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ABSTRACT

We present a technique to improve the generalization of deep representations
learned on small labeled datasets by introducing self-supervised tasks as auxiliary
loss functions. Although recent research has shown benefits of self-supervised
learning (SSL) on large unlabeled datasets, its utility on small datasets is un-
known. We find that SSL reduces the relative error rate of few-shot meta-learners
by 4%-27%, even when the datasets are small and only utilizing images within the
datasets. The improvements are greater when the training set is smaller or the task
is more challenging. Though the benefits of SSL may increase with larger train-
ing sets, we observe that SSL can have a negative impact on performance when
there is a domain shift between distribution of images used for meta-learning and
SSL. Based on this analysis we present a technique that automatically select im-
ages for SSL from a large, generic pool of unlabeled images for a given dataset
using a domain classifier that provides further improvements. We present results
using several meta-learners and self-supervised tasks across datasets with varying
degrees of domain shifts and label sizes to characterize the effectiveness of SSL
for few-shot learning.

1 INTRODUCTION

Current machine learning algorithms require enormous amounts of training data to learn new tasks.
This is a problem for many practical problems across domains such as biology and medicine where
labeled data is hard to come by. In contrast, we humans can quickly learn new concepts from
limited training data. We are able to do this by relying on our past “visual experience”. Recent work
attempts to emulate this by training a feature representation to classify a training dataset of “base”
classes with the hope that the resulting representation generalizes not just to unseen examples of
the same classes but also to novel classes, which may have very few training examples (called few-
shot learning). However, training for base class classification can force the network to only encode
features that are useful for distinguishing between base classes. In the process, it might discard
semantic information that is irrelevant for base classes but critical for novel classes. This might be
especially true when the base dataset is small or when the class distinctions are challenging.

One way to recover this useful semantic information is to leverage representation learning techniques
that do not use class labels, namely, unsupervised or self-supervised learning. The key idea is
to learn about statistical regularities (e.g., spatial relationship between patches, orientation of an
images) that might be a cue to semantics. Despite recent advances, these techniques have only been
applied to a few domains (e.g., entry-level classes on internet imagery), and under the assumption
that large amounts of unlabeled images are available. Their applicability to the general few-shot
scenario described above is unclear. In particular, can these techniques help prevent overfitting to
base classes and improve performance on novel classes in the few-shot setting? If so, does the benefit
generalize across domains and to more challenging tasks? Moreover, can we use self-supervised
training to boost performance in domains where even unlabeled images are hard to get?

This paper seeks to answer these questions. We show that with no additional training data, adding
a self-supervised task as an auxiliary task (Figure 1) improves the performance of existing few-shot
techniques on benchmarks across a multitude of domains (Figure 2). Intriguingly, we find that the
benefits of self-supervision increase with the difficulty of the task, for example when training from a
smaller base dataset, or with degraded inputs such as low resolution or greyscale images (Figure 3).
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One might surmise that as with traditional SSL, additional unlabeled images might improve perfor-
mance further. But what unlabeled images should we use for novel problem domains where unla-
beled data is not freely available? To answer this, we conduct a series of experiments with additional
unlabeled data from different domains. We find that adding more unlabeled images improves perfor-
mance only when the images used for self-supervision are within the same domain as the base classes
(Figure 4a); otherwise they can even negatively impact the performance of the few-shot learner (Fig-
ure 4b, 4c, 4d). Based on this analysis we present a simple approach that uses a domain classifier to
pick similar-domain unlabeled images for self-supervision from a large, generic pool of images. The
resulting method improves over the performance of a model trained with self-supervised learning
from images within the domain (Figure 4c). Taken together, this results in a powerful, general and
practical approach for improving few-shot learning from small datasets in novel domains. Finally,
these benefits are also observed on standard classification tasks (Appendix A.3).

2 RELATED WORK

Few-shot learning Few-shot learning aims to learn representations that generalize well to the
novel classes where only few images are available. To this end several meta-learning approaches
have been proposed that evaluate representations by sampling many few-shot tasks within the do-
main of a base dataset. These include optimization-based meta-learners, such as model-agnostic
meta-learner (MAML) (Finn et al., 2017), gradient unrolling (Ravi & Larochelle, 2017), closed
form solvers (Bertinetto et al., 2019), convex learners (Lee et al., 2019), etc. Others such as match-
ing networks (Vinyals et al., 2016) and prototypical networks (Snell et al., 2017) rely on distance
based classifiers, while Garcia & Bruna (2018) models higher-order relationships in data using a
graph network. Another class of methods (Gidaris & Komodakis, 2018; Qi et al., 2018; Qiao et al.,
2018) model the mapping between training data and classifier weights using a feed-forward network.

While the literature is rapidly growing, a recent study by Chen et al. (2019) has shown that the
differences between meta-learners are diminished when deeper network architectures are used and
they develop a strong baseline for few-shot learning based on ResNet18 architecture and prototypical
networks Snell et al. (2017). We build our experiments on top of this work and show that auxiliary
self-supervised tasks provide additional benefits with state-of-the-art deep networks across several
few-shot benchmarks. We also find that prototypical networks are often the best performing, though
the benefits of SSL generalize across meta-learners such as MAML.

Self-supervised learning Human labels are expensive to collect and hard to scale up. To this end,
there has been increasing research interest to investigate learning representations from unlabeled
data. In particular, the image itself already contains structural information which can be utilized.
Self-supervised learning approaches attempt to capture this.

There is a rich line of work on self-supervised learning. One class of methods removes part of the
visual data, and tasks the network with predicting what has been removed from the rest in a dis-
criminative manner (Larsson et al., 2016; Zhang et al., 2016; 2017). Doersch et al. (2015) proposed
to predict the relative position of patches cropped from images. Wang & Gupta (2015) used the
similarity of patches obtained from tracking as a self-supervised task and combined position and
similarity predictions of patches (Wang et al., 2017). Other tasks include predicting rotation (Gi-
daris et al., 2018), noise (Bojanowski & Joulin, 2017), clusters (Caron et al., 2018; 2019; Wu et al.,
2018), number of objects (Noroozi et al., 2017), missing patches (Pathak et al., 2016; Trinh et al.,
2019), motion segmentation labels (Pathak et al., 2017), artifacts (Jenni & Favaro, 2018), next patch
feature (Oord et al., 2018; Hénaff et al., 2019), or by maximizing mutual information (Hjelm et al.,
2019; Bachman et al., 2019), and training an adversarial generative model (Donahue & Simonyan,
2019). Doersch & Zisserman (2017) jointly trained four self-supervised tasks and found it to be ben-
eficial. Recently, Goyal et al. (2019) and Kolesnikov et al. (2019) compared various self-supervised
learning tasks at scale and concluded that solving jigsaw puzzles and predicting image rotations are
among the most effective, motivating the choice of self-supervised tasks in our experiments.

The focus of most prior works on self-supervised learning is to supplant traditional fully supervised
representation learning with unsupervised learning on large unlabeled datasets for downstream tasks.
Crucially in almost all prior works, self-supervised representations consistently lag behind fully-
supervised representations trained on the same dataset with the same architecture (Goyal et al.,
2019; Kolesnikov et al., 2019). In contrast, our work focuses on an important counterexample: self-
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Figure 1: Our framework combines supervised and self-supervised losses to learn represen-
tations on small datasets. Self-supervised tasks, such as jigsaw puzzle or rotation prediction, can
be derived from the images alone and act as a data-dependent regularizer for the shared feature
backbone.

supervision can in fact augment standard supervised training for few-shot transfer learning in the
low training data regime without relying on any external dataset. Our work also investigates the
effect of domain shifts across datasets used for SSL and a given task.

Multi-task learning Our work is related to multi-task learning, a class of techniques that train
on multiple task objectives together to improve each one. Previous works in the computer vision
literature have shown moderate benefits by combining tasks such as edge, normal, and saliency
estimation for images, or part segmentation and detection for humans (Kokkinos, 2017; Maninis
et al., 2019; Ren & Lee, 2018). However, there is significant evidence that training on multiple tasks
together often hurts performance on individual tasks (Kokkinos, 2017; Maninis et al., 2019). Only
certain task combinations appear to be mutually beneficial, and sometimes specific architectures are
needed. Our key contribution here is showing that self-supervised tasks and few-shot learning are
indeed mutually beneficial in this sense. The fact that self-supervised tasks require no annotations
makes our finding especially practically significant.

Concurrent works At the time of submission several concurrent works appear to draw similar
conclusions to ours. We briefly describe these, deferring a detailed comparison to the future when
code and experimental details become available. Asano et al. (2019) finds that self-supervised pre-
training is useful even with a single image. However, very large images and extreme data augmen-
tations are used. Carlucci et al. (2019) uses self-supervision to improve domain generalization. Gi-
daris et al. (2019), the most related work to ours, also shows that self-supervision improves few-shot
learning. Although this initial result is the same, we further show these benefits on smaller datasets
with harder recognition problems (fine-grained classification) and with deeper models. Moreover,
we also present a novel analysis of the impact of the domain of unlabeled data, and a new, simple
approach to automatically select similar-domain unlabeled data for self-supervision.

3 METHOD

We adopt the commonly used setup for few-shot learning where one is provided with labeled training
data for a set of base classesDb and a much smaller training set (typically 1-5 examples per class) for
novel classesDn. The goal of the few-shot learner is to learn representations on the base classes that
lead to good generalization on novel classes. Although in theory the base classes are assumed to have
a large number of labeled examples, in practice this number can be quite small for novel domains,
e.g. less than 5000 examples for the birds dataset (Welinder et al., 2010), making it challenging to
learn a generalizable representation.

Our framework, as seen in Figure 1, combines meta-learning approaches for few-shot learning that
rely on supervised labels with self-supervised learning on unlabeled images. Denote a training
dataset as {(xi, yi)}ni=1 consisting of pairs of images xi ∈ X and labels yi ∈ Y . A feed-forward
convolutional network f(x) maps the input to an embedding space, which is then mapped to the
label space using a classifier g. The overall mapping from the input to the label can be written as
g ◦ f(x) : X → Y . Learning consists of estimating functions f and g that minimize a loss ` on the
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predicted labels on the training data along with suitable regularizationR over the functions f and g.
This can be written as:

Ls :=
∑
i

`
(
g ◦ f(xi), yi

)
+R(f, g).

A commonly used loss is the cross-entropy loss and a regularizer is the `2 norm of the parameters
of the functions. For transfer g is discarded and relearned on training data for novel classes.

In addition, we consider self-supervised losses Lss based on labeled data x → (x̂, ŷ) that can be
derived from inputs x alone. Figure 1 shows two examples: the jigsaw task rearranges the input
image and uses the index of the permutation as the target label, while the rotation task uses the
angle of the rotated image as the target label. In our framework, a separate function h is used to
predict these labels from the shared feature backbone f with a self-supervised loss:

Lss :=
∑
i

`
(
h ◦ f(x̂i), ŷi

)
.

Our final loss function combines the two losses: L := Ls +Lss, and thus the self-supervised losses
act as a data-dependent regularizer for representation learning. Note that the domain of images
used for supervised and self-supervised losses denoted by Ds and Dss need not be identical. In
particular we often would like to use significantly larger sets of images for self-supervised learning
from related domains. Below we describe various losses we consider for image classification tasks.

3.1 SUPERVISED LOSSES (Ls)

Most of our results are presented using a meta-learner based on prototypical networks (Snell et al.,
2017) that perform episodic training and testing over sampled datasets in stages called meta-training
and meta-testing. During meta-training, we randomly sample N classes from the base set Db, then
we select a support set Sb with K images per class and another query set Qb with M images per
class. We call this an N -way K-shot classification task. The embeddings are trained to predict
the labels of the query set Qb conditioned on the support set Sb using a nearest mean (prototype)
model. The objective is to minimize the prediction loss on the query set. Once training is complete,
given the novel dataset Dn, class prototypes are recomputed for classification and query examples
are classified based on the distances to the class prototypes.

Prototypical networks are related to distance-based learners such as matching networks (Vinyals
et al., 2016) or metric-learning based on label similarity (Koch et al., 2015). In the Appendix we
also present few-shot classification results using a gradient-based meta-learner called MAML (Finn
et al., 2017), and one trained with a standard cross-entropy loss on the base classes. We also present
standard classification results where the test set contains images from the same base categories.

3.2 SELF-SUPERVISED LOSSES (Lss)

We consider two losses motivated by a recent large-scale comparison of the effectiveness of self-
supervised learning tasks (Goyal et al., 2019) described below:

Jigsaw puzzle task loss. In this case the input image x is tiled into 3×3 regions and permuted
randomly to obtain an input x̂. The target label ŷ is the index of the permutation. The index (one
of 9!) is reduced to one of 35 following the procedure outlined in Noroozi & Favaro (2016), which
grouped the possible permutations based on hamming distance to control the difficulty of the task.

Rotation task loss. We follow the method of Gidaris et al. (2018) where the input image x is rotated
by an angle θ ∈ {0°, 90°, 180°, 270°} to obtain x̂ and the target label ŷ is the index of the angle.

In both cases we use the cross-entropy loss between the target and prediction.

3.3 STOCHASTIC SAMPLING AND TRAINING

When the source of images used for SSL and meta-learning are identical the same batch of images
are used for computing Ls and Lss. For experiments investigating domain shifts (Sec. 4.2), where
SSL and meta-learner are trained on different distribution of images, a different batch (size of 64) is
used for computing Lss. After the two forward passes, one for the supervised task and one for the
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self-supervised task, the two losses are combined. While other techniques exist (Chen et al., 2018;
Kendall et al., 2018; Sener & Koltun, 2018), simply combining the two losses performed well.

4 EXPERIMENTS

We first describe the datasets and experimental details. We then present results for few-shot learning
on different datasets and SSL tasks in Section 4.1. Last, we investigate the effectiveness of SSL with
unlabeled data sampled from different domains in Section 4.2.

Datasets and benchmarks We experiment with datasets across diverse domains: Caltech-UCSD
birds (Welinder et al., 2010), Stanford cars (Krause et al., 2013), FGVC aircrafts (Maji et al., 2013),
Stanford dogs (Khosla et al., 2011), and Oxford flowers (Nilsback & Zisserman, 2006). Each
dataset contains between 100 to 200 classes with a few thousands of images. We also experi-
ment with the widely-used mini-ImageNet (Vinyals et al., 2016) and tiered-ImageNet (Ren et al.,
2018) benchmarks for few-shot learning. In mini-ImageNet, each class has 600 images, where in
tiered-ImageNet each class has 732 to 1300 images.

We split classes within a dataset into three disjoint sets: base, val, and novel. For each class all
the images in the dataset are used in the corresponding set. A model is trained on the base set of
categories, validated on the val set, and tested on the novel set of categories given a few examples
per class. For birds, we use the same split as Chen et al. (2019), where {base, val, novel} sets have
{100, 50, 50} classes respectively. The same ratio is used for the other four fine-grained datasets.
We use the original splits for mini-ImageNet and tiered-ImageNet.

We also present results on a setting where the base set is “degraded” either by reducing the resolu-
tion, removing color, or the number of training examples to 20% of the original set. This allows us
to study the effectiveness of SSL on even smaller datasets and as a function of the difficulty of the
task. Further details of the datasets are in the Appendix A.1.

Meta-learners and feature backbone We follow the best practices and use the codebase for few-
shot learning described in Chen et al. (2019). In particular, we use a prototypical network (Snell
et al., 2017) with a ResNet18 (He et al., 2016) as the feature backbone. Their experiments found this
to often be the best performing; however, we also experiment our method with other meta-learners
such as MAML (Finn et al., 2017) and softmax classifiers.

Learning and optimization We use 5-way (classes) and 5-shot (examples per-class) with 16 query
images for training. For experiments using 20% of labeled data, we use 5 query images for training
since the minimum number of images per class is 10. The models are trained with ADAM (Kingma
& Ba, 2015) with a learning rate of 0.001 for 60,000 episodes. We report the mean accuracy and
95% confidence interval over 600 test experiments. In each test episode,N classes are selected from
the novel set, and for each class 5 support images and 16 query images (or 5 query images when
using 20% labeled data) are used. We report results for N = {5, 20} classes.

Image sampling and data augmentation Data augmentation has a significant impact on few-shot
learning performance. We follow the data augmentation procedure outlined in Chen et al. (2019)
which resulted in a strong baseline performance of meta-learning. For label and rotation predictions,
images are first resized to 224 pixels for the shorter edge while maintaining the aspect ratio, from
which a central crop of 224×224 is obtained. For jigsaw puzzles, we first randomly crop 255×255
region from the original image with random scaling between [0.5, 1.0], then split into 3×3 regions,
from which a random crop of size 64×64 is picked. While it might appear that with self-supervision
the model effectively sees more images, we wish to point out that all the experiments use signif-
icant data augmentation, including cropping, flipping, and color jittering, which also significantly
increases the amount of training data. The gains from the self-supervised auxiliary tasks are over
and above any gains from data augmentation alone. More experimental details are in Appendix A.5.

Other experimental results In Appendix A.3, we show the benefits of using self-supervision
for standard classification tasks when training the model from scratch. We further visualize these
models in Appendix A.4 to show that models trained with self-supervision tend to avoid accidental
correlation of background features to class labels.
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Figure 2: Benefits of SSL for few-shot learning tasks. We show the accuracy over the ProtoNet
baseline of using different SSL tasks. The jigsaw task results in an improvement of the 5-way 5-shot
classification accuracy for a ProtoNet across datasets. Combining SSL tasks can be beneficial for
some datasets. Here SSL was performed on images within the base classes only. See Table 2 in the
Appendix for a tabular version and results for 20-way 5-shot classification.
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Figure 3: Benefits of SSL for harder few-shot learning tasks. We show the accuracy of using
jigsaw puzzle task over ProtoNet baseline on harder versions of the datasets. We see that SSL is
effective even on smaller datasets and the relative benefits are higher.

4.1 RESULTS ON FEW-SHOT LEARNING

Self-supervised learning improves few-shot learning Figure 2 shows the accuracies of various
models for 5-way 5-shot classification on few-shot benchmarks. Our ProtoNet baseline matches
the results of the mini-ImageNet and birds datasets presented in Chen et al. (2019) (in their Table
A5). Our results show that jigsaw puzzle task improves the ProtoNet baseline on all seven datasets.
Specifically, it reduces the relative error rate by 4.0%, 8.7%, 19.7%, 8.4%, 4.7%, 15.9%, and 27.8%
on mini-ImageNet, tiered-ImageNet, birds, cars, aircrafts, dogs, and flowers datasets respectively.
Predicting rotations also improves the ProtoNet baseline on most of the datasets, except for aircrafts
and flowers. We speculate this is because most flower images are symmetrical, and airplanes are
usually horizontal, making the rotation task too hard or too trivial to benefit main task. In addition,
combining these two SSL tasks can be beneficial sometimes. Our results also echo those of Gidaris
et al. (2019) who find that the rotation task improves on mini- and tiered-ImageNet. A tabular version
of the figure and the results for 20-way classification are included in Table 2 in Appendix A.2.

Gains are larger for harder tasks Figure 3 shows the performance on the degraded version of
the same datasets (first five groups). For cars and aircrafts we use low-resolution images where the
images are down-sampled by a factor of four and up-sampled back to 224×224 with bilinear inter-
polation. For natural categories we discard color. Low-resolution images are considerably harder to
classify for man-made categories while color information is most useful for natural categories (Su
& Maji, 2017). On birds and dogs datasets, the improvements using self-supervision (3.2% and
2.9% on 5-way 5-shot) are higher compared to color images (2.5% and 2.7%), similarly on the cars
and aircrafts datasets with low-resolution images (2.2% and 2.1% vs. 0.7% and 0.4%). We also
conduct an experiment where only 20% of the images in the base categories are used for both SSL
and meta-learning (last five groups in Figure 3). This results in a much smaller training set than
standard few-shot benchmarks: 20% of the birds dataset amounts to only roughly 3% of the popular
mini-ImageNet dataset. We find larger benefits from SSL in this setting. For example, the gain from
the jigsaw puzzle loss for 5-way 5-shot car classification increases from 0.7% (original dataset) to
7.0% (20% training data).
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(c) Selecting unlabeled data for SSL.
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(d) Effectiveness of SSL as a function of domain distance betweenDs andDss (shown on top).

Figure 4: Effect of size and domain of SSL on 5-way 5-shot accuracy. (a) More unlabeled
data from the same domain for SSL improves the performance of the meta-learner. (b) Replacing
a fraction (x-axis) of the images with those from other domains makes SSL less effective. (c)
A comparison of approaches to sample images from a pool for SSL. With random sampling, the
extra unlabeled data often hurts the performance, while those sampled using the “domain weighs”
improves performance on most datasets. When the pool contains images from related domains, e.g.,
birds and dogs, the performance using selected images matches that of using 100% within-dataset
images. (d) Accuracy of the meta-learner with SSL on different domains as function of distance
between the supervised domain Ds and the self-supervised domain Dss. See text for details.

Improvements generalize to other meta-learners We combine SSL with other meta-learners and
find the combination to be effective. In particular we use MAML (Finn et al., 2017) and a standard
feature extractor trained with cross-entropy loss (softmax). We observe that the average 5-way 5-
shot accuracies across five fine-grained datasets for softmax, MAML, and ProtoNet improve from
85.5%, 82.6% and 88.5% to 86.6%, 83.8% and 90.4% respectively when combined with the jigsaw
puzzle task. Detailed results are shown in Table 4 in Appendix A.2.

Self-supervision alone is not enough SSL alone significantly lags behind supervised learning
in our experiments. For example, a ResNet18 trained with SSL alone achieve 32.9% (w/ jigsaw)
and 33.7% (w/ rotation) 5-way 5-shot accuracy averaged across five fine-grained datasets. While
this is better than a random initialization (29.5%), it is dramatically worse than one trained with a
simple cross-entropy loss (85.5%) on the labels (Details in Table 2). Surprisingly, we found that
initialization with SSL followed by meta-learning did not yield improvements over meta-learning
starting from random initialization, supporting the view that SSL acts as a feature regularizer.

4.2 SELECTING DOMAINS FOR SELF-SUPERVISION

A promising direction of research in SSL is by scaling it to massive unlabeled datasets which are
readily available for some domains. However, does more unlabeled data always help for a task in
hand? This question hasn’t been sufficiently addressed in the literature as most prior works study
the effectiveness of SSL on a curated set of images, such as ImageNet, and their transferability to a
handful of tasks. In this section we conduct a series of experiments to characterize effect of size and
distribution Dss of images used for SSL in the context of few-shot learning on a domain Ds.

First we investigate if SSL on unlabeled data from the same domain improves the meta-learner.
We use 20% of the images in the base categories for meta-learning identical to setting in Figure 3.
The labels of the remaining 80% data are withheld and only the images are used for SSL. We
systematically vary the number of images used by the SSL from 20% to 100%. Results are presented
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in Figure 4a. The accuracy improves with the size of the unlabeled set with diminishing returns. Note
that 0% corresponds to no SSL and 20% corresponds to using only the labeled images for SSL.

Figure 4b shows an experiment where a fraction of the unlabeled images are replaced with images
from other datasets. For example 20% along the x-axis for birds indicate that 20% of the images in
base set are replaced by images drawn uniformly at random from other datasets. Since the number
of images used for SSL are identical, the x-axis from left to right represents increasing amounts
of domain shifts between Ds and Dss. We observe that the effectiveness of SSL decreases as the
fraction of out-of-domain images increases. Importantly, training with SSL on the available 20%
within domain images (shown as crosses) is often (3 out of 5 datasets) better than increasing the set
of images by five times to include out of domain images.

Figure 4d analyzes how the magnitude of the domain shift affects performance. Here all the images
in base classes are used (instead of using 20% data in previous experiment), and all the images for
SSL are sampled from different datasets. In addition to the five datasets (birds, cars, aircrafts, dogs,
flowers), we include 1) 5000 images of Aves from iNaturalist 2018 dataset (iNat) (Van Horn et al.,
2018), 2) 5000 images of other super-classes from iNat, and 3) 5760 images sampled from mini-
ImageNet. These domains are roughly of the same sizes (between 5k to 10k images each) but exhibit
varying degrees of domain shifts. To compute a “distance” between a pair of domains, we first es-
timate an embedding for each domain D using the mean image feature: Φ(D) =

∑
xi∈D φ(xi)/N ,

where N is the number of images within D, and use the Euclidean distance between their em-
beddings. Here φ(x) is an image embedding from a ResNet101 network pretrained on ImageNet.
Figure 4d shows the accuracy of the meta-learner when combined with SSL on different domains as
a function of the domain distance between Ds and Dss. Once again we see that the effectiveness of
SSL decreases with the distance from the supervised domain across all datasets.

Based on the above analysis we propose a simple method to select images for SSL from a large,
generic pool of unlabeled images in a dataset dependent manner. We use a “domain weighted”
model to select the top images based on a domain classifier, in our case a binary logistic regression
model trained with images from the source domain Ds as the positive class and from pool Dp as
the negative class based on ResNet101 image features. The top images are selected according to the
ratio p(x ∈ Ds)/p(x ∈ Dp). Note that these importance weights account for the domain shift. We
evaluate this approach using a pool of images from all five datasets as well as 30000 images each
from Aves of iNat, other super-classes of iNat and mini-ImageNet. For each dataset we use 20%
of the labeled images for meta-learning, then use the pool in a leave-one-out manner: all images
from a dataset are excluded from the pool to simulate a scenario where one does not have additional
within-domain images. The compositions of the selected images are shown in Appendix A.6.

Figure 4c shows results across datasets with meta-learner trained on 20% labeled examples. SSL
with 20% and 100% dataset denotes baselines when SSL uses 20% and 100% of the images within
domain. The latter is a reference “upper bound”. SSL pool “(random)” and “(weight)” denote two
approaches for selecting the remaining 80% of images from the pool. The former selects images
uniformly at random, which is detrimental for cars, dogs, and flowers. For dogs the performance is
even worse than no SSL. The pool selected according to the importance weights provides signifi-
cant improvements on birds and dogs as the pool has relevant images, and outperforms the random
selection on most datasets. These results are likely to improve by collecting an even larger pool.

5 CONCLUSION

We have shown that self-supervision improves transferability of representations on few-shot learn-
ing tasks across a range of different domains. Surprisingly, we found that self-supervision is more
beneficial for more challenging problems, especially when the number of images used for self-
supervision is small, orders of magnitude smaller than previously reported results. This has a practi-
cal benefit that the images within small datasets can be used for self-supervision without relying on a
large-scale external dataset. We have also shown that additional unlabeled images can improve per-
formance only if they are from the same or similar domains. Finally, for domains where unlabeled
data is limited, we present a novel, simple approach to automatically identify such similar-domain
images from a larger pool.
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A APPENDIX

A.1 DATASET DETAILS

The statistics of various datasets used in our experiments are shown in Table 1. We show results
on several fine-grained classification datasets in addition to standard few-shot benchmarks such as
mini- and tiered-ImageNet. Notably, the fine-grained datasets are significantly smaller.

Birds Cars Aircrafts Dogs Flowers

Setting Set Stats
mini-

ImageNet
tiered-

ImageNet Birds Cars Aircrafts Dogs Flowers

Few-shot
transfer

Base
# class 64 351 100 98 50 60 51

# images 38,400 448,695 5885 8162 5000 10337 4129

Val
# class 16 97 50 49 25 30 26

# images 9,600 124,261 2950 3993 2500 5128 2113

Novel
# class 20 160 50 49 25 30 25

# images 12,000 206,209 2953 4030 2500 5115 1947

Table 1: Example images and dataset statistics. For few-shot learning experiments the classes are
split into base, val, and novel set. Image representations learned on base set are evaluated on the
novel set while val set is used for cross-validation. These datasets vary in the number of classes but
are orders of magnitude smaller than ImageNet dataset.

A.2 RESULTS ON FEW-SHOT LEARNING

Table 2 shows the performance of ProtoNet with different self-supervision on seven datasets. We
also test the accuracy of the model on novel classes when trained only with self-supervision on
the base set of images. Compared to the randomly initialized model (“None” rows), training the
network to predict rotations gives around 2% to 21% improvements on all datasets, while solving
jigsaw puzzles only improves on aircrafts and flowers. However, these numbers are significantly
worse than learning with supervised labels on the base set, in line with the current literature.

Table 3 shows the performance of ProtoNet with jigsaw puzzle loss on harder benchmarks. The
results on degraded version of the datasets are shown in the top part, and the bottom part shows the
results of using only 20% of the images in the base categories. The gains using SSL are higher in
this setting.

Table 4 compares meta-learners based on a ResNet18 network trained with and without jigsaw
puzzle loss. Self-supervision improves the performance across different meta-learners and different
datasets. ProtoNet trained with self-supervision is the best model across all datasets.
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Loss

mini-
ImageNet

tiered-
ImageNet Birds Cars Aircrafts Dogs Flowers

5-way 5-shot
ProtoNet 75.2±0.6 75.9±0.7 87.3±0.5 91.7±0.4 91.4±0.4 83.0±0.6 89.2±0.6

ProtoNet + Jigsaw 76.2±0.6 78.0±0.7 89.8±0.4 92.4±0.4 91.8±0.4 85.7±0.5 92.2±0.4
Rel. error reduction 4.0% 8.7% 19.7% 8.4% 4.7% 15.9% 27.8%

Jigsaw 25.6±0.5 24.9±0.4 25.7±0.5 25.3±0.5 38.8±0.6 24.3±0.5 50.5±0.7
ProtoNet + Rotation 76.0±0.6 78.9±0.7 89.4±0.4 92.3±0.4 91.4±0.4 84.3±0.5 89.0±0.5

Rotation 51.4±0.7 50.7±0.8 33.1±0.6 29.4±0.5 29.5±0.5 27.3±0.5 49.4±0.7
ProtoNet + Jig. + Rot. 76.6±0.7 77.2±0.7 90.2±0.4 92.7±0.4 91.9±0.4 85.9±0.5 91.4±0.5

None 31.0±0.5 28.9±0.5 26.7±0.5 25.2±0.5 28.1±0.5 25.3±0.5 42.3±0.8
20-way 5-shot

ProtoNet 46.6±0.3 49.7±0.4 69.3±0.3 78.7±0.3 78.6±0.3 61.6±0.3 75.4±0.3
ProtoNet + Jigsaw 47.8±0.3 52.4±0.4 73.7±0.3 79.1±0.3 79.1±0.2 65.4±0.3 79.2±0.3

Jigsaw 9.2±0.2 7.5±0.1 8.1±0.1 7.1±0.1 15.4±0.2 7.1±0.1 25.7±0.2
ProtoNet + Rotation 48.2±0.3 52.4±0.4 72.9±0.3 80.0±0.3 78.4±0.2 63.4±0.3 73.9±0.3

Rotation 27.4±0.2 25.7±0.3 12.9±0.2 9.3±0.2 9.8±0.2 8.8±0.1 26.3±0.2
ProtoNet + Jig. + Rot. 49.0±0.3 51.2±0.4 75.0±0.3 79.8±0.3 79.0±0.2 66.2±0.3 78.6±0.3

None 10.8±0.1 11.0±0.2 9.3±0.2 7.5±0.1 8.9±0.1 7.8±0.1 22.6±0.2

Table 2: Performance on few-shot transfer task. The mean accuracy (%) and the 95% confidence
interval of 600 randomly chosen test experiments are reported for various combinations of loss
functions. The top part shows the accuracy on 5-way 5-shot classification tasks, while the bottom
part shows the same on 20-way 5-shot. Adding self-supervised losses to the ProtoNet loss improves
the performance on all seven datasets on 5-way classification results. On 20-way classification, the
improvements are even larger. The last row indicates results with a randomly initialized network.
The top part of this table corresponds to Figure 2.

Loss Birds Cars Aircrafts Dogs Flowers
Greyscale Low-resolution Low-resolution Greyscale Greyscale

5-way 5-shot
ProtoNet 82.2±0.6 84.8±0.5 85.0±0.5 80.7±0.6 86.1±0.6

ProtoNet + Jigsaw 85.4±0.6 87.0±0.5 87.1±0.5 83.6±0.5 87.6±0.5
20-way 5-shot

ProtoNet 60.8±0.4 64.7±0.3 64.1±0.3 57.4±0.3 69.7±0.3
ProtoNet + Jigsaw 65.7±0.3 68.6±0.3 68.3±0.3 61.2±0.3 71.6±0.3

Loss 20% Birds 20% Cars 20% Aircrafts 20% Dogs 20% Flowers
5-way 5-shot

ProtoNet 73.0±0.7 75.8±0.7 77.7±0.6 68.5±0.7 82.2±0.7
ProtoNet + Jigsaw 75.4±0.7 82.8±0.6 78.4±0.6 69.1±0.7 86.0±0.6

20-way 5-shot
ProtoNet 46.4±0.3 51.8±0.4 52.3±0.3 40.8±0.3 62.8±0.3

ProtoNet + Jigsaw 49.8±0.3 61.5±0.4 53.6±0.3 42.2±0.3 68.5±0.3

Table 3: Performance on few-shot transfer task with degraded inputs or less training data.
Accuracies are reported on novel set for 5-way 5-shot and 20-way 5-shot classification with degraded
inputs, and with a subset (20%) of the images in the base set. The loss of color or resolution, and
the smaller training set size make the tasks more challenging as seen by the drop in the performance
of the ProtoNet baseline. However the improvements of using the jigsaw puzzle loss are higher in
comparison to the results presented in Table 2.
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Loss
Birds Cars Aircrafts Dogs Flowers

5-way 5-shot
Softmax 81.5±0.5 87.7±0.5 89.2±0.4 77.6±0.6 91.3±0.5

Softmax + Jigsaw 83.9±0.5 90.6±0.5 89.6±0.4 77.8±0.6 90.9±0.5
MAML 81.2±0.7 86.9±0.6 88.8±0.5 77.3±0.7 79.0±0.9

MAML + Jigsaw 81.1±0.7 89.0±0.5 89.1±0.5 77.3±0.7 82.6±0.7
ProtoNet 87.3±0.5 91.7±0.4 91.4±0.4 83.0±0.6 89.2±0.6

ProtoNet + Jigsaw 89.8±0.4 92.4±0.4 91.8±0.4 85.7±0.5 92.2±0.4

Table 4: Performance on few-shot transfer task using different meta-learners. Using jigsaw
puzzle loss gives improvements across different meta-learners on most of the datasets. ProtoNet
with jigsaw loss performs the best on all five datasets.

A.3 RESULTS ON STANDARD FINE-GRAINED CLASSIFICATION

Here we present results on standard classification task. Different from few-shot transfer learning,
all the classes are seen in the training set and test set contains novel images from the same classes.
We use the standard training and test splits provided in the datasets. We investigate if SSL can
improve training of deep networks (e.g. ResNet18 network) when trained from scratch (i.e. with
random initialization) using images and labels in the training set only. The accuracy using various
loss functions are shown in Table 5. Training with self-supervision improves performance across
datasets. On birds, cars, and dogs, predicting rotation gives 4.1%, 3.1%, and 3.0% improvements,
while on aircrafts and flowers, the jigsaw puzzle loss yields 0.9% and 3.6% improvements.

Loss Birds Cars Aircrafts Dogs Flowers
Softmax 47.0 72.6 69.9 51.4 72.8

Softmax + Jigsaw 49.2 73.2 70.8 53.5 76.4
Softmax + Rotation 51.1 75.7 70.0 54.4 73.5

Table 5: Performance on standard classification task. Per-image accuracy (%) on the test set are
reported. Using self-supervision improves the accuracy of a ResNet18 network trained from scratch
over the baseline of supervised training with cross-entropy (softmax) loss on all five datasets.

A.4 VISUALIZATION OF LEARNED MODELS

To understand why the representation generalizes, we visualize what pixels contribute the most to
the correct classification for various models. In particular, for each image and model we compute
the gradient of the logits (predictions before softmax) for the correct class with respect to the input
image. The magnitude of the gradient at each pixel is a proxy for its importance and is visualized as
“saliency maps”. Figure 5 shows these maps for various images and models trained with and without
self-supervision on the standard classification task. It appears that the self-supervised models tend
to focus more on the foreground regions, as seen by the amount of bright pixels within the bound-
ing box. One hypothesis is that self-supervised tasks force the model to rely less on background
features, which might be accidentally correlated to the class labels. For fine-grained recognition,
localization indeed improves performance when training from few examples (see Wertheimer &
Hariharan (2019) for a contemporary evaluation of the role of localization for few-shot learning).

A.5 EXPERIMENTAL DETAILS

Additional optimization details on few-shot learning During training, especially for jigsaw puz-
zle task, we found it to be beneficial to not track the running mean and variance for the batch nor-
malization layer, and instead estimate them for each batch independently. We hypothesize that this
is because the inputs contain both full-sized images and small patches, which might have different
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Figure 5: Saliency maps for various images and models. For each image we visualize the magni-
tude of the gradient with respect to the correct class for models trained with various loss functions.
The magnitudes are scaled to the same range for easier visualization. The models trained with self-
supervision often have lower energy on the background regions when there is clutter. We highlight a
few examples with blue borders and the bounding-box of the object for each image is shown in red.

statistics. At test time we do the same. We found the accuracy goes up as the batch size increases
but saturates at size of 64.

When training with supervised and self-supervised loss, a trade-off term λ between the losses can
be used, thus the total loss is L = (1 − λ)Ls + λLss. We find that simply use λ = 0.5 works the
best, except for training on mini- and tiered-ImageNet with jigsaw loss, where we set λ = 0.3. We
suspect that this is because the variation of the image size and the categories are higher, making the
self-supervision harder to train with limited data. When both jigsaw and rotation losses are used, we
set λ = 0.5 and the two self-supervised losses are averaged for Lss.

For training meta-learners, we use 16 query images per class for each training episode. When only
20% of labeled data are used, 5 query images per class are used. For MAML, we use 10 query images
and the approximation method for backpropagation as proposed in Chen et al. (2019) to reduce the
GPU memory usage. When training with self-supervised loss, it is added when computing the loss
in the outer loop. We use PyTorch (Paszke et al., 2017) for our experiments.

For the domain classifier, we first obtain features from the penultimate-layer (2048 dimensional)
from a ResNet101 model pretrained on ImageNet. We then train a binary logistic regression model
with weight decay using LBFGS for 1000 iterations. The images from labeled dataset are the posi-
tive class and images from pool are the negative. A loss for the positive class is scaled by the inverse
of its frequency to account for the significantly larger number of negative examples.

Optimization details for standard classification For standard classification (Appendix A.3) we
train a ResNet18 network from scratch. All the models are trained with ADAM optimizer with a
learning rate of 0.001 for 600 epochs with a batch size of 16. We track the running statistics for
the batch normalization layer for the softmax baselines following the conventional setting, i.e. w/o
self-supervised loss, but do not track these statistics when training with self-supervision.

Architectures for self-supervised tasks For jigsaw puzzle task, we follow the architecture
of Noroozi & Favaro (2016) where it was first proposed. The ResNet18 results in a 512-dimensional
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feature for each input, and we add a fully-connected (fc) layer with 512-units on top. The nine
patches gives nine 512-dimensional feature vectors, which are concatenated. This is followed by
a fc layer, projecting the feature vector from 4608 to 4096 dimensions, and a fc layer with 35-
dimensional outputs corresponding to the 35 permutations for the jigsaw task.

For the rotation task, the 512-dimensional output of ResNet18 is passed through three fc layers
with {512, 128, 128, 4} units. The predictions correspond to the four rotation angles. Between each
fc layer, a ReLU activation and a dropout layer with dropout probability of 0.5 are added.

A.6 DETAILS OF THE DATASET SELECTED FROM POOL

Table 6 describes the composition of the unlabeled images sampled from a generic pool for SSL
experiments presented in Section 4.2 (Figure 4c). “Random sampling” uniformly samples images
proportional to the size of each dataset, while the “domain weighted” one tends to pick more images
from related domains. This is also indicated by the domain distance of the sampled images with
respect to the source domain. The improvements are larger when the domain distance is small, e.g.,
for birds, dogs, and flowers.

Dataset

Labeled dataset
20% Birds 20% Cars 20% Aircrafts 20% Dogs 20% Flowers

Selection method
random weight random weight random weight random weight random weight

Birds 1177 1177 325 87 184 114 410 118 156 9
Cars 303 2 1632 1632 242 466 532 594 230 12

Aircrafts 214 3 259 259 1000 1000 356 285 129 0
Dogs 413 19 554 657 334 251 2067 2067 283 91

Flowers 167 3 230 162 140 40 290 145 825 825
iNat aves 1133 4176 1599 792 957 815 1997 744 767 119

iNat others 1089 108 1546 1555 935 240 2048 964 793 2533
mini-ImageNet 1389 397 2017 3018 1208 2074 2637 5420 946 540

Domain distance→ 6.69 0.94 11.42 9.69 13.41 11.13 8.72 3.68 13.38 4.57
Accuracy (%)→ 75.7 78.5 79.2 80.8 79.7 79.2 66.6 74.6 83.4 85.6

Table 6: Composition of the unlabeled datasets selected from a pool of images used in Figure 4c.
We list the number of images in each source datasets. We also provide domain distance between the
selected images and the labeled dataset. The 5-way 5-shot accuracy of the models trained with SSL
are shown in the last row. The performance correlates with domain distance: when the distribution
of unlabeled data is closer to labeled data, the performance is better.
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