of L+ λR w.r.t. Wi,bi

Update Wi,bi via gradient descent
end

end

E PROOF OF PROPOSITION 1

Proof. Suppose L(θ) + λR(θ) has local minimum θ∗(λ). Note that at λ = 0, θ∗ = θ̂. Note that the
derivative of the regularized loss is 0 at θ∗:

∇θL(θ∗) + λ∇θR(θ∗) = 0

Differentiating both sides with respect to λ:

H(L(θ∗)) d
dλ
θ∗ +∇θR(θ∗) + λ

d

dλ
∇θR(θ∗) = 0

Solving for d
dλθ
∗:

d

dλ
θ∗ = −H(L(θ∗))−1(∇θR(θ∗) + λ

d

dλ
∇θR(θ∗))

Evaluating at λ = 0:
d

dλ
θ∗|λ=0 = −H(L(θ̂))−1∇θR(θ̂)
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This implies that for small λ:

θ∗ ≈ θ̂ − λH(L(θ̂))−1∇θR(θ̂)

Intuitively, this statement indicates that for small amounts of regularization, the gradient of the
regularizer is sufficient to determine the behavior of the regularizer: note that in Equation (5) the
position of the new local minimizer only depends on the regularizer via its gradient. This can be
used to analyze which robust regularizer is optimal with respect to another known metric such as
generalization error.

F PROOF OF PROPOSITION 2

Proof. Note that at λ = 0, θ∗ = θ̂. Consider the difference between the performance of θ∗ and θ̂ on
regularized loss L(θ) + λR2(θ):

D(λ) = L(θ̂) + λR2(θ̂)− L(θ∗)− λR2(θ
∗)

Taking the derivative with respect to λ:
d

dλ
D(λ) = −∇θL(θ∗)T

d

dλ
θ∗ − λ(∇θR2(θ

∗)T
d

dλ
θ∗) + (R2(θ̂)−R2(θ

∗))

Note that evaluated at λ = 0, this quantity is 0 since ∇θL(θ̂) = 0. Taking a second derivative with
respect to λ:

d2

dλ2
D(λ) = − d

dλ
θ∗TH(L(θ∗)) d

dλ
θ∗ −∇θL(θ∗)T

d2

dλ2
θ∗ − 2∇θR2(θ

∗)T
d

dλ
θ∗

− λ d

dλ
(∇θR2(θ

∗)T
d

dλ
θ∗)

Evaluating at λ = 0:
d2

dλ2
D(λ)|λ=0 = − d

dλ
θ∗T |λ=0H(L(θ̂)) d

dλ
θ∗|λ=0 − 2∇θR2(θ̂)

T d

dλ
θ∗|λ=0,

since ∇θL(θ̂) = 0. Substituting the expression for d
dλθ
∗|λ=0 from Proposition 1:

d2

dλ2
D(λ)|λ=0 = −∇θR1(θ̂)

TH(L(θ̂))−1H(L(θ̂))H(L(θ̂))−1∇θR1(θ̂)

+ 2∇θR2(θ̂)
TH(L(θ̂))−1∇θR1(θ̂)

Simplifying:
d2

dλ2
D(λ)|λ=0 = −||∇θR1(θ̂)−∇θR2(θ̂)||2H(L(θ̂))−1 + ||∇θR2(θ̂)||2H(L(θ̂))−1

Where ||a||B =
√
aTBa. This implies that for small λ 6= 0, D(λ) > 0 is equivalent to the condition:

||∇θR1(θ̂)−∇θR2(θ̂)||H(L(θ̂))−1 < ||∇θR2(θ̂)||H(L(θ̂))−1

This condition provides some guidelines on how to select a regularizer provided some "true" objective
which is also a function of model parameters θ. The true objective J (θ) could, for example, be a
robust generalization bound or the difference between robust validation set loss and clean training set
loss. Given a standard loss function L(θ) and regularization parameter λ, the true objective can be
expressed in the form of a regularization: J (θ) = L(θ) + λRJ (θ̂). Suppose L(θ) has minimum
θ̂, and suppose there is a set of feasible regularizers that can be used during training of the network
{R1(θ),R2(θ), . . . ,Rk(θ)} with regularization coefficient λ. Then, Proposition 2 suggests selecting
the regularizer R̃(θ) = argmini ||∇θRi(θ̂) − ∇θRJ (θ̂)||H(L(θ̂))−1 . Here Ri(θ̂) corresponds to

the minimized regularizerR1(θ̂) in Proposition 2 andRJ (θ̂) corresponds to the target regularizer
R2(θ̂). Intuitively, the regularizer that is closest toRJ (θ) in gradient is selected. This selection of
regularizer is optimal as λ approaches zero. For example, in the case of robust training, the robust
training method with the closest gradient toRJ (θ) is best.
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G ARCHITECTURE AND HYPERPARAMETER DETAILS

The small CNN architecture uses convolution layers of 16 and 32 filters followed by a 100 unit fully
connected layer. The pureconv CNN architecture uses three convolution layers of 16 filters. The
medium CNN architecture uses convolutional layers of 16, 16, 32 and 32 filters followed by two
512 unit fully connected layers. The large CNN architecture uses convolutional layers of 64, 64,
64, 128 and 128 filters followed by a 200 unit fully connected layer. The pooling CNN architecture
uses two convolution layers of 16 filters each followed by a max-pooling layer of stride 2-by-2.
The resnet CNN architecture uses a 16 filter convolution layer followed by a simple residual block
with two 16 filter convolution layers. The MNIST and GTSRB networks are trained for 100 epochs
each while the CIFAR networks are trained for 350 epochs each. For robust training methods, we
use ε ∈ {0.1, 0.2, 0.3} for MNIST and ε ∈ {2/255, 8/255} for CIFAR and GTSRB as the training
target perturbation size εtrain. We used fixed hyperparameters for a fair comparison among training
methods (including ours without fine parameter tuning), which may cause different baseline clean
accuracies from prior work.

H EXTENSIONS

H.1 `0 NORM THREAT MODEL

In addition to a `p threat model, we can consider a `0 threat model where an input xnom is perturbed
by perturbation δ to produce perturbed input x = xnom + δ where ||δ||0 ≤ k, where ||δ||0 is the
number of non-zero elements in δ. This corresponds to perturbing at most k dimensions of the input
by any amount. In practice, in the case of image inputs for example, perturbations are limited by
the range of values each dimension can take. For example, pixels are typically restricted to be in a
limited range such as [0, 1].

In this case, our regularizer can be used directly without modification when using a large `∞
perturbation size ε. It is also possible to modify our regularizer at the first layer of margin propagation.
At the first layer, the margin s1 can be set exactly to one half the range of values each node can take:

s1j =
1

2

k∑
l=1

rank(W0
j,: � (1− xnom), l)− rank(W0

j,: ∗ xnom, l),

assuming the input is restricted to range [0, 1], where rank(a, l) selects the lth largest element of a,
and � denotes element-wise multiplication. Doing so makes our regularizer more closely match the
true range of values layers can take for `0 perturbations.

H.2 MODEL ENSEMBLE

It is also possible to extend our regularizer to model ensembles. Suppose there are N models
f1(x), f2(x), ...
fN (x). Then the N models can be trained together using our regularizer. One method is to average
together the output layers of the individual models to yield an ensemble model:

fensemble(x) =
1

N

∑
i

fi(x)

When using our regularizer, the regularization margins of the N models can also be averaged together.
The ensemble loss is then constructed by substituting the averaged values into Equation (9). During
inference, the final layers can be averaged together before classification. Alternatively, we can select
the class with the most votes among the ensembled models.

I ADDITIONAL RESULTS

I.1 COMPARING DIFFERENT CERTIFICATION METHODS

Table 4 shows certified accuracies computed using IBP. Interestingly, although Double Margin
generally outperforms IBP on CNN-Cert certified accuracies, IBP trained models achieve higher
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IBP certified accuracies. The relatively higher performance of IBP trained models is most likely
because the they are specifically trained to enhance certified performance under interval bounds while
Double Margin targets general certifiers. This is in line with the observation that training with a loss
function targeted towards a specific certifier yields especially high performance under that certifier
(Kolter & Wong, 2018; Raghunathan et al., 2018; Dvijotham et al., 2018a). Surprisingly, Double
Margin sometimes outperforms IBP under IBP certified accuracies. Additional results are shown in
Appendix J, Table 12.

I.2 EFFECTIVENESS ON OTHER NORMS

Table 5 shows `0 certified accuracies for a small CNN architecture trained on MNIST and CIFAR.
We show results for both standard Double Margin trained with ε = 0.3 and ε = 8/255 for MNIST
and CIFAR respectively. We also show results for Double Margin modified for the `0 threat model
trained with ε = 2. As illustrated, the Double Margin `0 regularizer yields certified accuracies
that decay slowly with the number of perturbed dimensions ε. Surprisingly, we find that standard
Double Margin performs better than the `0 modification for `0 certified accuracies, and moreover
has consistent performance across perturbation sizes. This suggests that training methods that yield
high `∞ certified performance on also transfer to yield high `0 certified performance. Intuitively,
this may be because networks which are highly certifiable for low levels of `∞ perturbations have
particular weight patterns such as sparsity that allow for high certification in general including for `0
perturbations. We hypothesize that this effect is particular to `0 due to the non-convexity of the `0
norm during training.

To support the reasoning that the transferability of Double Margin to a `0 threat model is unique to
`0, we conduct experiments comparing different versions of Double Margin `p with p =∞, 2, 1 (see
Section 3.2, Double Margin: Formal Definition for details). The three different versions of Double
Margin are each certified on the three different `p norms. Small CNN networks are trained on MNIST
and CIFAR with ε = 0.3, 1, 4 and ε = 8/255, 0.2, 2 for `∞, `2, `1 norms respectively. All versions
are trained with fixed hyperparameters for each dataset. We find that on the largest perturbation size
evaluated, each version of Double Margin generally performs best on its respective norm (Double
Margin `∞ has the highest `∞ certified accuracy etc.) This observation supports the hypothesis that
the effectiveness of Double Margin `∞ on `0 is unique. Interestingly, for smaller perturbation sizes
Double Margin `∞ achieves better certified accuracy on `2 perturbations than Double Margin `2.
Similarly, for small perturbation sizes, Double Margin `2 achieves better certified accuracy than
Double Margin `1. This may be because certifiability on `2 and `1 norms incurs a stronger penalty on
clean accuracy compared to the `∞ norm.

I.3 MODEL ENSEMBLE

Table 6 shows certified accuracies for two ensemble models trained on MNIST and CIFAR, each
composed of three models. The ensemble models are compared with averaged certified accuracies for
three individual models. Certified accuracies for the ensemble models are computed with CNN-Cert
by considering the ensemble model as a single model with multiple parallel sub-components. We find
that the ensemble model achieves the same or higher certified accuracies for nearly all the perturbation
sizes tested. This suggests that using ensembles may be a method of enhancing certified accuracies
for smaller perturbation sizes without sacrificing performance on larger perturbation sizes.

I.4 GTSRB

Table 7 shows certified accuracies computed using CNN-Cert for a pureconv CNN model trained on
GTSRB. Certified accuracies are computed over 200 random test set points. We compare Double
Margin with IBP and normal training. For IBP and Double Margin, training is performed with
perturbation sizes of ε = 2/255, 8/255. Double Margin achieves higher certified accuracy than IBP
over all tested perturbation sizes ε ≥ 2/255. In particular, we achieve a 24% improvement in certified
accuracy for ε = 8/255. Double Margin also trains in less time than IBP.
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I.5 MEDIUM CNN MODEL

Tables 9 and 10 show complete certified accuracy results computed using CNN-Cert for including
for Medium CNN models. Due to the cost of certifying on models of this size, we compute certified
accuracies over 20 points. Double Margin matches or outperforms IBP over most perturbation sizes,
and particularly improves on IBP for large perturbation sizes (ε = 0.1, 0.2, 0.3 for MNIST and
ε = 2/255, 3/255, 5/255 for CIFAR).

I.6 FULL TEST SET

Table 11 shows CNN-Cert certified accuracies computed on the full test set for two selected models
trained on MNIST and CIFAR. The certified accuracies are similar to those computed on 200
randomly selected test set points, indicating that the random sample is fairly representative.
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J ADDITIONAL TABLES

Method (200 points)
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Small CNN MNIST, 4 layer

Normal 185.7 99.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 626.3 99.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.3

8760.5 98.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 611.2 95.5% 95.5% 95.5% 95.5% 95.5% 95.5% 93.5% 86.5% 0.0%
ReLU Stabilty 595.8 94.0% 33.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
L1+RS+Pruning 686.5 95.0% 44.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 520.0 91.5% 91.0% 90.5% 90.5% 88.5% 87.0% 81.0% 75.5% 0.0%

Method (200 points)
Training

εcert = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Small CNN CIFAR, 4 layer

Normal 141.1 60.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 1062.8 60.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 8/255

51893.6 57.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 410.0 36.0% 35.5% 35.0% 34.5% 34.0% 25.5% 21.0% 18.5% 15.5%
ReLU Stabilty 396.1 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0%
Double Margin 409.7 45.5% 45.0% 43.5% 40.0% 40.0% 28.5% 23.0% 22.0% 21.5%

Table 4: IBP certified accuracies for Comparing different certification methods. Our methods are
in blue.
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Method
Training

εcert = 0 0.05 0.10 0.20 0.30Time (sec)

Small CNN MNIST, 4 layer, `∞
Double Margin `∞ ε = 0.3 609.7 89.0% 89.0% 88.0% 81.0% 63.5%
Double Margin `1 ε = 4 593.7 68.5% 59.5% 50.5% 9.0% 0.5%
Double Margin `0 ε = 2 593.3 86.0% 76.0% 57.5% 4.0% 0.0%

Method
Training

εcert = 0 0.25 0.50 0.75 1.00Time (sec)

Small CNN MNIST, 4 layer, `1
Double Margin `∞ ε = 0.3 609.7 89.0% 0.0% 0.0% 0.0% 0.0%
Double Margin `1 ε = 4 593.7 68.5% 62.5% 53.0% 35.5% 11.0%

Method
Training

εcert = 0 1.00 2.00 3.00 4.00Time (sec)

Small CNN MNIST, 4 layer, `0
Double Margin `∞ ε = 0.3 609.7 89.0% 89.0% 89.0% 89.0% 89.0%
Double Margin `0 ε = 2 593.3 86.0% 85.5% 84.0% 82.0% 60.5%

Method
Training

εcert = 0 1/255 3/255 5/255 8/255Time (sec)

Small CNN CIFAR, 4 layer, `∞
Double Margin `∞ ε = 8/255 3058.8 42.5% 40.0% 35.0% 31.0% 20.5%
Double Margin `1 ε = 2 2975.4 30.0% 28.5% 24.5% 20.5% 19.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.0% 25.0% 22.5% 19.5%

Method
Training

εcert = 0 0.05 0.10 0.15 0.20Time (sec)

Small CNN CIFAR, 4 layer, `1
Double Margin `∞ ε = 8/255 3058.8 42.5% 0.0% 0.0% 0.0% 0.0%
Double Margin `1 ε = 2 2975.4 30.0% 28.5% 27.0% 23.5% 22.5%

Method
Training

εcert = 0 1.00 2.00 3.00 4.00Time (sec)

Small CNN CIFAR, 4 layer, `0
Double Margin `∞ ε = 8/255 3058.8 42.5% 42.5% 42.5% 42.5% 42.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.5% 27.5% 26.0% 24.0%

Table 5: CNN-Cert certified accuracies for Effectiveness on other norms

Method
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Small CNN MNIST, 4 layer

Double Margin
ε = 0.2

521.1 95.5% 95.5% 95.2% 94.2% 93.5% 91.7% 81.3% 0.0% 0.0%
Double Margin Ensemble 1411.2 95.5% 95.5% 95.5% 95.5% 94.5% 93.5% 85.5% 0.0% 0.0%

Method
Training

εcert = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Small CNN CIFAR, 4 layer

Double Margin
ε = 8/255

2517.3 42.8% 41.8% 39.8% 36.8% 36.3% 26.8% 18.8% 15.8% 13.8%
Double Margin Ensemble 6566.2 46.0% 44.0% 43.5% 40.0% 38.0% 27.0% 22.0% 16.0% 11.0%

Table 6: CNN-Cert accuracies for Model ensemble. The ensemble uses three models with different
random initialization and random training batches. For fair comparison with standard Double Margin,
three models with the same random initializations and training batches are trained independently.
The training times and certified accuracies for standard Double Margin are averaged over these three
models.
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Method
Training

ε = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Pureconv CNN GTSRB, 4 layer

Normal 119.6 92.0% 77.5% 57.5% 37.0% 35.0% 6.5% 1.0% 0.0% 0.0%

IBP
ε = 2/255

289.3 84.0% 81.5% 78.0% 65.0% 63.5% 31.0% 14.5% 10.0% 5.5%
Double Margin 282.6 83.0% 80.0% 77.5% 68.5% 67.0% 43.5% 27.5% 22.0% 16.5%

IBP
ε = 8/255

287.7 64.0% 63.0% 62.0% 58.5% 57.0% 44.5% 31.5% 26.0% 22.0%
Double Margin 283.1 68.0% 67.5% 67.0% 65.0% 64.5% 58.0% 52.5% 50.0% 45.5%

Table 7: CNN-Cert certified accuracies on GTSRB networks.
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Method
Training

εcert = 0 0.05 0.10 0.20 0.30Time (sec)

Small CNN MNIST, 4 layer, `∞
Double Margin `∞ ε = 0.3 609.7 89.0% 89.0% 88.0% 81.0% 63.5%
Double Margin `2 ε = 1 592.0 68.5% 61.5% 50.0% 22.5% 1.5%
Double Margin `1 ε = 4 593.7 68.5% 59.5% 50.5% 9.0% 0.5%
Double Margin `0 ε = 2 593.3 86.0% 76.0% 57.5% 4.0% 0.0%

Method
Training

εcert = 0 0.25 0.50 0.75 1.00Time (sec)

Small CNN MNIST, 4 layer, `2
Double Margin `∞ ε = 0.3 609.7 89.0% 84.5% 0.0% 0.0% 0.0%
Double Margin `2 ε = 1 592.0 68.5% 62.0% 52.0% 41.5% 24.0%
Double Margin `1 ε = 4 593.7 68.5% 61.0% 51.5% 34.0% 9.0%
Double Margin `0 ε = 2 593.3 86.0% 80.5% 69.0% 39.0% 7.5%

Method
Training

εcert = 0 1.00 2.00 3.00 4.00Time (sec)

Small CNN MNIST, 4 layer, `1
Double Margin `∞ ε = 0.3 609.7 89.0% 0.0% 0.0% 0.0% 0.0%
Double Margin `2 ε = 1 592.0 68.5% 60.5% 39.0% 0.0% 0.0%
Double Margin `1 ε = 4 593.7 68.5% 62.5% 53.0% 35.5% 11.0%
Double Margin `0 ε = 2 593.3 86.0% 81.0% 69.0% 39.5% 6.5%

Method
Training

εcert = 0 1.00 2.00 3.00 4.00Time (sec)

Small CNN MNIST, 4 layer, `0
Double Margin `∞ ε = 0.3 609.7 89.0% 89.0% 89.0% 89.0% 89.0%
Double Margin `2 ε = 1 592.0 68.5% 68.5% 68.5% 68.5% 68.5%
Double Margin `1 ε = 4 593.7 68.5% 68.5% 68.5% 68.5% 67.5%
Double Margin `0 ε = 2 593.3 86.0% 85.5% 84.0% 82.0% 60.5%

Method
Training

εcert = 0 1/255 3/255 5/255 8/255Time (sec)

Small CNN CIFAR, 4 layer, `∞
Double Margin `∞ ε = 8/255 3058.8 42.5% 40.0% 35.0% 31.0% 20.5%
Double Margin `2 ε = 0.2 2969.9 35.0% 32.5% 27.5% 25.5% 17.5%
Double Margin `1 ε = 2 2975.4 30.0% 28.5% 24.5% 20.5% 19.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.0% 25.0% 22.5% 19.5%

Method
Training

εcert = 0 0.05 0.10 0.15 0.20Time (sec)

Small CNN CIFAR, 4 layer, `2
Double Margin `∞ ε = 8/255 3058.8 42.5% 33.5% 18.5% 3.5% 0.0%
Double Margin `2 ε = 0.2 2969.9 35.0% 33.0% 31.5% 28.0% 26.5%
Double Margin `1 ε = 2 2975.4 30.0% 28.5% 27.0% 26.0% 23.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.0% 26.5% 25.0% 24.0%

Method
Training

εcert = 0 0.50 1.00 1.50 2.00Time (sec)

Small CNN CIFAR, 4 layer, `1
Double Margin `∞ ε = 8/255 3058.8 42.5% 0.0% 0.0% 0.0% 0.0%
Double Margin `2 ε = 0.2 2969.9 35.0% 31.5% 28.0% 24.0% 20.0%
Double Margin `1 ε = 2 2975.4 30.0% 28.5% 27.0% 23.5% 22.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.5% 26.0% 24.0% 23.5%

Method
Training

εcert = 0 1.00 2.00 3.00 4.00Time (sec)

Small CNN CIFAR, 4 layer, `0
Double Margin `∞ ε = 8/255 3058.8 42.5% 42.5% 42.5% 42.5% 42.5%
Double Margin `2 ε = 0.2 2969.9 35.0% 35.0% 35.0% 34.5% 34.0%
Double Margin `1 ε = 2 2975.4 30.0% 30.0% 30.0% 29.0% 27.5%
Double Margin `0 ε = 2 2991.7 28.0% 27.5% 27.5% 26.0% 24.0%

Table 8: CNN-Cert certified accuracies for various `p versions of Double Margin computed for
different `p perturbation sizes.
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Method
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Small CNN MNIST, 4 layer

Normal 185.7 98.5% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 626.3 99.5% 81.0% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.1

8873.6 100.0% 97.0% 91.0% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0%
Bounded 27994.8 48.5% 48.5% 48.5% 48.5% 48.0% 48.0% 0.0% 0.0% 0.0%
IBP 613.1 99.5% 99.5% 99.0% 98.0% 96.5% 83.0% 0.0% 0.0% 0.0%
ReLU Stabilty 602.3 97.5% 89.5% 40.5% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0%
L1+RS+Pruning 686.7 98.0% 90.0% 34.5% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0%
Adv+RS+Pruning 9710.9 98.5% 96.5% 92.0% 84.5% 75.0% 54.0% 0.0% 0.0% 0.0%
Double Margin 520.0 98.5% 98.5% 97.0% 96.5% 96.5% 95.0% 0.0% 0.0% 0.0%
Double Margin +L1 545.5 98.5% 98.5% 97.5% 97.0% 96.5% 95.5% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.2

8786.8 99.0% 98.5% 91.0% 38.0% 0.5% 0.0% 0.0% 0.0% 0.0%
Bounded 27999.5 77.5% 77.5% 77.5% 77.5% 77.5% 77.5% 75.0% 0.0% 0.0%
IBP 614.0 97.5% 97.5% 97.0% 96.5% 96.0% 78.0% 0.0% 0.0% 0.0%
ReLU Stabilty 592.6 95.0% 90.0% 59.0% 12.5% 0.5% 0.0% 0.0% 0.0% 0.0%
L1+RS+Pruning 684.8 95.0% 89.5% 55.5% 10.5% 1.0% 0.0% 0.0% 0.0% 0.0%
Adv+RS+Pruning 9669.4 93.0% 92.0% 86.5% 80.0% 63.5% 46.0% 3.5% 0.0% 0.0%
Double Margin 518.8 95.0% 94.5% 94.0% 93.0% 92.5% 92.5% 81.5% 0.0% 0.0%
Double Margin +L1 546.1 95.5% 95.0% 95.0% 95.0% 95.0% 93.5% 82.0% 0.0% 0.0%

Adv. Training

ε = 0.3

8760.5 99.5% 98.5% 91.5% 38.5% 1.0% 0.0% 0.0% 0.0% 0.0%
Bounded 27966.8 30.0% 30.0% 30.0% 30.0% 30.0% 29.5% 28.5% 25.0% 0.0%
IBP 611.2 95.5% 95.5% 95.5% 90.5% 76.5% 39.5% 0.0% 0.0% 0.0%
ReLU Stabilty 595.8 94.0% 90.0% 65.0% 23.0% 5.0% 0.5% 0.0% 0.0% 0.0%
L1+RS+Pruning 686.5 95.0% 88.0% 53.5% 13.5% 3.0% 0.5% 0.0% 0.0% 0.0%
Adv+RS+Pruning 9657.1 90.0% 86.5% 70.5% 55.0% 30.5% 13.5% 0.0% 0.0% 0.0%
Double Margin 520.0 90.0% 89.0% 88.5% 88.0% 87.5% 86.5% 80.0% 66.5% 0.0%
Double Margin +L1 547.1 91.0% 90.5% 90.0% 89.5% 89.0% 87.5% 83.5% 68.0% 0.0%

Medium CNN MNIST, 7 layer

Normal 387.4 100% 0% 0% 0% 0% 0% 0% 0% 0%

IBP
ε = 0.1

1553.6 100% 100% 100% 100% 90% 85% 0% 0% 0%
Double Margin 1360.4 100% 100% 100% 100% 100% 100% 0% 0% 0%

IBP
ε = 0.2

1553.2 100% 100% 100% 95% 80% 40% 0% 0% 0%
Double Margin 1360.6 100% 100% 100% 100% 100% 100% 90% 0% 0%

IBP
ε = 0.3

1550.6 100% 100% 100% 100% 90% 50% 0% 0% 0%
Double Margin 1362.3 90% 90% 90% 90% 90% 90% 90% 80% 0%

Pooling CNN MNIST, 5 layer

Normal 226.0 99.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 145.1 99.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.1

7747.8 99.5% 98.5% 4.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 1075.6 98.0% 92.0% 77.5% 64.5% 40.5% 1.0% 0.0% 0.0% 0.0%
ReLU Stabilty 337.3 98.5% 87.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 1070.3 97.5% 95.0% 86.0% 80.0% 73.0% 55.5% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.2

7573.4 99.5% 98.5% 16.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 1082.8 96.0% 78.0% 63.5% 51.0% 39.0% 20.0% 0.0% 0.0% 0.0%
ReLU Stabilty 336.7 97.0% 90.0% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 680.5 94.5% 94.0% 93.0% 91.5% 89.0% 82.5% 4.5% 0.0% 0.0%

Adv. Training

ε = 0.3

7518.9 99.5% 97.5% 23.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 395.4 95.0% 76.5% 56.0% 44.0% 33.5% 13.5% 0.0% 0.0% 0.0%
ReLU Stabilty 337.5 97.0% 88.5% 13.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 408.0 88.0% 88.0% 87.5% 86.5% 85.0% 81.5% 43.0% 0.5% 0.0%

1-Resnet CNN MNIST, 4 layer

Normal 210.1 98.5% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 145.1 99.0% 51.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.1

7705.8 99.0% 97.5% 93.5% 22.5% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 600.2 99.0% 95.5% 94.5% 90.5% 87.5% 81.0% 3.0% 0.0% 0.0%
ReLU Stabilty 318.4 93.0% 85.5% 58.5% 25.5% 9.0% 1.5% 0.0% 0.0% 0.0%
Double Margin 629.3 98.0% 80.5% 77.0% 74.5% 70.0% 65.5% 0.0% 0.0% 0.0%

Adv. Training

ε = 0.2

7554.4 98.0% 98.0% 95.0% 69.0% 9.5% 0.0% 0.0% 0.0% 0.0%
IBP 593.3 97.5% 62.0% 57.0% 52.0% 50.0% 45.0% 10.0% 0.0% 0.0%
ReLU Stabilty 317.8 93.0% 85.5% 67.0% 34.5% 17.0% 2.5% 0.0% 0.0% 0.0%
Double Margin 630.0 95.0% 52.0% 51.5% 50.5% 50.0% 46.0% 28.5% 0.0% 0.0%

Adv. Training

ε = 0.3

7583.4 99.0% 97.5% 94.5% 73.0% 17.0% 0.0% 0.0% 0.0% 0.0%
IBP 600.3 96.5% 73.5% 69.0% 63.5% 57.5% 51.0% 13.0% 0.0% 0.0%
ReLU Stabilty 319.0 93.0% 86.0% 70.5% 40.0% 19.5% 4.5% 0.0% 0.0% 0.0%
Double Margin 630.4 92.5% 77.0% 77.0% 75.5% 75.0% 74.5% 62.5% 46.0% 0.0%

Table 9: CNN-Cert certified accuracies on all MNIST networks. Adv. Training (Madry et al., 2018),
Bounded (Kolter & Wong, 2018), IBP (Gowal et al., 2018), ReLU Stability (Xiao et al., 2019). For
the medium CNN architecture, accuracies are found over 20 points.
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Method
Training

ε = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Small CNN CIFAR, 4 layer

Normal 141.1 61.5% 22.0% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 1062.8 58.0% 24.0% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Adv. Training

ε = 2/255

51203.7 57.5% 24.5% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Bounded 22351.6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
IBP 394.8 47.0% 37.5% 22.0% 3.5% 3.5% 1.0% 0.0% 0.0% 0.0%
ReLU Stabilty 409.4 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0%
Double Margin 394.5 45.0% 40.0% 34.0% 25.5% 24.0% 2.5% 0.5% 0.5% 0.5%

Adv. Training

ε = 8/255

51893.6 60.5% 25.0% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Bounded 21918.7 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 3.5% 3.5% 3.5%
IBP 410.0 37.5% 35.0% 32.5% 20.0% 17.5% 2.5% 0.0% 0.0% 0.0%
ReLU Stabilty 396.1 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0% 12.0%
Double Margin 409.7 45.5% 45.0% 43.5% 40.5% 39.5% 28.0% 22.5% 19.5% 15.0%

Medium CNN CIFAR, 7 layer

Normal 1778.3 50.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 2/255

6613.4 50.0% 35.0% 20.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 5770.2 35.0% 25.0% 15.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 8/255

6598.8 20.0% 15.0% 15.0% 10.0% 10.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 5762.2 25.0% 25.0% 25.0% 25.0% 25.0% 25.0% 20.0% 10.0% 10.0%

Pooling CNN CIFAR, 5 layer

Normal 1164.9 65.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 828.8 59.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 2/255

4112.8 52.0% 24.0% 16.0% 6.0% 4.0% 0.0% 0.0% 0.0% 0.0%
ReLU Stabilty 1682.6 60.5% 1.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 4091.4 50.5% 30.5% 23.5% 11.0% 8.0% 1.0% 0.0% 0.0% 0.0%

IBP
ε = 8/255

4015.1 43.0% 15.5% 8.5% 3.0% 3.0% 0.0% 0.0% 0.0% 0.0%
ReLU Stabilty 1676.9 58.5% 8.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 2899.5 40.0% 32.5% 30.5% 24.0% 23.5% 5.0% 1.0% 1.0% 0.5%

1-Resnet CNN CIFAR, 4 layer

Normal 1153.7 52.5% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Weight Regularization 847.3 58.0% 3.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 2/255

3700.3 48.5% 8.0% 6.0% 2.0% 2.0% 0.0% 0.0% 0.0% 0.0%
ReLU Stabilty 1592.6 37.5% 4.0% 4.0% 4.0% 4.0% 0.0% 0.0% 0.0% 0.0%
Double Margin 3393.9 48.5% 9.0% 8.0% 4.0% 4.0% 1.5% 0.5% 0.5% 0.5%

IBP
ε = 8/255

3421.6 42.5% 2.5% 2.0% 1.0% 1.0% 0.0% 0.0% 0.0% 0.0%
ReLU Stabilty 1594.4 40.0% 1.0% 1.0% 1.0% 1.0% 1.0% 0.5% 0.5% 0.0%
Double Margin 3531.5 35.0% 4.0% 4.0% 4.0% 4.0% 4.0% 3.5% 3.5% 3.5%

Table 10: CNN-Cert certified accuracies on all CIFAR networks. Adv. Training (Madry et al., 2018),
Bounded (Kolter & Wong, 2018), IBP (Gowal et al., 2018), ReLU Stability (Xiao et al., 2019). For
the mediun CNN architecture, accuracies are found over 20 points.

Method
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Small CNN MNIST, 4 layer

Double Margin ε = 0.2 518.8 93.44% 93.15% 92.61% 92.06% 91.30% 89.63% 78.55% 0.00% 0.00%

Method
Training

ε = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Small CNN CIFAR, 4 layer

Double Margin ε = 8/255 409.7 43.00% 41.71% 40.58% 37.72% 37.25% 28.44% 22.39% 19.06% 16.35%

Table 11: CNN-Cert certified accuracies computed on the entire test set.
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Method
Training

εcert = 0 0.01 0.03 0.05 0.07 0.10 0.20 0.30 0.40Time (sec)

Medium CNN MNIST, 7 layer

Normal 387.4 99.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 0.1

1553.6 98.5% 98.5% 98.5% 98.5% 97.5% 96.5% 0.0% 0.0% 0.0%
Double Margin 1360.4 97.5% 97.5% 97.5% 97.0% 96.5% 96.5% 0.0% 0.0% 0.0%

IBP
ε = 0.2

1553.2 98.5% 98.5% 98.5% 98.0% 98.0% 97.0% 94.0% 0.0% 0.0%
Double Margin 1360.6 95.0% 95.0% 94.5% 94.5% 94.0% 93.5% 89.5% 0.0% 0.0%

IBP
ε = 0.3

1550.6 97.5% 97.5% 97.5% 97.5% 96.5% 95.5% 94.0% 90.0% 0.0%
Double Margin 1362.3 90.5% 90.5% 88.5% 87.5% 87.5% 87.0% 83.5% 79.5% 0.0%

Large CNN MNIST, 7 layer

Normal 930.6 99.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 0.1

4162.8 98.0% 98.0% 98.0% 98.0% 97.0% 95.0% 0.0% 0.0% 0.0%
Double Margin 3742.5 98.5% 98.5% 98.0% 98.0% 98.0% 97.0% 0.0% 0.0% 0.0%

IBP
ε = 0.2

4162.3 98.5% 98.5% 98.5% 98.5% 97.5% 97.5% 93.5% 0.0% 0.0%
Double Margin 3740.2 97.5% 97.0% 96.5% 96.5% 96.5% 96.5% 95.5% 0.0% 0.0%

IBP
ε = 0.3

4161.4 98.5% 98.0% 97.5% 97.5% 97.5% 97.5% 94.5% 91.0% 0.0%
Double Margin 3739.2 93.0% 93.0% 92.5% 92.5% 92.0% 91.0% 84.5% 0.0% 0.0%

Method
Training

ε = 0 0.5/255 1/255 2/255 3/255 5/255 7/255 8/255 9/255Time (sec)

Medium CNN CIFAR, 7 layer

Normal 1778.3 61.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 2/255

6613.4 45.5% 36.5% 27.0% 11.0% 9.5% 0.0% 0.0% 0.0% 0.0%
Double Margin 5770.2 45.0% 37.0% 24.5% 10.5% 8.0% 0.5% 0.0% 0.0% 0.0%

IBP
ε = 8/255

6598.8 24.5% 24.5% 23.0% 21.5% 21.5% 18.5% 13.5% 12.0% 10.5%
Double Margin 5762.2 33.5% 33.0% 32.5% 31.5% 31.5% 25.0% 18.5% 16.0% 13.5%

Large CNN CIFAR, 7 layer

Normal 4020.6 65.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

IBP
ε = 2/255

17260.8 45.5% 33.5% 23.5% 10.0% 8.0% 0.5% 0.0% 0.0% 0.0%
Double Margin 15141.5 43.5% 33.0% 25.5% 9.5% 9.0% 2.0% 1.0% 0.5% 0.0%

IBP
ε = 8/255

17262.3 27.0% 27.0% 26.5% 25.0% 25.0% 23.5% 23.0% 22.5% 21.0%
Double Margin 15131.7 16.5% 15.5% 15.0% 15.0% 15.0% 14.5% 14.5% 14.5% 14.5%

Table 12: Certified accuracies for large and medium CNN models computed using IBP (Gowal et al.,
2018).
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