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ABSTRACT

Auto-regressive models are widely used in sequence generation problems. The
output sequence is typically generated in a predetermined order, one discrete unit
(pixel or word or character) at a time. The models are trained by teacher-forcing
where ground-truth history is fed to the model as input, which at test time is
replaced by the model prediction. Scheduled Sampling (Bengio et al., 2015) aims
to mitigate this discrepancy between train and test time by randomly replacing
some discrete units in the history with the model’s prediction. While teacher-forced
training works well with ML accelerators as the computation can be parallelized
across time, Scheduled Sampling involves undesirable sequential processing. In
this paper, we introduce a simple technique to parallelize Scheduled Sampling
across time. Experimentally, we find the proposed technique leads to equivalent or
better performance on image generation, summarization, dialog generation, and
translation compared to teacher-forced training. In dialog response generation task,
Parallel Scheduled Sampling achieves 1.6 BLEU score (11.5%) improvement over
teacher-forcing while in image generation it achieves 20% and 13.8% improvement
in Frechet Inception Distance (FID) and Inception Score (IS) respectively. Further,
we discuss the effects of different hyper-parameters associated with Scheduled
Sampling on the model performance.

1 INTRODUCTION

Auto-regressive models are a popular choice for generating sequences of any kind including audio
(van den Oord et al., 2016b), images (van den Oord et al., 2016a), and text (Sutskever et al., 2014;
Cho et al., 2014). Here, the joint probability of the sequence is factorized in a pre-determined order
during train and test time. For example, auto-regressive models for text generation factorize the joint
probability left-to-right. The text sequence is generated by a decoder network left-to-right, one token
(word or word-piece or character) at a time and are widely used in text generation tasks such as
summarization (Liu et al., 2018), machine translation (Sutskever et al., 2014) and dialog response
generation (Budzianowski et al., 2018) in the encoder-decoder (Cho et al., 2014; Sutskever et al.,
2014) setting. Such models are typically trained by teacher-forcing (Williams and Zipser, 1989)
where ground-truth history is fed to the model as input, which at test time is replaced by the model
prediction. Auto-regressive models applied in any domain suffer from this train-test time discrepancy.

Scheduled Sampling (Bengio et al., 2015) aims to mitigate the discrepancy between train and test
time in teacher-forcing by randomly replacing some tokens in the history with the model’s prediction.
More concretely, at a given time step in generating the output sequence, the model is conditioned
either on ground-truth or model prediction from the previous time-step with some probability. The
probability of selecting model predicted token is gradually increased as training progresses. This
procedure potentially allows the model to recover from its own errors, and Bengio et al. (2015)
observe better empirical performance in natural language parsing, image captioning, and speech
recognition compared to teacher-forced training. Scheduled Sampling has also been used to get better
performance in other tasks such as video prediction (Finn et al., 2016), knowledge base completion
(Miwa and Bansal, 2016) and piano music transcription (Sigtia et al., 2016).

A key bottleneck in training models with Scheduled Sampling is its inherently sequential nature.
Unlike teacher-forcing, tokens must be processed one time-step at a time. The sequential procedure
makes Scheduled Sampling impractical for training neural networks, particularly on problems
involving long sequence generation. In this work, we describe a simple technique to parallelize
Scheduled Sampling. Given an input example, we first generate an entire model prediction sequence
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in parallel by conditioning on ground-truth history (equivalent to forward-pass of teacher-forcing).
Then, we employ a (parallel) mixing step where we generate a new sequence whose token at every
time step is either from the model prediction or the ground-truth. Finally, we perform training as in
teacher-forcing by conditioning on the sequence obtained from mixing. In Section 2.3 we show that
by performing multiple passes of parallel prediction and mixing, we obtain a conditioning sequence
that converges to a sample decode from the model.

Our key contributions are,

• A novel, fully parallelizable approach to reducing train-test discrepency of auto-regressive
models. We find the method produces the same empirical benefits of Scheduled Sampling
while using as little as 0.3% of the training time.
• We prove equivalence of the proposed approach to Scheduled Sampling under certain

choices of hyperparameters. This recovers the clear interpolation between training-time
teacher-forcing and test-time decoding described in Bengio et al. (2015).
• We extensively evaluate our approach on four auto-regressive tasks in text and image

domains. We find that Parallel Scheduled Sampling matches Scheduled Sampling’s benefits,
takes massively less compute time, and significantly improves performance compared to
teacher-forcing on most tasks. In dialog response generation task, Parallel Scheduled
Sampling achieves 1.6 BLEU score (11.5%) improvement over teacher-forcing while in
image generation it achieves 20% and 13.8% improvement in Frechet Inception Distance
(FID) and Inception Score (IS) respectively.

2 METHOD

Our proposed technique can be applied to both conditional and unconditional auto-regressive genera-
tive models. For notational simplicity, we consider the task of conditional sequence generation. The
training set is given in terms of N input-output sequences {(xi, yi)}ni=1, where xi is the input and
target yi is the desired output. The target yi is a variable-length sequence of Ti tokens (or pixels),
(yi1, y

i
2, . . . , y

i
Ti
), whereas xi may be variable-length (as in translation) or fixed-length (as in image

captioning). The goal is to learn a model that accurately predicts yi given xi. We use y1:t to denote
the sequence of tokens (y1, y2, . . . , yt).

2.1 TEACHER-FORCING AND DECODING

Given an input x and a target y, the log-probability of the target can be decomposed autoregressively:

P (y|x) =
T∏
t=1

P (yt|y1:t−1, x)

Auto-regressive sequence generation models learn to assign high likelihood to token yt given previous
target tokens y1:t−1 = (y1, . . . , yt−1) and inputs x via a learned likelihood model pθ. Neural
language models such as RNNs (Mikolov et al., 2010) and Transformer (Vaswani et al., 2017) adopt
left-to-right decomposition while image generation models (van den Oord et al., 2016a; Parmar et al.,
2018) adopt a raster-scan order.

Such models are typically trained with teacher-forcing (Williams and Zipser, 1989). In teacher-
forcing, the log likelihood of the training set is directly maximized,

θ∗ = argmax
θ
Ltf(θ) = argmax

θ

N∑
i=1

Ti∑
t=1

log pθ(y
i
t|yi1:t−1, xi) (1)

Importantly, teacher-forcing conditions on gold target prefixes y1:t−1, enabling backpropagation
through all timesteps with a single pass of inference.

At inference time, beam or sample decoding is often used to generate a candidate target ŷi. In this
regime, target tokens are generated one at a time while conditioning on previously-generated tokens.
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Figure 1: Parallel Scheduled Sampling. Conditioning tokens are resampled (red) and mixed (orange)
with gold tokens (purple) over K passes. Each pass conditions on the mixed tokens from the previous
pass. Finally, the loss (blue) is calculated by conditioning on the mixed tokens from the final pass.

ŷt ∼ pθ(ŷt|ŷ1:t−1, x) or ŷt = argmax
y

pθ(y|ŷ1:t−1, x)

A potential failure mode for teacher-forcing-trained models is in conditioning on previously unob-
served target prefixes ŷ1:t−1. As the model has not conditioned on these prefixes at training time, it
may generate bland, repetitive, or nonsensical candidate targets (Holtzman et al., 2019).

2.2 SCHEDULED SAMPLING

Scheduled Sampling (Bengio et al., 2015), hereafter Sequential Scheduled Sampling is a training
technique designed to bridge the gap between teacher-forcing and sample decoding. In its simplest
form, Sequential Scheduled Sampling generates tokens ỹ1:t and conditions on these target prefixes
during training. Sequential Scheduled Sampling uses the same objective function as teacher-forcing
(Equation 1) except the conditioning tokens ỹ1:t are a random mixture of gold tokens y1:t and sampled
tokens ŷ1:t instead of gold tokens y1:t. See Algorithm 1 for implementation.

Algorithm 1 Sequential Scheduled Sampling (single example)
for all timesteps t = 1, . . . , Ti do

Sample ŷt ∼ pθ(ŷt|ỹ1:t−1, x)
Choose next conditioning token,

ỹt =

{
yt with probability 1− p
ŷt with probability p

end for
return Accumulate loss

∑
t log pθ(yt|ỹ1:t−1, x)

As p→ 0, we condition on y1:t−1 as in teacher-forcing, and as p→ 1, we condition on ŷt:t−1 as in
sample decoding. Typically a schedule will be used to gradually increase p over the course of training.
As illustrated in Bengio et al. (2015), Scheduled Sampling leads to a performance improvement in a
variety of language generation tasks.

In spite of its benefits, Sequential Scheduled Sampling is inherently a sequential algorithm: choosing
conditioning token ỹt requires conditioning autoregressively on tokens ỹ1:t−1. While this is natural for
sequential architectures such as RNNs and LSTMs, it is poorly suited to self-attending feed-forward
models such as Transformer where inference for multiple timesteps can be carried out simultaneously.

2.3 PARALLEL SCHEDULED SAMPLING

We propose a natural extension to Sequential Scheduled Sampling called Parallel Scheduled Sampling.
Whereas Sequential Scheduled Sampling selects conditioning tokens one after another, we propose
generating conditioning tokens for all timesteps in parallel over the course of one or more passes.
While this technique requires strictly more operations than Sequential Scheduled Sampling, it is better
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suited to hardware accelerators such as GPUs and TPUs (Jouppi et al., 2017). Moreover, we find in
our experiments that only a modest number of passes is necessary for improving model performance.

Parallel Scheduled Sampling generates conditioning tokens for all timesteps simultaneously. The
procedure consists of multiple passes, each pass consisting of parallel sampling and mixing steps
(Figure 1). In the first pass, the algorithm conditions on gold tokens y1:t, generating tokens ŷ1:t i.i.d.
according to pθ(ŷt|y1:t−1, x). Sampling tokens in the first pass is equivalent to the forward-pass of
teacher-forcing. The sampled tokens, ŷ1:t, are mixed (in parallel) with gold tokens, y1:t, to produce
conditioning tokens for the next pass, ỹ1:t.

We now describe the multiple-pass procedure. Let ŷk,1:t, and ỹk,1:t denote sampled and mixed tokens
respectively on pass k. The mixed tokens from pass k, ỹk,1:t, are used for conditioning on pass k + 1
in place of gold tokens y1:t. Finally, the loss is calculated as before, conditioning on the final mixture
of gold and sampled tokens ỹK,1:t. See Algorithm 2 for implementation.

Algorithm 2 Parallel Scheduled Sampling (single example)
Set ỹ0,t = yt.
for all passes k = 1, . . . ,K do

Sample ŷk,t ∼ pθ(ŷk,t|ỹk−1,1:t−1, x) for all timesteps t in parallel.
for all timesteps t in parallel do

if t < k then
Copy ỹk,t = ỹk−1,t

else

Sample ỹk,t =
{
yt with probability 1− p
ŷk,t with probability p

end if
end for

end for
return Accumulate loss

∑
t log pθ(yt|ỹK,1:t−1, x)

Finally, we prove that by running the sampling and mixing steps for multiple passes as described
in Algorithm 2, the final sample from Parallel Scheduled Sampling converges to a random sample
decode from the model when p = 1 and K ≥ T .

Theorem 2.1. Consider a sequence of tokens z = (z1, z2, . . . , zT ) of length T . Let p = 1 andK ≥ T
be fixed. Then the likelihood of z1:T under Parallel Scheduled Sampling’s proposal distribution1 over
conditioning tokens on pass K, qKθ (z1:T ), is identical to random sample decoding’s, pθ(z1:T ),

qKθ (z1:T ) = pθ(z1:T )

Proof. We begin by establishing notation. Let pθ(z1:T ) be the likelihood of a sequence z1:T according
to random sample decoding. Let qKθ (z1:t) be the likelihood of the same according to Parallel
Scheduled Sampling’s proposal distribution on pass K.

The proof proceeds by induction. First we show that the proposal distribution for the first token
matches random sampling’s on the first pass, q1θ(z1) = pθ(z1). Then we show that if qKθ (z1:t) =
pθ(z1:t) holds for some K, it also holds for all K ′ > K. Finally, we show that if the previous
statement holds, it also holds for tokens z1:t+1 on pass K + 1. Thus, it follows that the proposal
distribution matches random sampling’s for all T tokens so long as K ≥ T .

Base Case: Consider the proposal distribution for the first token on the first pass, z1. As p = 1, the
first token is sampled from pθ(z1) by construction. Thus,

q1θ(z1) = pθ(z1)

Induction over K: Suppose that the proposal distribution for tokens qKθ (z1:t) = pθ(z1:t) some K ≥ t.
Then the equality also hold for the proposal distribution on pass K + 1. This follows trivially as

1We drop conditioning on x in the following for conciseness
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tokens z1:t are “copied” from pass K to K + 1 and thus their likelihood is unchanged,

qK+1
θ (z1:t) = qKθ (z1:t) = pθ(z1:t)

Induction over t: Suppose that the proposal distribution matches random sample decoding’s for the
first t tokens for t = K; that is, qKθ (z1:t) = pθ(z1:t). We show that the statement holds for pass
K + 1 for tokens z1:t+1. First, recall that by construction the proposal distribution for token zt+1

given previous tokens z1:t is the same as random sampling’s when t ≥ K,

qK+1
θ (zt+1|z1:t) = pθ(zt+1|z1:t)

Note that this only holds when p = 1. Then,

qK+1
θ (z1:t+1) = qK+1

θ (zt+1|z1:t)qK+1
θ (z1:t)

= qK+1
θ (zt+1|z1:t)qKθ (z1:t)

= pθ(zt+1|z1:t)pθ(z1:t)
= pθ(z1:t+1)

Where we use the chain rule, induction over K for z1:t, the inductive assumption for qKθ (z1:t), and
the definition of qK+1

θ (zt+1|z1:t) when t ≥ K.

�

3 RELATED WORK

Professor forcing (Lamb et al., 2016) has a similar motivation as Scheduled Sampling, where a
discriminator network is trained jointly with the generator to distinguish between generator’s hidden
states produced by conditioning on ground-truth and model prediction sample. The generator apart
from maximizing the likelihood of the data is also trained to fool the discriminator (Goodfellow et al.,
2014). With this new objective, the dynamics of the generator would be the same for conditioning on
both ground-truth and model prediction. Our parallel sampling contribution is orthogonal to professor
forcing and can be potentially applied in their framework. Collins and Roark (2004) use beam search
which is a sequential search procedure during both during training and testing time, and update the
weights of the model using a variant of the Perceptron algorithm (Rosenblatt, 1958). Methods with
similar motivation of mitigating the discrepancy between train and test time behavior have also been
studied in the sequential decision making, and reinforcement learning setting (Daumé et al., 2009;
Ross et al., 2011).

4 EXPERIMENTS

We evaluate our proposed technique on image and text domains. In the text domain, we evaluate
Parallel Scheduled Sampling on text summarization (Liu et al., 2018), task-oriented dialog response
generation (Budzianowski et al., 2018), and machine translation (Sutskever et al., 2014; Vaswani
et al., 2017) and compare it to teacher-forced training. We further evaluate the proposed technique on
image generation on CIFAR-10. Since our procedure is intended to generate better sequences, we
evaluate it at the sequence level and not at the word token or pixel level. We compare our method
to Sequential Scheduled Sampling only on the dialog task (Budzianowski et al., 2018) as we find
runtime infeasible on all other tasks. We also conduct ablation studies on the dialog task. We use the
Tensor2Tensor framework for all experiments (Vaswani et al., 2018).

4.1 DIALOG RESPONSE GENERATION

We evaluate our method on text response generation task using MultiWOZ (Budzianowski et al.,
2018), a task-oriented dialog dataset. Here, we consider the problem of mapping conversation history
consisting of alternating user and assistant turns to a single turn of assistant response. We use a
Transformer model containing approximately one million parameters for this study as the dataset is
much smaller (approximately 100k training examples) than those in other experiments. We truncate
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Training Mixing Num Warm-up Schedule Mean Max Training
Method Prob Passes Steps BLEU BLEU Steps/Sec

Teacher-Forcing - - - - 14.11 14.62 47

Sequential SS 0.25 - 25k exp 14.35 - 0.13
Sequential SS 0.50 - 25k exp 13.84 - 0.13
Sequential SS 0.75 - 25k exp 12.97 - 0.13
Sequential SS 1.00 - 25k exp 3.95 - 0.13

Parallel SS 0.25 1 25k exp 14.13 14.50 35
Parallel SS 0.50 1 25k exp 14.55 14.74 35
Parallel SS 0.75 1 25k exp 14.06 14.32 35
Parallel SS 1.00 1 25k exp 5.63 6.24 35

Parallel SS 0.5 2 25k exp 14.60 14.75 27
Parallel SS 0.5 3 25k exp 14.32 14.73 23
Parallel SS 0.5 5 25k exp 14.33 14.70 17
Parallel SS 0.5 7 25k exp 14.56 15.07 14
Parallel SS 0.5 10 25k exp 14.55 15.21 10

Parallel SS 0.5 1 10k exp 14.24 14.88 35
Parallel SS 0.5 1 15k exp 14.56 14.98 35
Parallel SS 0.5 1 20k exp 14.52 15.01 35
Parallel SS 0.5 1 30k exp 14.66 14.98 35
Parallel SS 0.5 1 35k exp 14.56 15.11 35
Parallel SS 0.5 1 40k exp 14.73 15.38 35

Parallel SS 0.5 1 25k linear 14.49 14.76 35
Parallel SS 0.5 1 25k sigmoid 14.30 14.66 35

Table 1: Results from models trained with teacher-forcing, Sequential Scheduled Sampling, and
Parallel Scheduled Sampling. We report mean BLEU and maximum BLEU over 5 random restarts
for each configuration except Sequential Scheduled Sampling, for which we report a single run. We
provide results by varying different hyperparameters for both variants of Scheduled Sampling. We
also provide training steps per second for the different training algorithms. In the best setting, Parallel
Scheduled Sampling achieves 1.6 BLEU score (11.5%) improvement over teacher-forcing.
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Model Size Max Length Training Method Decoding Method ROUGE-2 ROUGE-L

Base 500 Teacher-Forcing Beam Search 24.74 34.42
Base 500 Parallel SS Beam Search 25.19 34.76
Base 500 Teacher-Forcing Greedy 20.18 28.66
Base 500 Parallel SS Greedy 22.09 31.16

Large 1500 Teacher-Forcing Beam Search 30.98 39.83
Large 1500 Parallel SS Beam Search 30.35 39.09
Large 1500 Teacher-Forcing Greedy 29.25 37.91
Large 1500 Parallel SS Greedy 29.42 38.35

Table 2: Performance on the summarization task using base and large Transformer when trained
with teacher-forcing and Parallel Scheduled Sampling. We consider both beam search and greedy
decoding. We adopt the widely-used ROUGE score as the evaluation metric (higher the better).

the length of the input and output to 512, and train all the models for 50k steps. As both model and
dataset are small, we are able to empirically compare our method to Sequential Scheduled Sampling
(such experiments are infeasible in larger models). Table 1 summarizes results for all experiments on
the MultiWOZ dataset.

Both Sequential Scheduled Sampling and Parallel Scheduled Sampling (with just one pass) achieve
better results than teacher-forced trained models. However, as can be seen in Table 1, Parallel
Scheduled Sampling and teacher-forcing are both two orders of magnitude faster to train than
Sequential Scheduled Sampling. A single pass of Parallel Scheduled Sampling is approximately 25%
slower than teacher-forced training while producing the benefits of Sequential Scheduled Sampling.
Table 1 also shows the impact of mixing probability, number of passes, warm-up steps, and the mixing
probability schedule (Bengio et al., 2015) on model performance. Overall, we find a single pass
with 50% gold/sampled mixing probability sufficient for improving performance. In the best setting,
Parallel Scheduled Sampling achieves 1.6 BLEU score (11.5%) improvement over teacher-forcing.

4.2 SUMMARIZATION

Liu et al. (2018) propose a multi-document summarization task, where the task is to generate the text
of a Wikipedia article given its references and other related documents. The dataset has close to 1.9
million training examples, and 230,000 test examples. We use a Transformer seq2seq model for this
task in two hyper-parameter settings: a base model with 60 million parameters and a large model
with 210 million parameters. For the base model, we restrict the maximum length of input and output
to be 500, while for the large model the maximum length is set to 1500.

Table 2 shows the results of training base and large Transformer models for the summarization task.
The base and large models were trained for 250k steps and 500k steps respectively. We use teacher-
forcing for the first 50% of training steps in Parallel Scheduled Sampling as warm-up steps. The
mixing probability is set to 50% and we perform a single pass of sampling and mixing (Algorithm 2).
With the base model, Parallel Scheduled Sampling obtains better performance than teacher-forcing
with both beam search and greedy decoding while it performs better only with greedy decoding when
the large model is used. Since we use models that are much bigger than the ones in the dialog task
discussed before, it is runtime infeasible to apply Sequential Schedule Sampling here.

4.3 IMAGE GENERATION

In the image domain, we evaluate our method for image generation on the CIFAR-10 dataset. We
compare class-conditional Image Transformer (Parmar et al., 2018) trained with teacher-forcing and
Parallel Scheduled Sampling. After training, we decode a total of 50,000 randomly-sampled images
conditioned on classes drawn from the training set. In additional to a baseline model, we compare
all metrics to ground truth samples from the CIFAR-10 training set. We evaluate the image samples
using Frechet Inception Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al.,
2016) metrics. These metrics have been widely used to evaluate the quality of image samples from
GANs (Lucic et al., 2018; Miyato et al., 2018; Karras et al., 2018; Zhang et al., 2018).
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Training Mixing Num Warm-up Schedule FID (↓) IS (↑)
Method Prob Passes Steps

Ground Truth - - - - 0.0 11.31

Teacher-Forcing - - - - 52.39 5.64

Parallel SS 0.10 1 100k exp 64.88 5.36
Parallel SS 0.25 1 100k exp 48.85 6.08
Parallel SS 0.50 1 100k exp 41.47 6.42
Parallel SS 0.75 1 100k exp 43.38 6.48
Parallel SS 1.00 1 100k exp 98.38 3.97

Table 3: Empirical results on CIFAR-10. We use Frechet Inception Distance (FID) (Heusel et al.,
2017) and Inception Score (IS) (Salimans et al., 2016) metrics to evaluate the quality of the samples
from teacher-forcing and Parallel Scheduled Sampling. We provide upper-bound scores by computing
the metric on the ground-truth data. Parallel Scheduled Sampling with a single pass and a mixing
probability of 50% significantly decreases FID by 20% and increases IS by 13.8% compared to the
baseline.

Table 3 compares teacher-forcing with Parallel Scheduled Sampling on image generation. We train the
50 million parameter Image Transformer model for 200K steps in both the cases. We find that Parallel
Scheduled Sampling with a single pass and a mixing probability of 50% significantly decreases
FID by 20% and increases IS by 13.8% compared to the baseline. Similarly to our summarization
experiment, it is runtime infeasible to apply Sequential Schedule Sampling here.

4.4 MACHINE TRANSLATION

We evaluate our method on the WMT 2014 English-German task which consists of approximately
4.5 million training sentences. We experiment with the large Transformer model that contains
approximately 210 million parameters. We did not see performance improvements by using Parallel
Scheduled Sampling. The model trained with teacher-forcing for 500k steps gets 28.74 BLEU. The
same model trained with 250k warm-up steps using teacher-forcing and the next 250k steps trained
with Parallel Scheduled Sampling with mixing probability set to 50% and a single pass of sampling
and mixing (Algorithm 2) obtains 28.57 BLEU. Hyper-parameter tuning of warm-up steps and mixing
probability did not improve performance. We hypothesize the lack of performance improvement may
be due to the fact that the summarization, dialog response generation and image generation tasks have
much longer output sequences than in machine translation, though further investigation is required.

5 CONCLUSION

We introduce a simple technique to parallelize Scheduled Sampling that allows Schedule Sampling
to be applied for training models with hundreds of millions of parameters on large datasets. The
technique potentially mitigates discrepancy between train and test time in autoregressive sequence
generation models. We find that in most cases our technique leads to better empirical performance on
summarization, dialog generation, and image generation compared to teacher-forced training. Our
empirical results indicate that Parallel Scheduled Sampling can potentially improve the performance
of autoregressive sequence generation models particularly on tasks containing long sequences.
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