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ABSTRACT

Robust Reinforcement Learning aims to find the optimal policy with some degree
of robustness to environmental dynamics. Existing learning algorithms usually en-
able the robustness though disturbing the current state or simulated environmental
parameters in a heuristic way, which lack quantified robustness to the system dy-
namics (i.e. transition probability). To overcome this issue, we leverage Wasser-
stein distance to measure the disturbance to the reference transition probability.
With Wasserstein distance, we are able to connect transition probability distur-
bance to the state disturbance, and reduces an infinite-dimensional optimization
problem to a finite-dimensional risk-aware problem. Through the derived risk-
aware optimal Bellman equation, we first show the existence of optimal robust
policies, provide a sensitivity analysis for the perturbations, and then design a
novel robust learning algorithm—Wasserstein Robust Advantage Actor-Critic al-
gorithm (WRA2C). The effectiveness of the proposed algorithm is verified in the
Cart-Pole environment.

1 INTRODUCTION

Robustness to environmental dynamics is an important topic in safe Reinforcement Learning. Take
autonomous vehicle as an example. Autonomous vehicles have to adapt the complex real-world sit-
uations, but usually it is unlikely to cover all scenarios during training in real-world environments.
To handle this issue, typically, a simulated environment are employed to help build a driving agent,
however, the gap between the training and target environments, makes the strategies trained with
simulated environments sub-optimal to the real-world scenarios (Mannor et al., 2004; 2007). Thus
learning robust policies from simulated environments is a challenging problem for safe Reinforce-
ment Learning.

For robust Reinforcement Learning algorithms, existing methods lie on two branches: One type
of methods, borrowed from game theory, introduces an extra agent to disturb the simulated envi-
ronmental parameters during training (Atkeson & Morimoto, 2003; Morimoto & Doya, 2005; Pinto
et al., 2017; Rajeswaran et al., 2016). This method has to rely on the environmental characterization.
The other types of methods disturbs the current state through Adversarial Examples (Huang et al.,
2017; Kos & Song, 2017; Lin et al., 2017; Mandlekar et al., 2017; Pattanaik et al., 2018), which is
more heuristic. Unfortunately, both method are lack of a theoretical guarantee to the robustness of
transition dynamics.

To address these issues, we design a Wasserstern constraint, which restricts the admissible transition
probabilities within a Wasserstein ball centered at some reference transition dynamics. By applying
a strong duality of Wasserstein distance (Santambrogio, 2015; Blanchet & Murthy, 2019), we are
able to connect the disturbance on transition dynamics with the disturbance on current state. As a re-
sult, the original infinite-dimensional robust optimal problem is reduced to some finite-dimensional
ordinary risk-aware RL problem. Through the moderated risk-aware optimal Bellman equation, we
prove the existence of robust optimal policies, provide the theoretical analyse on the performance of
optimal policies, and design a corresponding —Wasserstein Robust Advantage Actor-Critic algo-
rithm (WRA2C), which does not depend on the environmental characterization. In the experimental
parts, we verified the robustness and efficiency of the proposed algorithms in the Cart-Pole environ-
ment.
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The remainder of this paper is organized as follows. In Section 2, we mainly describe the frame-
work of Wasserstein robust Reinforcement Learning. In Section 3, we propose robust Advantage
Actor-Critic algorithms according to the moderated robust Bellman equation. In Section 4, we per-
form experiments on the Cart-Pole environment to verify the effectiveness of our method. Finally,
Section 5 concludes our study and provide possible future works.

2 WASSERSTEIN ROBUST REINFORCEMENT LEARNING

In this section, we specify the problem of interest, which is actually a minimax problem constrained
by some Wassserstein-based uncertainty set. We start with introducing a general theoretical frame-
work of the problem setup, i.e., robust Markov Decision Process. Throughout this paper, we con-
sider robust MDPs over continuous state and action spaces. We then briefly recall the definition
of Wasserstein distance between probability measures. Inspired by the strong duality brought by
Wasserstein-based uncertainty set, we reformulate our sequential problem to some risk-aware MDP,
making connections clear between robustness to dynamics and robustness to states. We also demon-
strate the existence of optimal policies and analyse the sensitivity of the policy performance w.r.t.
uncertainty set.

2.1 ROBUST MARKOV DECISION PROCESS

The theoretical foundation of robust Reinforcement Learning is robust Markov Decision Pro-
cess (Nilim & El Ghaoui, 2004; 2005). Unlike ordinary Markov Decision Processes (MDPs), en-
vironmental dynamics such as transition probabilities in robust MDPs might change with time. In
fact, they can be chosen arbitrarily within an uncertainty set. The objective of robust MDP is to find
the optimal policy under the worst dynamics.

The uncertainty set for robust MDP can be defined in various ways. One choice of such constraint
involves likelihood regions or entropy bounds of the dynamic parameters, see White III & Eldeib
(1994); Nilim & El Ghaoui (2005); Iyengar (2005); Wiesemann et al. (2013). Another choice is
to constrain the deviation from some reference dynamics using statistical distance. For example,
Osogami (2012) discussed such robust problem where the uncertainty set are defined via Kullback-
Leibler divergence. Some papers consider bringing prior knowledge of dynamics to robust MDPs,
and name such problem distributionally robust MDPs. Xu & Mannor (2010) discuss robust MDPs
with prior information to estimate the confidence region of parameters abound, which is a moment-
based constraint, and they also show that such distributionally robust problems can be reduced to
standard robust MDP problems. Yang (2017; 2018) use Wasserstein distance to evaluate the dif-
ference among the prior distributions of transition probabilities. However, Yang’s algorithms are
not appropriate for complex situations, because they need to estimate enough transition kernels to
approximate prior distribution at each step.

Consider discrete-time robust MDPs with continuous state and action spaces. Without loss of gener-
alization, we only consider the robustness to transition probabilities. Basic elements of robust MDPs
include (X ,A,Q, c), where

• X : state space, which is a Borel measurable metric space.

• A: action space, which is a Borel measurable space. Let A(x) ∈ A represent all the
admissible actions at state x ∈ X , and KA denote all the possible state-action pairs, i.e.,
KA = {(x, a) : x ∈ X , a ∈ A(x)}.

• Q: the uncertainty set that contains all possible transition probabilities.

• c: KA → R, the immediate cost function. Generally we assume it is continuous and
c ∈ [0, c̄] for some non-negative constant c̄.

The robust system evolves in a following way. Let n ∈ N denote the current time and xn ∈ X
the current state. Agent chooses an action an ∈ A(xn) and environment selects a transition kernel
qn ∈ Q, respectively. Then at the next time n + 1, agent observes an immediate cost c(xn, an)
and a new state xn+1 ∈ X which follows the distribution qn(·|xn, an). The process repeats at
each stage and produces trajectories in a form of ω = (x0, a0, q0, c0, x1, a1, q1, c1, ...). Let Ω =
(X × A × Q × [0, c̄])∞ denote all the trajectories, and F its corresponding σ-algebra. Let Ωn =
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{ωn = (x0, a0, q0, c0, x1, a1, q1, c1, ..., xn)} denote all trajectories up to time n. And let Ω̃n =
{ω̃n = (x0, a0, q0, c0, x1, a1, q1, c1, ..., xn, an)} be the set of another form of truncated trajectories.

Correspondingly, agent policy is a series of stochastic kernels: π = (π0, π1, π2, ...) with πn(·|ωn)
be a probability measure over A(xn). We use Π to represent all such randomized policies. If
πn(·|ωn) = πn(·|xn) for n ≥ 0, we say the policy is Markov. If πn ≡ π0 for any n ≥ 0, this policy is
stationary. If there exists measurable functions fn : Ωn → A such that πn(fn(ωn)|ωn) ≡ 1, n ≥ 0,
this policy is called deterministic. We denote the set of all deterministic, stationary, Markov policies
by F.

The selection of transition kernels can be seen as a deterministic policy deployed by an extra adver-
sarial agent. Let g = (g0, g1, g2, ...) with gn : Ω̃n → Q denote its policy. We use G to represent
all such deterministic policies. Similarly, if gn(·|ω̃n) = gn(·|xn, an) for all n ≥ 0, the policy is
Markov. And if gn ≡ g0 for any n ≥ 0, the policy is stationary.

Given the initial state x0 = x ∈ X , agent’s policy π ∈ Π and the adversarial agent’s policy g ∈ G,
applying the Ionescu-Tulcea theorem (Hernández-Lerma & Lasserre, 2012a; Bertsekas & Shreve,
2004), there exist a probability measure Pπ,gx on trajectory space (Ω,F), which satisfies

• Pπ,gx (X0 = x) = 1,
• Pπ,gx (An ∈ da|ωn) = πn(An ∈ da|ωn),
• Pπ,gx (Qn ∈ dq|ω̃n) = I{Qn∈dq}(gn(ω̃n)),

• Pπ,gx (Xn+1 ∈ dx|ωn, an, qn) = qn(Xn+1 ∈ dx|ωn, an).

Let Eπ,gx denote the corresponding expectation operation.

As for the performance criterion, we consider the infinite-horizon discounted cost. Let γ ∈ (0, 1)
be the discounting factor. The discounted cost contributed by trajectory ω ∈ Ω is Cγ(ω) =
Σ∞n=0γ

nc(xn, an). Given the initial state x0 = x, policies π and g, the expected infinite-horizon
discounted cost is

Cπ,gγ (x) := Eπ,gx [Σ∞n=0γ
nc(xn, an)]. (1)

Robust MDPs aim to find the optimal policy π∗ for the agent under the worst realization of g ∈ G,
which means that π∗ reaches

inf
π

sup
g
Cπ,gγ (x). (2)

This minimax problem can be seen as a zero-sum game of two agents.

2.2 WASSERSTEIN DISTANCE

The popular Wasserstein distance is a special case of optimal transport costs. Optimal transport
costs, which is a flexible class of distances between probability measures, allow easy interpretation
in terms of minimum cost associated with transporting mass between probabilities.

For any two probability measures Q and P over the measurable space (X ,B(X )), let Ξ(Q,P )
denote the set of all joint distributions on X × X with Q and P are respective marginals. Each
element in Ξ(Q,P ) is called a coupling between Q and P . Let κ : X × X → [0,∞) be the
transport cost function between two positions, which is non-negative, lower semi-continuous and
satisfy κ(z, y) = 0 if and only if z = y. Intuitively, the quantity κ(z, y) specifies the cost of
transporting unit mass from z in X to another element y of X . Then the optimal transport total cost
associated with κ is defined as follows:

Dκ(Q,P ) := inf
ξ∈Ξ(Q,P )

{∫
X×X

κ(z, y)dξ(z, y)

}
.

Therefore, the optimal transport cost Dκ(Q,P ) corresponds to the lowest transport cost that is
attainable among all couplings between Q and P . Taking the transport cost function κ to be some
distance metric d on X , renders the optimal transport cost to be simply the Wasserstein distance of
first order. Wasserstein distance of order p is defined as:

Wp(Q,P ) := inf
ξ∈Ξ(Q,P )

{∫
X×X

d(z, y)pdξ(z, y)

} 1
p

, p ≥ 1.
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Unlike Kullback-Liebler divergence or other likelihood-base divergence measures, Wasserstein dis-
tance is a proper metric on the space of probabilities. More importantly, Wasserstein distance does
not restrict probabilities in the neighborhoods to share the same support (Villani, 2008; Santambro-
gio, 2015). Let d(z, y) =‖ z − y ‖2, κ(z, y) = 1

p ‖ z − y ‖
p
2 and δ = 1

pε
p, the ε-Wasserstein ball of

order p and the δ-optimal-transport ball are identical:

{Q : Wp(Q,P ) ≤ ε} = {Q : Dκ(Q,P ) ≤ δ}.

Due to its superior statistical properties, Wasserstein-based uncertainty set has recently recieved a
great deal of attention in DRSO problem (Gao & Kleywegt, 2016; Esfahani & Kuhn, 2018; Blanchet
& Murthy, 2019), adversarial example (Sinha et al., 2017), and so on. We will apply it to robust RL.

2.3 MAIN RESULT

Let the uncertainty set Q be a ε-Wasserstein ball of order p centered at some reference/simulated
transition kernel P :

Q ={Q : Wp(Q(·|x, a), P (·|x, a)) ≤ ε, ∀(x, a) ∈ KA} (3)
={Q : Dκ(Q(·|x, a), P (·|x, a)) ≤ δ, ∀(x, a) ∈ KA}, (4)

The radius ε or δ reflects the extent of adversarial perturbations to reference dynamical kernel P .
The difference between our theoretical framework and Yang (2017; 2018) is that our reference dis-
tribution is the transition kernel, while theirs is the prior distribution of the transition kernel.

Recall the state value function (1) at state x given policy π and adversarial policy g, combining the
evolution of the whole process, we can rewrite the value function as follows,

Cπ,gγ (x) =Eπ,gx [Σ∞n=0γ
nc(xn, an)]

=Ea0∼π,q0x [c(x0, a0) + E
(1)π,(1)g
x1∼q0(·|x,a0)[Σ

∞
n=1γ

nc(xn, an)]]

=Ea0∼π,q0x [c(x, a0) + γ

∫
X
q0(dx1|x, a0)C

(1)π,(1)g
γ (x1)],

where (1)π = (π1, π2, ...) and (1)g = (g1, g2, ...) are the shift policies. Since c is continuous and
bounded, the value function is actually continuous in X and belongs to [0, c̄

1−γ ].

Let u : X → R be a measurable, upper semi-continuous function with u ∈ [0, c̄
1−γ ], and let U

denote the set of all such functions. For state x ∈ X and action a ∈ A(x). Consider the following
operator Ha defined on U:

(Hau)(x) := c(x, a) + sup
Q∈Q

γ

∫
X
Q(dy|x, a)u(y). (5)

Applying Lagrangian method and the strong duality property triggered by Wasserstein dis-
tance (Blanchet & Murthy, 2019), we reformulate (5) to the following form:

(Hau)(x) = inf
λ≥0

c(x, a) + γλδ + γ

∫
X
P (dy|x, a)[sup

z∈X
(u(z)− λκ(z, y))]. (6)

The significance of this strong dual representation lies in the fact that the only probability mea-
sure involved in ( 6) is the reference transition kernel, which makes it easy to draw samples from.
Moreover, it also reduces the infinite-dimensional probability-searching problem (5) into an ordinary
finite-dimensional optimization procedure. Also, it is easy to verify that Ha maps U to U. Thus,
given an initial state x ∈ X and agent policy π, we have the following expected Bellman-form
operator:

(Hπu)(x) :=

∫
a∈A(x)

π(da|x)Hau(x)

= inf
λ≥0

γλδ +

∫
a∈A(x)

π(da|x)[c(x, a) + γ

∫
X
P (dy|x, a)[sup

z∈X
(u(z)− λκ(z, y))]].
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Similarly, Hπ maps U to U. Under the following Assumption 1, we will define the optimal iteration
operator and show its contraction property.
Assumption 1. X is a compact metric space. For any x ∈ X , A(x) is compact and Ha is lower
semi-continuous on a ∈ A(x).

Thus, given an initial state x ∈ X , the following optimal operator defnied on U is well-defined.

(Hu)(x) := inf
a∈A(x)

Hau(x) (7)

= inf
a∈A(x),λ≥0

c(x, a) + γλδ + γ

∫
X
P (dy|x, a)[sup

z∈X
(u(z)− λκ(z, y))]. (8)

It is simple to verify that H maps U to U. The contraction property of H is shown in Lemma 1. We
put the proof in the appendix.
Lemma 1. H is a contraction operator in U under L∞ norm. There exists an unique element in U,
denoted as u∗, satisfying Hu∗ = u∗.

For any u0 ∈ U, un := Hun−1 = Hnu0. Due to the contraction, we have

lim
n→∞

un = lim
n→∞

Hnu0 = u∗, (9)

which indicates an iterative procedure of finding the optimal value function. Based on this optimal
value function, we will demonstrate the existence of optimal policies, and single out those who are
deterministic, Markov and stationary, as shown in Theorem 1. We put the proof in the appendix.
Theorem 1. There exists a deterministic Markov stationary policy f ∈ F that satisfies

Hfu∗ = Hu∗ = u∗.

Above all, we obtain the existence and uniqueness of the robust optimal value function, and show
the existence of robust optimal policies. Deploy an iterative procedure as (9), we can design corre-
sponding algorithms for robust Reinforcement Learning.

2.4 SENSITIVITY ANALYSIS

Before going to algorithm design, we present a sensitivity analysis of the optimal value function
w.r.t. the radius δ and the Wasserstein order p. Let λ∗ and z∗(y, λ∗) = arg max

z∈X
(u(z)− λ∗κ(z, y))

satisfy equation (8). λ∗ is non-negative. If λ∗ = 0, which means the worst transition kernel is within
our fixed ε-Wasserstein ball, target (8) can be reduced to an ordinary problem

(Hu)(x) = inf
a∈A(x)

c(x, a) + γ sup
z∈X

u(z).

Thus u∗ has nothing to do with δ or p.

In the following, we let λ∗ > 0. Via the envelop theorem, the gradient of optimal value function
w.r.t. δ can be calculated as follows.

∂u∗(x)

∂δ
= γλ∗ > 0. (10)

This gradient remains positive. Thus the optimal value function increases as the volume of Wasser-
stein ball increases (remember that δ = 1

pε
p and value function represent discounted cost). Similarly,

via the envelop theorem, the gradient w.r.t. p can be calculated as follows.

∂u∗(x)

∂p
= −γλ∗

∫
X
P (dy|x, a)(log ‖ z∗(y, λ∗)− y ‖2 −

1

p
)
‖ z∗(y, λ∗)− y ‖p2

p
. (11)

Since λ∗ > 0, the worst transition kernel Q∗ satisfies Wp(Q
∗, P ) = ε, i.e. Dκ(Q∗, P ) = δ. (If

Wp(Q
∗, P ) < ε, there must be λ∗ = 0.) Notice that calculating z∗(y, λ∗) actually decides an

optimal transport map Tp : X → X that transport P to Q∗. Recall that u∗ is upper semi-continuous
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and its domain is compact, and we can actually regard u∗ as the Kantorovich potential (Villani,
2008) for the transport cost function λ∗κ in the transport from P to Q∗. For p > 1, λ∗κ is strictly
convex. Through theorem 1.17 in Santambrogio (2015), we can write the optimal transport map in
an explicit way, as well as the gradient over p.

z∗(y, λ∗) = Tp(y) = y − (λ∗)−
1

p−1 ‖ ∇yu∗(y) ‖−
p−2
p−1 ∇yu∗(y), p > 1.

∂u∗(x)

∂p
= − γλ∗

p(p− 1)

∫
X
P (dy|x, a)(log ‖ ∇yu

∗(y)

λ∗
‖2 −

p− 1

p
) · ‖ ∇yu

∗(y)

λ∗
‖

p
p−1

2 , p > 1.

Thus when 1
p ≤ 1 − log ‖ ∇yu

∗(y)
λ∗ ‖2 for all y ∈ X , the gradient over p is non-negative. Larger

λ∗ makes non-negativity more likely to happen. Remember that λ∗ actually reflect the level of ro-
bustness, i.e., larger λ∗ coincides with smaller radius ε. Intuitively, when the volume of Wasserstein
ball is very small, the extent of perturbation at each point is small with high probability, making the
gradient (11) positive. Thus in such situation, smaller p is preferred.

3 WASSERSTEIN ROBUST ADVANTANGE ACTOR-CRITIC ALGORITHMS

In reinforcement learning, agent does not know the precise environmental dynamics, aka, the tran-
sition kernel and immediate cost function are unknown. Some researchers use an adversarial agent
to deploy perturbations to environmental parameters during the training procedure. But this method
only fits those with accessible environmental parameters including their categories and quantities,
and lacks quantified robustness toward transition probability. Other researchers borrow the idea of
adversarial examples and disturb observed states in a heuristic way (Nguyen et al., 2015). They also
miss the explanation of robustness towards system dynamics.

We are going to develop a robust Advantage Actor-Critic algorithm based on Section 2. The critic
neural network with parameters w, denoted by uw, is used to estimate value function. And the actor
neural network with parameters θ, denoted by πθ, is designed to emulate the agent’s policy. Rewrite
equation (8):

(Huw)(x) = inf
θ,λ≥0

∫
a∈A(x)

πθ(da|x)[c(x, a) + γλδ + γ

∫
X
P (dy|x, a)[sup

z∈X
(uw(z)− λκ(z, y))]].

Let fw(z; y, λ) = uw(z) − λκ(z, y) where κ(z, y) = 1
p ‖ z − y ‖p, p ≥ 1. Given y ∈ X

and λ ∈ [0,∞), denote arg max
z∈X

fw(z; y, λ) by zy,λ. Initially, zy,λ can be seen as the maximum

perturbation to state y ∈ X given the punishment threshold λ. The gradient of fw over z is:

∇zfw = ∇zuw(z)− λ||z − y||p−2(z − y).

Let Gw(λ;x, a) = λδ+
∫
X P (dy|x, a)[sup

z∈X
(uw(z)−λκ(z, y))]. Combining the envelope theorem,

we can obatain the gradient of Gw w.r.t. λ:

∇λGw = δ −
∫
X
P (dy|x, a)κ(zy,λ, y).

The expectation in the gradient can be approximated by discrete samples. For example, take action
a at state x for n times, under the reference transition probability P , wen can observe the next
states yj , j = 1, 2, · · · , n, and obtain n quadruples of the form (x, a, c, yj). Then ∇λGw ≈
δ − 1

n

∑n
j=1 κ(zyj ,λ, y

j). Here finding λx,a that minimizes Gw(λ;x, a) is actually modelling the
maximal perturbation to transition kernel. Given state x ∈ X and policy πθ, let

J(θ, w, x) :=

∫
a∈A(x)

πθ(da|x)[c(x, a) + γGw(λx,a;x, a)].

If we take actions ai ∼ πθ(·|x), i = 1, 2, · · · ,m at the same state x, we will have m “state-action”
pairs (x, ai), i = 1, 2, · · · ,m. Thus we have J(θ, w, x) ≈ 1

m

∑m
i=1[c(x, ai) + γGw(λx,a;x, ai)].
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Algorithm 1 Calculating Perturbations.
Input: x ∈ X , w, a ∈ A(x), δ ≥ 0, λ ≥ 0, e = 0, ge = 0, discount factor α, order p ≥ 1, κ = 0,
learning rates β1, β2.
for j = 1, 2, · · · , n do

collect roll-out (x, a, cj , yj). zj ← yj .
z update:
gz ← ∇zuw(z)− λ(||zj − yj ||p−2)(zj − yj),
zj ← zj + β1 · gz,
e← e+ cj + α[λδ + [uw(zj)− λ 1

p ||z
j − yj ||p]]− uw(x)

ge ← ge + α∇wuw(z)−∇wuw(x)
κ← κ+ 1

p ||z − y
j ||p,

end for
λ update:
gλ ← δ − 1

nκ,
λ← λ+ β2 · gλ,
e = 1

ne

ge = 1
nge

Output: e, ge, λ.

Critic Update Rule: Let e(x, ai) = c(x, ai) + γGw(λx,a;x, ai) − uw(x), and let e(x) denote the
difference between the observed experimental objective and the critic network:

e(x) := J(θ, w, x)− uw(x) ≈ 1

m

m∑
i=1

e(x, ai) =
1

m

m∑
i=1

[c(x, ai) + γGw(λx,a;x, ai)− uw(x)].

Through the envelope theorem, we can obtain the following gradient of e(x) w.r.t. w:

∇we(x) =
1

m

m∑
i=1

γ

∫
X
P (dy|x, ai)∇wuw(zy,λx,a)−∇wuw(x) (12)

≈ γ

mn

m∑
i=1

n∑
j=1

∇wuw(zyji ,λx,ai
)−∇wuw(x). (13)

Notice that we should actually update the critic network via minimizing 1
2e(x)2, and the gradient is

∇w
1

2
e(x)2 = e(x) · ∇we(x).

Actor Update Rule: While in AC algorithms, directly minimizing “state-action” value function
J(θ, w, x) may cause large variance and slow convergence. Optimizing the advantage function is a
better choice. The advantage function is

A(x, a) := c(x, a) + γGw(λx,a;x, a)− uw(x) = e(x, a).

Thus we can find the optimal θ via minimizing the expected advantage function A(x, θ) =∫
a∈A(x)

πθ(da|x)e(x, a). Similarly, we can approximate the gradient of A w.r.t. θ as follows:

∇θA(x, θ) =

∫
a∈A(x)

πθ(da|x)∇θ log πθ(da|x)e(x, a) ≈ 1

m

m∑
i=1

∇θ log πθ(x, ai)e(x, ai). (14)

Above all, we obtain a corresponding Advantage Actor-Critic algorithms. We call it Wasserstein
Robust Advantage Actor-Critic algorithm with order p, concluded in Algorithm 1 and Algorithm 2.
Algorithm 1 is actually a inner loop that certifies corresponding level of perturbations, while Algo-
rithm 2 finds the optimal policy in a normal way. Let the learning rates satisfy the Robbins-Monro
condition (Robbins & Monro, 1951), and β1 = o(β2), β2 = o(β3), β3 = o(β4). Via the multi-time-
scales theory (Borkar, 2008), the convergence to a local minimum can be guaranteed.
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Algorithm 2 Wasserstein Robust Advantage Actor-Critic Algorithm with Order p.
Input: x ∈ X , θ, w, δ ≥ 0, discount factor γ, order p ≥ 1, learning rates β3, β4

for each step do
E = 0, gE = 0.
for i = 1, 2, · · · ,m do

sample ai ∼ πθ(·|x);
use Algorithm 1 and obtain e, ge.
ei ← e
E ← E + e
gE ← gE + ge

end for
w update:
w ← w − β3 · ( 1

mE) · ( 1
mgE)

θ update:
gθ = 1

m

∑m
i=1∇θ log πθ(x, ai)ei

θ ← θ − β4 · gθ
state update:
choose a ∼ πθ(·|x), and collect roll-out (x, a, c, y) .
x← y

end for
Output: θ, w.
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Figure 1: Robustness to gravity.
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Figure 2: Robustness to length.

4 EXPERIMENTS

In this section, we will verify our WRA2C algorithm in Cart-Pole environment 1. State space has
four dimensions, including cart position, cart velocity, pole angle and pole velocity at tip. There are
only two admissible actions: left or right. The target is to prevent the pole from falling over.

Our baseline includes the ordinary Advantage Actor-Critic algorithm. We learn the baseline pol-
icy and our robust policy under the default environment. Then, we test the performances of these
two policies under different environmental dynamics. We change the simulated environmental pa-
rameters such as gravity or pole-length to emulate different test dynamics. Noticing that different
parameters in this Cart-Pole environment have different scales of influence to the level of the dy-
namic’s robustness.

We apply WRA2C algorithm of order 2, and fix the degree of dynamical robustness at δ = 10. For
each quadruple (x, a, r, y), if y is not the last state of the trajectory, we set initial λ be 0 and initial
z be y + δ × (0, 1√

26
, 0, 5√

26
) (designed according to the simulated dynamics of Cart-Pole). If y

is the last state, we set λ ≡ 0 and z ≡ y. The baseline policy and our robust policy are tested in
environments with different gravity or different pole-length, shown in Figure 1 and Figure 2.

Remember that different parameters in this Cart-Pole environment have different scales of influence
to the level of the dynamic’s robustness. We can see that our robust algorithm changes smoothly as
parameter changes, while the baseline plunges. When the perturbation of parameter reaches some

1https://gym.openai.com/envs/CartPole-v0/
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level (related with the fixed δ = 10), our robust policy keeps the pole from falling over for a longer
time, which indicates that our algorithm does learn some level of robustness compared with baseline.
If the perturbation of parameter is small, baseline performs better, due to the fact that the baseline
optimize directly in the default environment.

5 CONCLUSIONS

In this paper, we propose a novel study on robust Reinforcement Learning with Wasserstein con-
straint. The derived theoretical framework can be reformulated into a tractable iterated-risk aware
problem. The theoretical guarantee is then obtained by building connection between robustness
to transition probabilities and robustness to states. Subsequently, we demonstrate the existence of
optimal policies, provide a sensitivity analysis to reveal the effects of uncertainty set, and design
a proper two-stage learning algorithm WRA2C. Finally, the experimental results on the Cart-Pole
environment verified the effectiveness and robustness of our proposed approaches.

Future works may favor a complete study for the effects of the radius of Wasserstein ball in our
WRA2C algorithm. We are also interested in studying robust policy improvement in a data-driven
situation where we only have access to the set of collected trajectories.
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A APPENDIX

Proof of Lemma 1:

Proof. (1) First, for {u1, u2} ⊂ U, if u1 ≥ u2, it’s easy to have Hu1 ≥ Hu2, i.e., the operator H is
monotone about u.
(2) For any real constant C and u ∈ U, we can verify that H(u+ C) = Hu+ γC.
(3) For any u1 ∈ U, u2 ∈ U, there is u1 ≤ u2 + γ||u1 − u2||∞. Combining (1) and (2), we
have Hu1 ≤ Hu2 + γ||u1 − u2||, i.e., Hu1 − Hu2 ≤ γ||u1 − u2||∞. Thus ||Hu1 − Hu2||∞ ≤
γ||u1 − u2||∞. Furthermore, since γ ∈ (0, 1), the operator H has the contract property in U under
L∞ norm.
(4) Via Banach fixed-point theorem, there exist an unique u∗ ∈ U satisfying Hu∗ = u∗.

Proof of Theorem 1:

Proof. Due to Assumption 1, for any u ∈ U, it is a measurable function on KA, an (Hau)(x) is
lower semi-continuous w.r.t. a. Based on the measurable selection theorem (see Lemma 8.3.8 in
(Hernández-Lerma & Lasserre, 2012b)), there is a deterministic Markov stationary policy f ∈ F,
satisfying Hfu∗ = Hu∗ = u∗.

11


	Introduction
	Wasserstein robust reinforcement learning
	Robust Markov Decision Process
	Wasserstein Distance
	Main Result
	Sensitivity Analysis

	Wasserstein Robust Advantange Actor-Critic Algorithms
	Experiments
	Conclusions
	Appendix

