
Under review as a conference paper at ICLR 2020

STOCHASTIC GRADIENT METHODS WITH

BLOCK DIAGONAL MATRIX ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive gradient approaches that automatically adjust the learning rate on a per-
feature basis have been very popular for training deep networks. This rich class
of algorithms includes ADAGRAD, RMSPROP, ADAM, and recent extensions. All
these algorithms have adopted diagonal matrix adaptation, due to the prohibitive
computational burden of manipulating full matrices in high-dimensions. In this
paper, we show that block-diagonal matrix adaptation can be a practical and power-
ful solution that can effectively utilize structural characteristics of deep learning
architectures to significantly improve convergence and out-of-sample generaliza-
tion. We present ADABLOCK, a general framework for block-diagonal matrix
adaption via coordinate grouping, which includes counterparts of the aforemen-
tioned algorithms. We prove its convergence in non-convex optimization and
provide generalization error bounds, highlighting benefits compared to diagonal
versions. In addition, we propose two techniques enriching the ADABLOCK family:
i) an efficient spectrum-clipping scheme that benefits from superior generalization
performance of SGD and ii) a randomized layer-wise block diagonal adaptation
scheme to further reduce computational cost. Extensive experiments show that
ADABLOCK achieves state-of-the-art results on several deep learning tasks, and
can outperform adaptive diagonal methods, vanilla SGD, as well as a modified
version of full-matrix adaptation proposed very recently.

1 INTRODUCTION

Stochastic gradient descent (SGD, Robbins & Monro (1951)) is a dominant approach for training
large-scale machine learning models such as deep networks. At each iteration of this iterative method,
the model parameters are updated in the opposite direction of the gradient of the objective function
typically evaluated on a mini-batch, with step size controlled by a learning rate. While vanilla SGD

uses a common learning rate across coordinates (possibly varying across time), several adaptive
learning rate algorithms have been developed that scale the gradient coordinates by square roots of
some form of average of the squared values of past gradients coordinates. The first key approach
in this class, ADAGRAD (Duchi et al., 2011; McMahan & Streeter, 2010), uses a per-coordinate
learning rate based on squared past gradients, and has been found to outperform vanilla SGD on sparse
data. However, in non-convex dense settings where gradients are dense, performance is degraded,
since the learning rate shrinks too rapidly due to the accumulation of all past squared gradient in its
denominator. To address this issue, variants of ADAGRAD have been proposed that use the exponential
moving average (EMA) of past squared gradients to essentially restrict the window of accumulated
gradients to only few recent ones. Examples of such methods include ADADELTA (Zeiler, 2012),
RMSPROP (Tieleman & Hinton, 2012), ADAM (Kingma & Ba, 2015), and NADAM (Dozat, 2016).

Despite their popularity and great success in some applications, the above EMA-based adaptive
approaches have raised several concerns. Wilson et al. (2017) studied their out-of-sample gener-
alization and observed that on several popular deep learning models their generalization is worse
than vanilla SGD. Recently, Reddi et al. (2018) showed that they may not converge to the optimum

1

Under review as a conference paper at ICLR 2020

(or critical point) even in simple convex settings with constant minibatch size, and noted that the
effective learning rate of EMA methods can increase fairly quickly while for convergence it should
decrease or at least have a controlled increase over iterations. AMSGRAD, proposed in Reddi et al.
(2018) to fix this issue, did not yield conclusive improvements in terms of generalization ability.
To simultaneously benefit from the generalization ability of vanilla SGD and the fast training of
adaptive approaches, Luo et al. (2019) recently proposed ADABOUND and AMSBOUND as variants
of ADAM and AMSGRAD, which employ dynamic bounds on learning rates to guard against extreme
learning rates. Chen et al. (2019) introduced ADAFOM that only add momentum to the first moment
estimate while using the same second moment estimate as ADAGRAD. Zaheer et al. (2018) showed
that increasing minibatch sizes enables convergence of ADAM, and proposed YOGI which employs
additive adaptive updates to prevent informative gradients from being forgotten too quickly. Yu et al.
(2017) considers a variant of diagonal adaptation where, for each neural network layer, the gradients
are normalized by the `2 norm of the layer’s gradients.

We note that all the aforementioned adaptive algorithms deal with adaptation in a limited way, namely
they only employ diagonal information of Gradient of Outer-Product (gtgTt where gt is the stochastic
gradient at time t, a.k.a. GOP). Though initially discussed in Duchi et al. (2011), full matrix adaptation
has been mostly ignored due to its prohibitive computational overhead in high-dimensions. The
only exception is the GGT algorithm Agarwal et al. (2019); it uses a modified version of full-matrix
ADAGRAD with exponentially attenuated gradient history as in ADAM, but truncated to a small
window parameter so the preconditioning matrix becomes low rank thereby computing its inverse
square root effectively. Lafond et al. (2017) proposes a block diagonal structure in the context of
natural gradients which always requires a probabilistic model.

Contributions. In this paper, we propose an extended form of SGD learning with block-diagonal
matrix adaptation that can better utilize the structural characteristics of deep learning architectures.
We also show that it can be a practical and powerful solution, which can actually outperform vanilla
SGD and achieve state-of-the-art results on several deep learning tasks. More specifically, the main
contributions of this paper are as follows:

• We provide an SGD framework with block diagonal matrix adaptation via coordinate grouping,
ADABLOCK. This framework takes advantage of richer information on interactions across
different gradient coordinates, while relaxing the expensive computational cost of full matrix
adaptation in large-scale problems. In addition, we introduce several grouping strategies that
are practically useful for deep learning problems.
• We provide the first convergence analysis of our framework in the non-convex setting, and

highlight difference and benefits compared with diagonal versions. We investigate how the
block sizes affect the convergence theoretically and empirically. Moreover, we provide insights
on why ADABLOCK can improve generalization compared to usual diagonal approaches.
• We introduce spectrum-clipping, a non-trivial extension of Luo et al. (2019), to further boost

the generalization ability of ADABLOCK. Spectrum-clipping allows the block diagonal matrix
to become a constant multiple of the identity matrix in the latter part of training, similarly to
vanilla SGD. In addition, we propose RADABLOCK, a randomized layer-wise ADABLOCK

scheme, to further reduce computational cost.
• We evaluate the training and generalization ability of our approaches on popular deep learning

tasks. Our experiments reveal that block diagonal methods perform better than diagonal
approaches, even for small grouping sizes, and can also outperform vanilla SGD and the
modified version of full-matrix adaptation GGT.

Notation. For a vector x, ‖x‖p denotes the vector p-norm, and ‖x‖ is ‖x‖2 if not specified. For
a matrix A, |||A|||p indicates the matrix p-norm for matrix A, and λ(A) returns a eigenvalue list
(spectrum) of A. λmin(A) and λmax(A) denote the minimum and maximum eigenvalue of A
respectively. The function Clip(x, a, b) represents clipping x element-wise with the interval I = [a, b].
Lastly, log |A| denotes the log-determinant of a matrix A.

2

Under review as a conference paper at ICLR 2020

(a) input-neuron (b) output-neuron (c) partially group (d) filter-wise group

Figure 1: Examples of coordinate grouping. The weights with same color belong to the same group.

2 ADAPTIVE GRADIENT METHODS WITH BLOCK DIAGONAL MATRIX

ADAPTATIONS VIA COORDINATE PARTITIONING

In the context of stochastic optimization, Duchi et al. (2011) proposed a full-matrix variant of
ADAGRAD. This version employs a preconditioner which exploits first-order information only, via
the sum of outer products of past gradients:

gt = ∇f(xt), Gt = Gt−1 + gtg
T
t , xt+1 = xt − αt(G1/2

t + δI)−1gt (1)

where gt is a stochastic gradient at time t, αt is a step-size, and δ is a small constant for numerical
stability. Duchi et al. (2011) presented regret bounds for (1) in the convex setting. However, this
approach is quite expensive due to G1/2

t term, so they proposed to only use the diagonal entries of
Gt. Popular adaptive methods for training deep models such as RMSPROP/ADAM are based on such
diagonal adaptation. Their general form and designs of the 2nd momentum are given in the appendix.

Duchi et al. (2011) also discussed the case where full-matrix adaptation can converge faster than its
popular diagonal counterpart. Motivated by this, we first check through a toy MLP experiment whether
preconditioning with exact GOP (1) can be more effective even in the deep learning context. Our
experiment shows that one can achieve faster convergence and better objective values by considering
the interaction between gradient coordinates (1). Details are provided in appendix due to space
constraint. The caveat here is that using full GOP adaptation in real deep learning optimization
problems is computationally intractable due to the square root operator in (1). Nevertheless, is the
best choice to simply use diagonal approximation given the available computation budget? What if
we can afford to pay a little bit more for our computations?

Algorithm 1 ADABLOCK: Adaptive Gradient
Methods with Block Diagonal Matrix Adaptation

Input: Stepsize αt, initial point x1 ∈ Rd, and
{β1,t}Tt=1 ∈ [0, 1). The function Ht designs
V̂t with dynamic size of r blocks, {V̂t,[j]}rj=1.
Initialize: m0 = 0, V̂0 = 0.
Require: Coordinate partition P .
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt←∇f(xt)
mt← β1,tmt−1 + (1− β1,t)gt
for j = 1, 2, . . . , r do

V̂t,[j]←Ht(g1,[j], · · · , gt,[j]; P)
end for
xt+1← xt − αt(V̂ 1/2

t + δI)−1mt

end for

Main Algorithm: Adaptive SGD with Block Diag-
onal Adaptation (ADABLOCK)

We address the above question and provide a family of
adaptive SGD bridging exact GOP adaptation and its
diagonal approximation, via coordinate partitioning.
Given a coordinate partition, we simply ignore the
interactions of coordinates between different groups.
For instance, given a gradient g ∈ R6, one example
of constructing block diagonal matrices via coordi-
nate partitioning is g = (g1, g2︸ ︷︷ ︸

G1

, g3, g4, g5︸ ︷︷ ︸
G2

, g6︸︷︷︸
G3

) →

[gG1 g
T
G1
| 0 | 0 ; 0 | gG2 gTG2 | 0 ; 0 | 0 | gG3 gTG3] where

Gi represents each group and gGi denotes the collec-
tion of entries corresponding to group Gi. Both exact
GOP and diagonal approximation are special cases
of our family. Exploring the use of block-diagonal
matrices was suggested as future work in Duchi et al. (2011), and our work therefore provides an
in-depth study of this proposal. Our main algorithm, Algorithm 1, formalizes our approach for a
total r groups where each group Gi has a size of ni for i ∈ [r]. The Algorithm 1 can handle arbitrary
coordinate grouping with appropriate reordering of entries, and groups of unequal sizes.

3

Under review as a conference paper at ICLR 2020

(a) From the same layer (b) From different layers

3 0 3
W(1)

11

3

0

3

W
(1

)
21

RMSProp with Diagonal Matrix

(c) RMSPROP-Diag

3 0 3
W(1)

11

3

0

3

W
(1

)
21

RMSProp with Block Diagonal Matrix

(d) RMSPROP-Group

Figure 2: Top: Loss surface for different groupings;
Bottom: optimization histories on the loss surface (a).

Effect of grouping on optimization. Fig-
ure 1 shows some grouping examples
in the context of deep learning models:
grouping the weights with the same color
in a network can approximate the exact
GOP matrix with a block diagonal ma-
trix of several small full matrices. To see
which grouping could be more effective in
terms of optimization, we revisit our MLP
toy example. Figure 2-(a,b) show the loss
landscapes for different grouping strate-
gies (weights other than shown are fixed
as true model values). We can see that the
loss landscape when grouping weights in
the same layer has a much more dynamic
curvature than when grouping weights in
different layers. In this context, we expect
that a block-diagonal preconditioner is effective in terms of optimization and illustrate this empirically
by comparing the grouping version for the loss landscape with dynamic curvature (Figure 2-(a)), and
its diagonal counterpart. To figure out the effect of the block-diagonal structure only, we compare
both approaches using RMSPROP which does not consider the 1st-order momentum. Figure 2-(c,d)
show the optimization histories. The block diagonal extension of RMSPROP converges to a stationary
point in fewer steps than usual RMSPROP and shows a more stable trajectory.

3 ANALYSIS ON BLOCK DIAGONAL MATRIX ADAPTATIONS

3.1 CONVERGENCE IN NON-CONVEX OPTIMIZATION

In this section, we provide a theoretical analysis on the convergence of Algorithm 1. Towards this,
we consider the form of non-convex optimization problem, min .f(x) := Eξ∼P

[
f(x; ξ)

]
where x

is an optimization variable and ξ is a random variable representing randomly selected data sample
from training data S. As in other works for non-convex optimization such as (Ghadimi & Lan, 2013;
2016), we study the convergence to “stationarity” and hence derive upper bounds of ‖∇f(x)‖2 by
Algorithm 1, under the following mild conditions:
Assumption 1. (a) f is differentiable, L-smooth, and lower bounded. (b) At time t, the algorithm
can access a noisy gradient. We assume the true gradient ∇f(xt) and noisy gradient gt are both
bounded, i.e. ‖∇f(xt)‖2, ‖gt‖2 ≤ G for all t. (c) The noisy gradient gt is unbiased and the noise
is independent, i.e. gt = ∇f(xt) + ζt where E[ζt] = 0 and ζt ⊥⊥ ζs for t 6= s. (d) The sequence of
β1,t ∈ [0, 1), t ∈ [T] in Algorithm 1 is non-increasing. (e) ‖αtV̂ −1/2t mt‖2 ≤ D for some D > 0.

Note that the condition (a) is a key assumption in general non-convex optimization analysis, and
(b)-(d) are standard ones in the line of work on stochastic gradient based solvers such as Chen et al.
(2019). The last condition (e) states that the final step vector αtV̂

−1/2
t mt should be finite, which is

also a mild condition. We are now ready to state our first theorem.

Theorem 1. Let Qt := |||αt−1V̂ −1/2t−1 − αtV̂ −1/2t |||2 = maxj∈[r]{|||αt−1V̂ −1/2t−1,[j] − αtV̂
−1/2
t,[j] |||2} for

Algorithm 1 which measures the maximum difference in effective spectrums over all diagonal blocks
V̂t,[j] and γt := λmin(αtV̂

−1/2
t). Then, under Assumption 1, Algorithm 1 is guaranteed to yield

min
t∈[T]

[
‖∇f(xt)‖2

]
≤

E

[
C1

Term A︷ ︸︸ ︷
T∑
t=1

∥∥∥αtV̂ −1/2t gt

∥∥∥2 + C2

Term B︷ ︸︸ ︷
T∑
t=2

Qt + C3

T−1∑
t=2

Q2
t

]
+ C4

T∑
t=1

γt

,
s1(T)

s2(T)
(2)

4

Under review as a conference paper at ICLR 2020

0 20000 40000
Iterations, T

100

150

200

250

T

t=
1

tV
1/

2
t

g t
2

Term A

AdaBlock-1
AdaBlock-2
AdaBlock-5
AdaBlock-10
AdaBlock-25

0 20000 40000
Iterations, T

100

150

200

250

T

t=
2|||

t
1V

1/
2

t
1

tV
1/

2
t

||| 2

Term B

0 20000 40000
Iterations, T

40

20

0

20

40

60

2

1
2
(lo

g|
V T

|
lo

g|
V t

0|)

Log-determinant

Figure 3: Empirical studies with block diagonal extension of ADAM with stepsize αt = 10−3.

where C1, C2, and C3 are constants independent of problem dimension d and the number of iterations
T , and C4 is a constant independent of T .

Note that while Theorem 1 is generally applicable to any Adam-type block diagonal matrix adapta-
tions, the effect of block size b is implicitly represented in (2). As we will see below, the terms here
can be further simplified for some cases depending on algorithmic details.

• Sufficient Condition for Convergence. From Theorem 1, we can see that s1(T) = o
(
s2(T)

)
provides a sufficient condition for convergence. For example, ADAGRAD with αt = α/

√
t satisfies

s1(T) = O(log |V̂T | + log T + 1) and s2(T) = Ω(
√
T), so s1(T) = o(s2(T)). In contrast,

RMSPROP/ADAM with αt = α satisfies s1(T) = O(log |V̂T | + T + 1) and s2(T) = Ω(
√
T), so

s1(T) 6= o(s2(T)) (see Appendix for details).

• Comparison to Prior Analysis. The special case of (2) for a diagonal case (b = 1) provides
the convergence bound of standard Adam-type diagonal adaptations which was previously studied
in (Chen et al., 2019). However, our bound is strictly tighter than that of (Chen et al., 2019).
Specifically, the Term B in (Chen et al., 2019) involves ‖αt−1/

√
v̂t−1 − αt/

√
v̂t‖1 while ours is

‖αt−1/
√
v̂t−1 − αt/

√
v̂t‖∞.

• Convergence of AdaGrad. We can instantiate our theorem for block diagonal extensions of
ADAGRAD/ADAFOM (Chen et al., 2019; Zou & Shen, 2018) where the benefit of using block
diagonal adaptation is explicit:

Corollary 1. (ADAGRAD/ADAFOM) Consider block diagonal version of ADAGRAD/ADAFOM

with αt = α/
√
t under Assumption 1 (in case of ADAGRAD, β1 = 0). Then, they

achieve s1(T) = O(log |V̂T |+ log T︸ ︷︷ ︸
From Term A

+ 1︸︷︷︸
From Term B and others

) and s2(T) = Ω(
√
T), hence we have

mint∈[T] E
[
‖∇f(xt)‖2

]
= O(log |V̂T |/

√
T + log T/

√
T + 1/

√
T). Moreover, for any coordinate

partition it is guaranteed that log |V̂T | decreases as a block size b increases.

• Convergence of EMA-based Algorithms. Now, we consider popular EMA-based algorithms
such as RMSPROP/ADAM, i.e., the design function Ht in Algorithm 1 constructs V̂t as V̂t =
β2V̂t−1 + (1 − β2)gtg

T
t with β2 ∈ [0, 1). For the convergence guarantee of this family, we need

the following matrix Λt := αt−1V̂
−1/2
t−1 − αtV̂

−1/2
t should be positive semidefinite which is a

generalized version of Γt := αt−1/
√
vt−1 − αt/

√
vt ≥ 0 in previous analysis (Reddi et al., 2018;

Chen et al., 2019). From Proposition 1 in Appendix E, we can expect that the Term A/Term B of
RMSPROP/ADAM also have similar dynamics as those of ADAGRAD. For empirical studies, we
design a simple experiment with MLP 784-100-10 on MNIST dataset. We optimize the network
parameters via block diagonal extension of ADAM with constant β1,t = 0.9 and β2 = 0.999. Figure
3 illustrates the Term A/Term B/Log-determinant for stepsize αt = 10−3. In Figure 3, both the Term
A and log |V̂T | decreases as a block size b increases, which corroborates Proposition 1.

3.2 UNIFORM STABILITY AND GENERALIZATION ERROR BOUNDS OF ALGORITHM 1

The generalization error of a randomized algorithm A (e.g., SGD) on training data S is defined as
εgen := ES,A

[
RS(A(S)) − R(A(S))

]
where RS and R denote empirical risk and population risk

5

Under review as a conference paper at ICLR 2020

respectively. Hardt et al. (2015) show that an ε-uniformly stable algorithm satisfies |εgen| ≤ ε where
ε-uniform stability is defined as follows:
Definition 1. (Hardt et al., 2015) Let S, S′ ∈ Zn be two datasets of size n that differ in only one exam-
ple. The Algorithm A is said to be ε-uniformly stable if supz∈D EA

[
f(A(S); z)− f(A(S′); z)

]
≤ ε.

In order to bound the generalization error using the result of (Hardt et al., 2015), it would suffice
under a Lipschitz continuity as in our Assumption 1-(b) to show that EA

[
‖θ − θ′‖2

]
is bounded

since supz∈D EA
[
f(A(S); z)−f(A(S′); z)

]
≤ GEA

[
‖θ−θ′‖2

]
. Here, we consider an EMA-based

design function Ht and defer the result of ADAGRAD to Appendix.
Theorem 2. (EMA-BASED) For αt = α and β1,t = 0, we have the following recurrence relation,

E
[
∆T+1

]
≤ α

√
T

n
√

1− β2

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

where t0 denotes the time when V̂t and V̂ ′t becomes full-rank with the quantities

g(V̂T) := t0(1−β2)G
2

δ2 + E[log |V̂T | − log |V̂t0 |︸ ︷︷ ︸
Term C

] + d(T − t0) log 1
β2

, and

JT := G
∑T
t=1 E[|||(V̂ 1/2

t + δI)−1|||2︸ ︷︷ ︸
Term D

+ |||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸
Term D

] + L
∑T
t=1 E[|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D

∆t].

In the quantities g(V̂T) and JT , we remark the Term C/Term D since only those terms depend on the
block sizes. Therefore, we investigate the dynamics of Term C/Term D as we will see below.

0 10000 20000
Iterations, T

9.0

9.5

10.0

|||(
V1/

2
t

+
I)

1 |||
2

Spectral Norm

AdaBlock-1
AdaBlock-2
AdaBlock-5
AdaBlock-10
AdaBlock-25

Figure 4: Term D

• Dynamics of Term C/Term D. In Theorem 2, the Term C
is smallest when b = d as in Corollary 1 while the Term D is
smallest for b = 1 since maxiAii ≤ λmax(A) for any matrix
A ∈ S++. By the way, the Term D can be bounded as |||(V̂ ′t 1/2 +
δI)−1|||2 ≤ 1/δ which is independent of T . For empirical studies,
we revisit our experiment with MLP 784-100-10 on MNIST
dataset. The Figure 4 shows that α|||(V̂ ′t 1/2 + δI)−1|||2 converges
to α/δ (Here, α/δ = 10−3/10−4 = 10) regardless of block sizes
and the difference among block sizes is negligible compared to
log |V̂T | (see Figure 3). As a result, the Term C is dominant, so
we can expect that E[∆t] grows slower for b > 1 than b = 1.
• Large δ Improves Generalization. Zaheer et al. (2018) suggest that one should use large δ such
as 10−3 to improve generalization but with only empirical studies. In Theorem 2, it can be seen
clearly that the growth rate of ∆t is slower for large δ, which in result improves generalization.

4 IMPROVING GENERALIZATION AND COMPUTATIONAL COST

Interpolating SGD via Spectrum-Clipping. It has been shown in Wilson et al. (2017) that adap-
tive methods are better than vanilla SGD in the early stage but get worse as the learning process
matures. To address this, Keskar & Socher (2017) suggest training networks with ADAM at the
beginning and switching to SGD later. Luo et al. (2019) propose methods ADABOUND/AMSBOUND

which clip the effective learning rate αt/(
√
v̂t + ε) of ADAM by decreasing sequence of intervals

It = [ηl(t), ηu(t)] every iteration which converges to some point, thereby resembling SGD in the end.
However, this type of extension is not obvious in our framework due to the absence of effective learning
rate in our case. Instead, we observe that the spectral property is important in our analysis (In Theorem
1 and 2: both convergence and generalization depend on log |V̂T |). Motivated on them, we propose a
spectrum-clipping scheme which clips the spectrum of αt(V̂

1/2
t + δI)−1 by decreasing sequence of

intervals. For spectrum-clipping, we use the following modified update rule in Algorithm 1 after con-
structing V̂t: (i) Ût, Σ̂

1/2
t , ← SVD(V̂

1/2
t), (ii) Σ̃

−1/2
t ← Clip(λ(αt(Σ̂

1/2
t + δI)−1), λl(t), λu(t)

)
,

and (iii) xt+1 ← xt − ÛTt Σ̃
−1/2
t Ûtmt. We schedule the sizes of clipping intervals converging to a

single point uniformly over the spectrum so that αt(V̂
1/2
t + δI)−1 can be easily computed in the

form of constant times identity matrix and effectively behaves like vanilla SGD.

6

Under review as a conference paper at ICLR 2020

0 25 50 75 100
Epochs

10 9

10 7

10 5

10 3

10 1

Tr
ai

ni
ng

 L
os

s

LeNet-5-Caffe

0 25 50 75 100
Epochs

97

98

99

100

Te
st

 A
cc

ur
ac

y
(%

)

LeNet-5-Caffe

AdaBlock-10 AdaBlock-25 Adam GGT

Figure 5: Results on MNIST classification.

0 200 400 600 800 1000
Epochs

10 2

3 × 10 3

4 × 10 3

6 × 10 3

Tr
ai

ni
ng

 L
os

s

Deep Sets

0 250 500 750 1000
Epochs

85

86

87

88

89

90

Te
st

 A
cc

ur
ac

y
(%

)

Deep Sets

AdaBlock-16 AdaBlock-32 Adam

(a) Point Cloud Classification on DeepSets

1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

M
IG

 S
co

re

-TCVAE

AdaBlock Adam

(b) MIG score on β-TCVAE

Figure 6: Results on point cloud classification and β-TCVAE.

Randomized Layer-wise ADABLOCK (RADABLOCK). To further reduce the computational cost,
we propose a randomized update scheme. At each iteration, we select l layers at random to be updated
via ADABLOCK, while the remaining layers are updated via the usual diagonal approximation. By
bridging block-diagonal and diagonal adaptation, we wish to combine the advantages of both ap-
proaches: fast per-iteration time of diagonal adaptations and faster convergence/better generalization
of ADABLOCK. Additional considerations on computations and memory are provided in Appendix.

5 EXPERIMENTS

We consider three sets of experiments. The first shows the differences between block-diagonal and
diagonal versions. The second investigates whether block diagonal matrix adaptation can achieve
state-of-the-art performance on benchmark architecture/dataset for various important deep learning
problems. The third evaluates RADABLOCK, which aims at further reducing computational cost. For
the first set, we do not consider the spectrum-clipping or randomized update in Section 4 to clearly
assess the effect of coordinate grouping. In Algorithm 1, coordinate grouping can be done in a number
of ways. Given our insight that grouping weights in the same layer could be more effective, we
consider Figure 1-(c) with grouping 10 or 25 weight parameters connected to input-neuron for dense
layer and filter-wise grouping for convolutional layers in Figure 1-(d). In all our experiments, we use
block diagonal version of ADAM. Details on settings/hyperparameters are provided in Appendix C.
Investigating Grouping Effect. We investigate the effect of coordinate grouping on (i) MNIST
classification, (ii) Point cloud classification on DeepSets, and (iii) Deep variational autoencoder.
MNIST Classification. We consider a simple LeNet-5 network. We use 128 mini-batch size and train
networks with 100 epochs. As Figure 5-(a) illustrates the results, the learning curve looks similar in
the early stage of training, but ADABLOCK converges without oscillations in the latter part of training,
which corroborates the effect of block sizes in Theorem 1 and 2. The generalization of ADABLOCK

also becomes more stable than diagonal variant and GGT, and overall superior across epochs.

7

Under review as a conference paper at ICLR 2020

0 75 150 225 300
Epochs

0.00

0.01

0.02

0.03

0.04

Tr
ai

ni
ng

 L
os

s

DenseNet-BC-100-12

0 75 150 225 300
Epochs

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

DenseNet-BC-100-12

150 225 300
Epochs

76

77

78

Te
st

 A
cc

ur
ac

y
(%

)

DenseNet-BC-100-12

SGD Adam AdaBound AMSBound GGT AdaBlock-Clip

Figure 7: Results on CIFAR classification.

0 20 40 60
Epochs

4.0

4.5

5.0

5.5

Tr
ai

ni
ng

 L
os

s

3-Layer Deep LSTM

0 20 40 60
Epochs

4.4

4.6

4.8

lo
g

(T
es

t P
er

pl
ex

ity
)

3-Layer Deep LSTM

SGD Adam AdaBound AMSBound GGT AdaBlock-Clip

(a) Training loss/test perplexity on 3-Layer deep LSTM

0 10000 20000 30000
Wall-Clock Time (sec)

6.5

7.5

In
ce

pt
io

n
Sc

or
e

SN-GAN

RadaBlock Adam

(b) Inception score on SN-GANs

Figure 8: Results on language models and generative adversarial nets.

Point Cloud Classification. We evaluate ADABLOCK on classifying point-cloud representation of a
subset of ShapeNet objects (Chang et al., 2015), called ModelNet40 (Wu et al., 2015). This dataset
consists of 40 classes of 3-dimensional objects. Each object is represented as a point cloud which we
treat as a set of n particles in R3. For this task, we employ DeepSets (Zaheer et al., 2017) architecture
and follow their settings with n = 1000. Figure 6-(a) shows that the learning curve has a similar
behavior, but ADABLOCK outperforms ADAM for any block size in terms of generalization.
Deep Variational Autoencoder. We conduct experiments on a very recent variant of VAE called
β-TCVAE (Chen et al., 2018). The goal of this model is to make the encoder q(z|x) give disentangled
representation z of input images x by additionally forcing q(z) =

∫
q(z|x)p(x)dx to be factorized,

which can be achieved by giving heavier penalty on total correlation. We evaluate our optimizer
with the Mutual Information Gap (MIG) score they proposed, to measure disentanglement of the
latent code. Following implementation in (Chen et al., 2018), we use convolutional encoder-decoder
for β-TCVAE on 3D faces dataset (Paysan et al., 2009). Figure 6-(b) illustrates the results over 10
random simulations with 95% confidence intervals. ADABLOCK outperforms diagonal version with
a smaller variance except at β ∈ {9, 10}, and we can achieve the best performance at β = 5.

Improving Performance with Spectrum-Clipping. We demonstrate the superiority of our algo-
rithms using more complex benchmark architecture/dataset for two popular tasks in deep learning:
image classification and language modeling. For both tasks, vanilla SGD with proper learning rate
scheduling has enjoyed state-of-the-art performance. Therefore, we compare algorithms using our
spectrum-clipping methods that can exploit higher generalization ability of vanilla SGD.

CIFAR Classification. We conduct experiments using DenseNet architecture (Huang et al., 2017).
Figure 7 illustrates our results on CIFAR-100 dataset, and the figure for CIFAR-10 is in appendix.
In both cases, the training speed of ADABLOCK at the early stage is similar or slightly slower, but
we can arrive at the state-of-the-art generalization performance in the end among all comparison
algorithms. Specifically, we can achieve great improvement in generalization about 0.5%.

8

Under review as a conference paper at ICLR 2020

Language Models. We use recurrent networks (Zaremba et al., 2014), base architectures still fre-
quently used today for language modeling. While (Zaremba et al., 2014) uses only two layers
maximum, we add one more layer to consider more complex and deeper networks. To consider
similar model capacity as (Zaremba et al., 2014), we use 500 hidden units on each layer. Based on this
architecture, we build a word-level language model using 3-layer LSTM (Hochreiter & Schmidhuber,
1997) on Penn TreeBank (PTB) dataset (Marcus et al., 1994). Figure 8-(a) shows the experimental
results: the optimizer with spectrum-clipping of ADABLOCK outperforms all the other algorithms
w.r.t. learning curve. It achieves similar perplexity as GGT and outperforms the other methods.

Reducing Computational Cost with RADABLOCK. We consider generative adversarial nets (a.k.a.
GANs). Since it is well-known that training GANs generally takes a lot of time, it is reasonable
to evaluate RADABLOCK on this task. We choose recently proposed spectral normalization GANs
(a.k.a. SN-GANs) which control the Lipschitz constant of the discriminator (Miyato et al., 2018),
thereby stabilizing the training procedure. SN-GANs are still generally used as baselines, so we
use a CIFAR-10 dataset on standard CNN architecture and the inception score (Salimans et al.,
2016) for quantitative assessment. For RADABLOCK, at each iteration, we update two layers via
ADABLOCK chosen randomly, one for the generator and one for the discriminator. Figure 8-(b)
depicts inception score vs. wall-clock time for each method. RADABLOCK achieves higher inception
score in wall-clock time. We conjecture that a block diagonal approximation has a regularization
effect and leave this as an open question for future work.

6 CONCLUDING REMARKS

We proposed ADABLOCK, a general adaptive gradient framework that approximates exact GOP with
block diagonal matrices via coordinate grouping, to effectively utilize structural characteristics of deep
learning architectures. We analyzed convergence and generalization for our approach, highlighting
benefits compared to its popular diagonal counterpart, and confirmed our findings theoretically
and empirically. We also proposed a spectrum-clipping extension which achieved state-of-the-art
generalization performance on popular deep learning tasks and a randomized approach to further
reduce computational cost. As future work, we plan to explore strategies for (i) setting the clipping
parameters in spectrum-clipping, to strike the best balance between training speed and generalization
ability, and (ii) selecting the layers that would benefit most from block-diagonal adaptation at each
iteration in RADABLOCK.

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
Efficient full-matrix adaptive regularization. In International Conference on Machine Learning,
pp. 102–110, 2019.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of disentan-
glement in variational autoencoders. In Advances in Neural Information Processing Systems, pp.
2610–2620, 2018.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representation
(ICLR), 2019.

Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. In Journal of Machine Learning Research (JMLR), 2011.

9

Under review as a conference paper at ICLR 2020

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representation (ICLR), 2015.

Jean Lafond, Nicolas Vasilache, and Léon Bottou. Diagonal rescaling for neural networks. arXiv
preprint arXiv:1705.09319, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger. The penn treebank: annotating predicate argument structure.
In Proceedings of the workshop on Human Language Technology, pp. 114–119. Association for
Computational Linguistics, 1994.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. In Conference on Computational Learning Theory (COLT), 2010.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=B1QRgziT-.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A 3d face
model for pose and illumination invariant face recognition. In 2009 Sixth IEEE International
Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. Ieee, 2009.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representation (ICLR), 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

10

https://openreview.net/forum?id=B1QRgziT-

Under review as a conference paper at ICLR 2020

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in neural information processing systems, pp.
2234–2242, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell. Block-
normalized gradient method: An empirical study for training deep neural network. arXiv preprint
arXiv:1707.04822, 2017.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp.
3391–3401, 2017.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. In Advances in Neural Information Processing Systems, pp. 9793–
9803, 2018.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Shuai Zheng and James T Kwok. Blockwise adaptivity: Faster training and better generalization in
deep learning. arXiv preprint arXiv:1905.09899, 2019.

Fangyu Zou and Li Shen. On the convergence of adagrad with momentum for training deep neural
networks. arXiv preprint arXiv:1808.03408, 2018.

11

Under review as a conference paper at ICLR 2020

APPENDIX

A TOY MLP EXAMPLE: FULL GOP ADAPTATION VS. DIAGONAL

APPROXIMATION

We consider a structured MLP (two nodes in two hidden layers followed by single output). For hidden units, we
use ReLU activation (Nair & Hinton, 2010) and the sigmoid unit for the binary output. We generate n = 10 i.i.d.
observations: xi ∼ N (0, I2) and yi from this two layered MLP given xi. The results of our toy experiment are
depicted in Figure 9.

0 250 500
The number of epochs

−4

−2

0

lo
g 1

0
(T

ra
in

in
g

L
os

s)

M = 1

AdaGrad-Diag

AdaGrad-Full

0 250 500
The number of epochs

−4

−2

0

lo
g 1

0
(T

ra
in

in
g

L
os

s)

M = 2

AdaGrad-Diag

AdaGrad-Full

0 250 500
The number of epochs

−0.8

−0.6

−0.4

−0.2

lo
g 1

0
(T

ra
in

in
g

L
os

s)

M = 5

AdaGrad-Diag

AdaGrad-Full

Figure 9: Comparison of ADAGRAD diagonal version and full matrix version varying the minibatch
size M .

B COMPUTATIONS AND MEMORY CONSIDERATIONS

Table 1: Test error (%) for CIFAR dataset.

SGD ADAM
ADA-

BOUND

AMS-
BOUND

GGT
ADA-

BLOCK-
CLIP

CIFAR-10 4.51 6.07 4.78 4.77 6.33 4.34

CIFAR-100 22.27 26.51 22.5 22.52 22.17 21.7

Table 2: Average time (sec) per iteration for CIFAR-100 experiments.

SGD ADAM
ADA-

BOUND

AMS-
BOUND

GGT
ADA-

BLOCK

ADA-
BLOCK-

CLIP

0.080 0.108 0.126 0.130 0.166 0.226 0.251

Compared with full matrix adaptation, working with a block diagonal matrix is computationally more efficient as
it allows for decoupling computations with respect to each small full sub-matrix. In Algorithm 1, the procedures
for constructing the block diagonal matrix and for updating parameters for each block by computing the “inverse”
square root of each sub-matrix can be done in a parallel manner. As the group size increases, the block diagonal
matrix becomes closer to the full matrix, resulting in greater computational cost. Therefore, we consider small
group size for our numerical experiments. For instance, on CIFAR-100 dataset, the average time per iteration of
ADABLOCK methods is at most twice that of their diagonal counterparts, but this comes with a great advantage
since ADABLOCK shows significant improvement in generalization. In comparison the average time per iteration
of GGT Agarwal et al. (2019) (the modified version of full-matrix ADAGRAD) is 1.5 times that of ADAM but the
generalization of GGT is worse (see Table 1 and 2). Moreover, the wall-clock time performance of ADABLOCK

can be improved using RADABLOCK. As can be seen in Figure 8, RADABLOCK achieves higher inception
score in wall-clock time.

12

Under review as a conference paper at ICLR 2020

In terms of memory, our method is more efficient than GGT Agarwal et al. (2019) (the modified version of
full-matrix ADAGRAD). For example, consider models with a total of d parameters. For Algorithm 1, assume
that V̂t is a block diagonal matrix with r sub-matrices, and each block has size b× b (so, br = d). Also, assume
that the truncated window size for GGT is w. GGT needs a memory size of O(wd), and our algorithm requires
O(rb2) = O(bd). We consider small group size b = 10 or 25 for our experiments while the recommended
window size of GGT is 200 (Agarwal et al., 2019). Therefore, our algorithm is more memory-efficient and the
benefit is more pronounced as the number of model parameters d is large, which is the case in popular deep
learning models/architectures.

C HYPERPARAMETERS AND ADDITIONAL EXPERIMENTAL RESULTS

We use the recommended step size or tune it in the range [10−4, 102] for all comparison algorithms. For
ADAM based algorithms, we use default decay parameters (β1, β2) = (0.9, 0.999). For a diagonal version
of ADAM variant algorithm, we choose numerical stability parameter ε = 10−3 since the larger value of ε
can improve the generalization performance as discussed in (Zaheer et al., 2018). For spectrum-clipping in
Section 4, we use the same intervals λl(t) = α∗(1 − 1

(1−β2)t+1
) and λu(t) = α∗(1 + 1

(1−β2)t
) as in Luo

et al. (2019). For γ and α∗ in clipping bound functions, we consider γ ∈ {0.0001, 0.0005, 0.001} and choose
α∗ ∈ {αSGD, 5αSGD, 10αSGD} where αSGD is the best-performing initial learning rate for vanilla SGD (These
hyperparameter candidates are based on the empirical studies in Luo et al. (2019)). As in Luo et al. (2019),
our results are also not sensitive to choice of γ and α∗. With these hyperparameters, we consider maximum
300 epochs training time, and mini-batch size or learning rate scheduling are introduced in each experiment
description. Our Algorithm 2 requires SVD procedures to compute the square root of a block diagonal matrix.
We apply SVD efficiently to all small sub-matrices simultaneously through batch mode of SVD.

MNIST Classification. We consider the following LeNet-5 network architecture, 20C5 - MP2 - 50C5 -
MP2 - 500FC - softmax. Designing for corroborating our theoretical results, we employ the numerical stability
parameter δ = ε = 10−4.

Deep Sets. For point cloud classification, we follow the same settings in Zaheer et al. (2017) and use the same
architecture in Appendix H of Zaheer et al. (2017). Also, we use the author’s implementation only replacing the
optimizer with ADABLOCK. As they use ε = 10−3 for ADAM, we also employ the same value as δ = 10−3 in
Algorithm 1 for fair comparison.

β-TCVAE. For experiments on generative models β-TCVAE, we use the author’s implementation only
replacing the ADAM optimizer with our BLOCK-ADAM. We use convolutional networks for encoder-decoder
they consider in Chen et al. (2018) and mini-batch size 2048. For generative models, the small ε value for ADAM

works better than large value in our experiences, so we employ δ = ε = 10−8.

CIFAR classification. According to experiment settings in (Huang et al., 2017), we use mini-batch size 64
and consider maximum 300 epochs. Also, we use a step-decay learning rate scheduling in which the learning
rate is divided by 10 at 50% and 75% of the total number of training epochs. With this setting, vanilla SGD

with a momentum factor 0.9 performs best with initial learning rate α∗ = 0.1, so we use this value for our
bound functions of spectrum-clipping, λl(t) and λu(t). As recommended in Zaheer et al. (2018), we employ
δ = ε = 10−3 for better generalization.

Language Models. In this experiment, we use a dev-decay learning rate scheduling Wilson et al. (2017)
where we reduce learning rate by a constant factor if the model does not attain a new best validation performance
at each epoch as in Zaremba et al. (2014). Under this setting, vanilla SGD performs best when the initial learning
rate α∗ = 5. As recommended in Zaheer et al. (2018), we employ δ = ε = 10−3 for better generalization.

SN-GANs. Since the ADAM is a classical optimizer (than vanilla SGD) for training GANs with tuned
decaying parameters (β1, β2). As parameter configuration in Miyato et al. (2018) (Table 1 in Section 4), we
set (β1, β2) = (0.5, 0.999) with stepsize α = 0.002. The number of updates on discriminator ndis per single
update on generator is set to 1. For RADABLOCK, we update two layers via ADABLOCK randomly at each
iteration, one for the generator and one for the discriminator. As noted in β-TCVAE, the small ε works better in
our experiences, so we employ δ = ε = 10−8.

13

Under review as a conference paper at ICLR 2020

0 25 50 75 100
The number of epochs

10 6

10 4

10 2

100

Tr
ai

ni
ng

 L
os

s

MLP

0 25 50 75 100
The number of epochs

96

97

98

99

Te
st

 A
cc

ur
ac

y
(%

)

MLP

RMSprop-Group-10 RMSprop-Group-25 RMSprop-Diag

0 25 50 75 100
The number of epochs

10 8

10 5

10 2

Tr
ai

ni
ng

 L
os

s

LeNet-5-Caffe

0 25 50 75 100
The number of epochs

97

98

99

100

Te
st

 A
cc

ur
ac

y
(%

)

LeNet-5-Caffe

RMSprop-Group-10 RMSprop-Group-25 RMSprop-Diag

Figure 10: Training loss/test accuracy for MLP/LeNet-5-Caffe with block diagonal RMSPROP.

0 75 150 225 300
The number of epochs

0.00

0.01

0.02

Tr
ai

ni
ng

 L
os

s

DenseNet-BC-100-12 (CIFAR-10)

0 75 150 225 300
The number of epochs

75

80

85

90

95
Te

st
 A

cc
ur

ac
y

(%
)

DenseNet-BC-100-12 (CIFAR-10)

150 225 300
The number of epochs

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

DenseNet-BC-100-12 (CIFAR-10)

SGD Adam-Diag AdaBound AMSBound GGT Adam-Group-Clip

Figure 11: Training curve and test accuracy for DenseNet-BC-100-12 on CIFAR-10 dataset.

D GENERAL FRAMEWORKS

Algorithm 2 Adaptive Gradient Methods with Block Diagonal Matrix Adaptations via Grouping

Input: Stepsize αt, initial point x1 ∈ Rd, β1 ∈ [0, 1), and the function Ht which designs V̂t.
Initialize: m0 = 0, V̂0 = 0, and t = 0.
Assumption: We have r blocks with each size ni × ni and n1 + · · ·+ nr = d, and β1,t ≥ β1,t+1

for t = 1, 2, . . . , T do
Draw a minibatch sample ξt from P
offset← 0
Gt← 0
gt←∇f(xt)
mt← β1,tmt−1 + (1− β1,t)gt
for each group index j = 1, 2, . . . , r do

g
(j)
t ← gt[offset : offset + nj]

Gt[offset : offset + nj , offset : offset + nj]← g
(j)
t

(
g
(j)
t

)T
offset← offset + nj

end for
V̂t ← Ht(G1, · · · , Gt)
xt+1← xt − αt(V̂ 1/2

t + δI)−1mt

end for

We provide the general frameworks of adaptive gradient methods with exact full matrix adaptations. The
Algorithm 3 and 4 represent the general framework for each case. We can identify algorithms according to the
functions ht (Table 3) and Ht (Table 4) which determine the dynamics of v̂t and V̂t respectively. Also, the
Algorithm 2 is a detail version of the Algorithm 1.

14

Under review as a conference paper at ICLR 2020

Algorithm 3 General Adaptive Gradient Methods
approximating gtgTt via DIAGONAL Matrix

Input: Initial point x1 ∈ Rd, stepsize {αt}Tt=1,
decay parameters β1,t, β2 ∈ [0, 1], and ε > 0.
Initialize: m0 = 0, v̂0 = 0.
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt←∇f(xt; ξt)
Gt← diag(gtg

T
t)

mt← β1,tmt−1 + (1− β1,t)gt
v̂t← ht(G1, G2, . . . , Gt)

xt+1← xt − αtmt/(
√
v̂t + ε)

end for
Output: x̂.

Algorithm 4 General Adaptive Gradient Methods
with the exact gtgTt (FULL Matrix)

Input: Initial point x1 ∈ Rd, stepsize {αt}Tt=1,
decay parameters β1,t, β2 ∈ [0, 1], and δ > 0.
Initialize: m0 = 0, V̂0 = 0.
for t = 1, 2, . . . , T do

Draw a minibatch sample ξt from P
gt ←∇f(xt; ξt)
Gt← gtg

T
t

mt← β1,tmt−1 + (1− β1,t)gt
V̂t← Ht(G1, G2, . . . , Gt)

xt+1← xt − αt(V̂ 1/2
t + δI)−1mt

end for
Output: x̂.

Table 3: Variants of diagonal matrix adaptations

v̂t

β1,t β1,t = 0 β1,t = β1

1 SGD -

(1/t)
∑T
t=1 g

2
t ADAGRAD ADAFOM

β2v̂t−1 + (1− β2)g2t RMSPROP ADAM

vt = β2vt−1 + (1− β2)g2t ,
v̂t = max{v̂t−1, vt} - AMSGRAD

Table 4: Variants of full matrix adaptations

V̂t

β1,t
β1,t = 0 β1,t = β1

V̂t = I SGD -

V̂t = 1
T

∑T
t=1 gtg

T
t ADAGRAD ADAFOM

V̂t = β2V̂t−1 + (1− β2)gtg
T
t RMSPROP ADAM

Vt = UtΣtU
T
t ,

V̂t = Ut max{Σ̂t−1,Σt}UTt - AMSGRAD

E DETAILS FOR CONVERGENCE ANALYSIS IN SECTION 3.1

E.1 PROOFS FOR COROLLARY 1

Before moving onto proofs, we need the following technical lemma

Lemma 1. (Lemma 12 in Hazan et al. (2007)) For positive definite matrices A and B, the following inequality
holds

Tr
(
A−1(A−B)

)
≤ log |A| − log |B|

For ADAGRAD, we have αt = α/
√
t and V̂t = 1

t

∑t
i=1 gig

T
i := 1

t
Ĝt. First, we bound the Term A/Term B to

find the s1(T).

15

Under review as a conference paper at ICLR 2020

The Term A is

T∑
t=1

‖αtV̂ −1/2
t gt‖2 =

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2︸ ︷︷ ︸

T1

Since the first term in RHS is independent of T , so we only need to bound T1. The quantity T1 can be bound as

T1 =

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2

= α2
T∑

t=t0+1

1

t
‖V −1/2

t gt‖2

= α2
T∑

t=t0+1

Tr
(
V̂ −1
t

1

t
gtg

T
t

)
≤ α2

T∑
t=t0+1

[
log
∣∣V̂t∣∣− log

∣∣ t− 1

t
V̂t−1

∣∣]

= α2
T∑

t=t0+1

[
log
∣∣V̂t∣∣− log

∣∣V̂t−1

∣∣+ d log
t

t− 1

]
= α2(log |V̂T | − log |V̂t0 |+ d log

T

t0

)
= O(log |V̂T |+ log T)

Next, we bound the Term B. Similarly to the Term A, the Term B can be splitted as follows

T∑
t=2

Qt =

T∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2︸ ︷︷ ︸

T2

Also, in this case, the first term in RHS is independent of T , so we only bound T2. The T2 can be bound as

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

∣∣∣∣∣∣ 1√
t− 1

V̂
−1/2
t−1 − 1√

t
V̂
−1/2
t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

∣∣∣∣∣∣Ĝ−1/2
t−1 − Ĝ

−1/2
t

∣∣∣∣∣∣
2

≤ α
T∑

t=t0+1

Tr
(
Ĝ
−1/2
t−1 − Ĝ

−1/2
t

)
= α

(
Tr(Ĝ

−1/2
t0

)− Tr(Ĝ
−1/2
T)

)
≤ αTr(Ĝ

−1/2
t0

) = O(1)

The remaining term is
∑T−1
t=2 Q2

t which can be derived from Term B with slight modifications.

T−1∑
t=2

Q2
t =

T−1∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

+

T−1∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2︸ ︷︷ ︸

T3

16

Under review as a conference paper at ICLR 2020

Similarly to the Term B, we can bound T3 with a little modification as

T−1∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣2
2

= α2
T−1∑
t=t0+1

∣∣∣∣∣∣Ĝ−1/2
t−1 − Ĝ

−1/2
t

∣∣∣∣∣∣2
2

= α2
T−1∑
t=t0+1

Tr
((
Ĝ
−1/2
t−1 − Ĝ

−1/2
t

)2)

≤ α2
T−1∑
t=t0+1

Tr
(
Ĝ−1
t−1 − Ĝ

−1
t

)
= α2Tr

(
Ĝ−1
t0 − Ĝ

−1
T−1

)
≤ α2Tr

(
Ĝ−1
t0

)
Therefore, we have s1(T) = O

(
log
∣∣V̂T ∣∣+ log T + 1

)
. Lastly, we should bound the LHS of 2.

E

[
T∑
t=1

αt
〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]
≥ E

[
T∑
t=1

γt

∥∥∥∇f(xt)
∥∥∥2]

≥ E

[
min
t∈[T]
{‖∇f(xt)‖2}

T∑
t=1

γt

]
Now, we bound the sum of γt.

γt = λmin(αtV̂
−1/2
t) = αλmin(G

−1/2
t)

=
α

λmax(G
1/2
t)

=
α

λmax(Gt)1/2

≥ α(t∑
τ=1

‖gτ‖2
)1/2 ≥ α√

TG∞

From above observations, we have

T∑
t=1

γt ≥
T∑
t=1

α√
TG∞

=
α
√
T

G∞

Therefore, we have Ω
(
s2(T)

)
= Ω(

√
T). Finally, we conclude that

min
t∈[T]

∥∥∇f(xt)
∥∥2 = O

(
log
∣∣V̂T ∣∣+ log T + 1
√
T

)

Now, we need a following lemma for relation between block sizes and convergence.

Lemma 2. (Fischer’s inequality, Theorem 7.8.5 in Horn & Johnson (2012)) For a positive definite matrix
A ∈ Rn×n, let B ∈ Rk×k and C ∈ Rn−k×n−k be top left corner of A and bottom right corner of A
respectively. Then, det(A) ≤ det(B) det(C) holds.

This lemma says that log |V̂T | becomes larger as a block size b decreases.

E.2 PROPOSITION FOR RMSPROP/ADAM

Now, we can obtain intuition on the dynamics of Term A/Term B for EMA-based algorithms with the following
proposition.

Proposition 1. For block diagonal extensions of RMSPROP/ADAM, we set exponentially decaying stepsize
αt = α(

√
β2)t−1. Then, the Term A depends on the log |V̂T | − log |V̂t0 | and the Term B is upper bounded with

constant for any block sizes. Here, t0 is the time when V̂t becomes full-rank.

17

Under review as a conference paper at ICLR 2020

Proof. First, we will bound the Term A.
T∑
t=1

‖αtV̂ −1/2
t gt‖2 =

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2︸ ︷︷ ︸

T1

The first term in RHS is independent of T , so we only have to bound the term T1. The Term T1 can be bound as
follows

T1 =

T∑
t=t0+1

‖αtV̂ −1/2
t gt‖2 =

T∑
t=t0+1

‖α(
√
β2)t−1V̂

−1/2
t gt‖2

≤
T∑

t=t0+1

‖αV̂ −1/2
t gt‖2 = α2

T∑
t=t0+1

‖V̂ −1/2
t gt‖2 = α2

T∑
t=t0+1

Tr(V̂ −1
t gtg

T
t)

≤ α2

1− β2

T∑
t=t0+1

[
log |V̂t| − log |β2V̂t−1|

]

=
α2

1− β2

T∑
t=t0+1

[
log |V̂t| − log |V̂t−1|+ d log

1

β2

]
=

α2

1− β2

(
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Dependent on T

+d(T − t0) log
1

β2

)
Summing up all the terms, we have

T∑
t=1

‖αtV̂ −1/2
t gt‖2 ≤

t0∑
t=1

‖αtV̂ −1/2
t gt‖2 +

α2

1− β2

(
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Dependent on T

+d(T − t0) log
1

β2

)
Now, we derive the bound for the Term B.

T∑
t=2

Qt =

T∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

=

t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+

T∑
t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

As in the Term A, the first term in RHS is independent of T , and we can bound the second term as
T∑

t=t0+1

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=2

∣∣∣∣∣∣(√β2)t−2V̂
−1/2
t−1 − (

√
β2)t−1V̂

−1/2
t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

(
√
β2)t−1

∣∣∣∣∣∣ 1√
β2
V̂
−1/2
t−1 − V̂ −1/2

t

∣∣∣∣∣∣
2

= α

T∑
t=t0+1

(
√
β2)t−1

∣∣∣∣∣∣(β2V̂t−1

)−1/2 − V̂ −1/2
t

∣∣∣∣∣∣
2

≤ α
T∑

t=t0+1

(
√
β2)t−1Tr

((
β2V̂t−1

)−1/2 − V̂ −1/2
t

)

= α

T∑
t=t0+1

Tr
(

(
√
β2)t−2V̂

−1/2
t−1 − (

√
β2)t−1V̂

−1/2
t

)
= α

(
Tr
(
(
√
β2)t0−1V̂

−1/2
t0

)
− Tr

(
(
√
β2)T−1V̂

−1/2
T

)
≤ α(

√
β2)t0−1Tr

(
V̂
−1/2
t0

)
Therefore, the bound for the Term B is independent of T .

T∑
t=2

Qt ≤
t0∑
t=2

∣∣∣∣∣∣αt−1V̂
−1/2
t−1 − αtV̂ −1/2

t

∣∣∣∣∣∣
2

+ α(
√
β2)t0−1Tr

(
V̂
−1/2
t0

)
= O(1)

18

Under review as a conference paper at ICLR 2020

As a result, we can expect that the Term A is related to the log-determinant of V̂T and the Term B is upper
bounded as constant as in ADAGRAD.

F PROOFS OF MAIN THEOREMS

We study the following minimization problem,

min f(x) := Eξ[f(x; ξ)]

under the assumption 1. The parameter x is an optimization variable, and ξ is a random variable representing
randomly selected data sample from D. We study the convergence analysis of the Algorithm 1. For analysis in
stochastic convex optimization, one can refer to Duchi et al. (2011). For analysis in non-convex optimization
with full matrix adaptations, we follow the arguments in the paper Chen et al. (2019). As we will show, the
convergence of the adaptive full matrix adaptations depends on the changes of effective spectrum while the
diagonal counterpart depends on the changes of effective stepsize. We assume that V̂ −1/2

t means pseudo-inverse
of V̂ 1/2

t if it is not full-rank. Note that, our proof can be applied to exact full matrix adaptations, Algorithm 1

F.1 TECHNICAL LEMMAS FOR THEOREM 1

Lemma 3. Consider the sequence

zt = xt +
β1,t

1− β1,t
(xt − xt−1)

Then, the following holds true

zt+1 − zt = −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV̂

−1/2
t mt −

β1,t
1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

Proof. By our update rule, we can derive

xt+1 − xt = − αtV̂ −1/2
t mt

(i)
= − αtV̂ −1/2

t (β1,tmt−1 + (1− β1,t)gt)

= − αtβ1,tV̂ −1/2
t mt−1 − αt(1− β1,t)V̂ −1/2

t gt

(ii)
= − αtβ1,tV̂ −1/2

t

(
− 1

αt−1
V̂

1/2
t−1 (xt − xt−1)

)
− αt(1− β1,t)V̂ −1/2

t gt

=
αt
αt−1

β1,t(V̂
−1
t V̂t−1)1/2(xt − xt−1)− αt(1− β1,t)V̂ −1/2

t gt

= β1,t(xt − xt−1) + β1,t

(
αt
αt−1

(V̂ −1
t V̂t−1)1/2 − Id

)
(xt − xt−1)− αt(1− β1,t)V̂ −1/2

t gt

(iii)
= β1,t(xt − xt−1)− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αt(1− β1,t)V̂ −1/2

t gt

The reasoning follows

(i) By definition of mt.

(ii) Since xt = xt−1 − αt−1V̂
−1/2
t−1 mt−1, we can solve as mt−1 = − 1

αt−1
V̂

1/2
t−1 (xt − xt−1).

(iii) Similarly to (ii), we can have V̂ 1/2
t−1 (xt − xt−1)/αt−1 = −mt−1.

Since xt+1 − xt = (1− β1,t)xt+1 + β1,t(xt+1 − xt)− (1− β1,t)xt, we can further derive by combining the
above,

(1− β1,t)xt+1 + β1,t(xt+1 − xt)

= (1− β1,t)xt + β1,t(xt − xt−1)− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αt(1− β1,t)V̂ −1/2

t gt

19

Under review as a conference paper at ICLR 2020

By dividing both sides by 1− β1,t,

xt+1 +
β1,t

1− β1,t
(xt+1 − xt)

= xt +
β1,t

1− β1,t
(xt − xt−1)− β1,t

1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

Define the sequence

zt = xt +
β1,t

1− β1,t
(xt − xt−1)

Then, we obtain

zt+1 = zt +

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
(xt+1 − xt)

− β1,t
1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

= zt −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV̂

−1/2
t mt

− β1,t
1− β1,t

(
αtV̂

−1/2
t − αt−1V̂

−1/2
t−1

)
mt−1 − αtV̂ −1/2

t gt

By putting zt to the left hand side, we can get desired relations.

Lemma 4. Suppose that the assumptions in Theorem 1 hold, then

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

where

T1 = −E

[
t∑
i=1

〈
∇f(zi),

β1,i
1− β1,i

(
αiV̂

−1/2
i − αi−1V̂

−1/2
i−1

)
mi−1

〉]

T2 = −E

[
t∑
i=1

αi

〈
∇f(zi), V̂

−1/2
i gi

〉]

T3 = −E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV̂

−1/2
i mi

〉]

T4 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥
(

β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αtV̂

−1/2
i mi

∥∥∥∥∥
2]

T5 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥ β1,i
1− β1,i

(
αiV̂

−1/2
i − αi−1V̂

−1/2
i−1

)
mi−1

∥∥∥∥∥
2]

T6 = E

[
t∑
i=1

3

2
L

∥∥∥∥∥αiV̂ −1/2
i gi

∥∥∥∥∥
2]

Proof. By L-Lipschitz continuous gradients, we get the following quadratic upper bound,

f(zt+1) ≤ f(zt) + 〈∇f(zt), zt+1 − zt〉+
L

2
‖zt+1 − zt‖2

Let dt = zt+1 − zt. The lemma 1 yields

dt = −

(
β1,t+1

1− β1,t+1
− β1,t

1− β1,t

)
αtV

−1/2
t mt −

β1,t
1− β1,t

(
αtV

−1/2
t − αt−1V

−1/2
t−1

)
mt−1 − αtV −1/2

t gt

20

Under review as a conference paper at ICLR 2020

Combining with Lipschitz continuous gradients, we have

E[f(zt+1)− f(z1)] = E

[
t∑
i=1

f(zi+1)− f(zi)

]

≤ E

[
t∑
i=1

〈∇f(zi), di〉+
L

2
‖di‖2

]

= −E

[
t∑
i=1

〈
∇f(zi),

β1,i
1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

〉]

− E

[
t∑
i=1

αi

〈
∇f(zi), V

−1/2
i gi

〉]

− E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

〉]

+ E

[
t∑
i=1

L

2
‖di‖2

]
= T1 + T2 + T3 + E

[
t∑
i=1

L

2
‖di‖2

]

With ‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2), we can finally bound by

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

Lemma 5. Suppose that the assumptions in Theorem 1 hold, T1 can be bound as

T1 ≤ G2 β1
1− β1

E

[
t∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

Proof. From the definition of quantity T1,

T1 = − E

[
t∑
i=1

〈
∇f(zi),

β1,i
1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

〉]
(i)

≤ E

[
t∑
i=1

‖∇f(zi)‖2

∥∥∥∥∥ β1,i
1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

∥∥∥∥∥
2

]
(ii)

≤ β1
1− β1

E

[
t∑
i=1

‖∇f(zi)‖2
∣∣∣∣∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣∣∣∣∣
2
‖mt−1‖2

]
(iii)

≤ G2 β1
1− β1

E

[
t∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
The reasoning follows

(i) By Cauchy-Schwarz inequality.

(ii) For a matrix norm, we have ‖Ax‖2 ≤ |||A|||2‖x‖2. Also, β1,i
1−β1,i

= 1
1−β1,i

− 1 ≤ 1
1−β1

− 1 = β1
1−β1

.

(iii) By definition of mt, we have mt = β1,tmt−1 + (1− β1,t)gt. Therefore, we use a triangle inequality
by ‖mt‖2 ≤ β1,t‖mt−1‖2 + (1− β1)‖gt‖2 ≤ (β1,t + 1− β1,t) max{‖mt−1‖2, ‖gt‖2}. Since we
have m0 = 0 and ‖gt‖ ≤ G, we also have ‖mt‖ ≤ G by the mathematical induction.

Lemma 6. Suppose that the assumptions in Theorem 1 hold, then T3 can be bound as

T3 ≤

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)

21

Under review as a conference paper at ICLR 2020

Proof. By the definition of T3,

T3 = − E

[
t∑
i=1

〈
∇f(zi),

(
β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

〉]
(i)

≤ E

[
t∑
i=1

∣∣∣∣∣ β1,i+1

1− β1,i+1
− β1,i

1− β1,i

∣∣∣∣∣12(‖∇f(zi)‖2 + ‖αiV −1/2
i mi‖2

)]
(ii)

≤ E

[
t∑
i=1

∣∣∣∣∣ β1,i+1

1− β1,i+1
− β1,i

1− β1,i

∣∣∣∣∣12(G2 +D2
)]

=

t∑
i=1

(
β1,i

1− β1,i
− β1,i+1

1− β1,i+1

)
1

2

(
G2 +D2

)
(iii)

≤

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)

The reasoning follows

(i) Use Cauchy-Schwarz inequality and ab ≤ 1
2
(a2 + b2) for a, b ≥ 0.

(ii) By our assumptions on bounded gradients and bounded final step vectors.

(iii) The sum over i = 1 to T can be done by telescoping.

Lemma 7. Suppose that the assumptions in Theorem 1 hold, T4 can be bound as

T4 ≤
(β1

1− β1
− β1,t+1

1− β1,t+1

)2
D2

Proof. By the definition of T4,

2

3L
T4 = E

[
t∑
i=1

∥∥∥∥∥
(

β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
αiV

−1/2
i mi

∥∥∥∥∥
2]

(i)

≤ E

[
t∑
i=1

(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)2
D2

]
(ii)

≤
(β1

1− β1
− β1,t+1

1− β1,t+1

) t∑
i=1

(β1,i+1

1− β1,i+1
− β1,i

1− β1,i

)
D2

(iii)

≤
(β1

1− β1
− β1,t+1

1− β1,t+1

)2
D2

The reasoning follows

(i) From our assumptions on final step vector ‖αiV̂ −1/2
i mi‖2 ≤ D.

(ii) We use the relation β1 ≥ β1,t ≤ β1,t+1.

(iii) By telescoping sum, we can get the final result.

Lemma 8. Suppose that the assumptions in Theorem 1 hold, T5 can be bound as

2

3L
T5 ≤

(β1
1− β1

)2
G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

22

Under review as a conference paper at ICLR 2020

Proof. By the definition of T5,

2

3L
T5 = E

[
t∑
i=2

∥∥∥∥∥ β1,i
1− β1,i

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
mi−1

∥∥∥∥∥
2]

(i)

≤ E

[
t∑
i=2

β1,i
1− β1,i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

‖mi−1‖22

]
(ii)

≤
(β1

1− β1

)2
G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]
The reasoning follows

(i) By the matrix norm inequality, we use ‖Ax‖2 ≤ |||A|||2‖x‖2.

(ii) We can obtain the result using β1 ≥ β1,t ≥ β1,t+1.

Lemma 9. Suppose that the assumptions in Theorem 1 hold, The quantity T2 can be bound as

T2 ≤ L2
(β1

1− β1

)2
T8 + L2

(β1
1− β1

)2
T9 +

1

2
E

[
t∑
i=1

‖αiV̂ −1/2
i gi‖2

]

+ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]

Proof. First, note that,

zi − xi =
β1,i

1− β1,i
(xi − xi−1) = − β1,i

1− β1,i
αi−1V̂

−1/2
i−1 mi−1

By the definition of T2 and z1 = x1, we have

T2 = −E

[
t∑
i=1

αi

〈
∇f(zi), V̂

−1/2
i gi

〉]

= −E

[
t∑
i=1

αi

〈
∇f(xi), V̂

−1/2
i gi

〉]
− E

[
t∑
i=1

αi

〈
∇f(zi)−∇f(xi), V̂

−1/2
i gi

〉]
The second term can be bounded as

− E

[
t∑
i=1

αi

〈
∇f(zi)−∇f(xi), V̂

−1/2
i gi

〉]
(i)

≤ E

[
t∑
i=1

1

2
‖∇f(zi)−∇f(xi)‖2 +

1

2
‖αiV̂ −1/2

i gi‖2
]

(ii)

≤ L2

2
T7 +

1

2
E

[
t∑
i=1

‖αiV̂ −1/2
i gi‖2

]
(i) is due to Cauchy-Schwarz inequality and ab ≤ 1

2
a2 + 1

2
b2 for a, b ≥ 0. (ii) is as follows:

By L-Lipschitz continuous gradients, we have

‖∇f(zi)−∇f(xi)‖ ≤ L‖zi − xi‖ = L
∥∥∥ β1,t

1− β1,t
αi−1V

−1/2
i−1 mi−1

∥∥∥
Let T7 be

T7 = E

[
t∑
i=1

∥∥∥ β1,i
1− β1,i

αi−1V
−1/2
i−1 mi−1

∥∥∥2]

23

Under review as a conference paper at ICLR 2020

We should bound the quantity T7, by the definition of mt, we have

mi =

i∑
k=1

[(i∏
l=k+1

β1,l
)
(1− β1,k)gk

]

Plugging mi−1 into T7 yields

T7 = E

[
t∑
i=1

∥∥∥ β1,i
1− β1,i

αi−1V
−1/2
i−1 mi−1

∥∥∥2]
(i)

≤
(β1

1− β1

)2
E

[
t∑
i=2

∥∥∥∥∥αi−1V
−1/2
i−1

i−1∑
k=1

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
]∥∥∥∥∥

2]

=
(β1

1− β1

)2
E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αi−1V
−1/2
i−1

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
]∥∥∥∥∥

2]
(ii)

≤ 2
(β1

1− β1

)2
E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
]∥∥∥∥∥

2]
︸ ︷︷ ︸

T8

+ 2
(β1

1− β1

)2
E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

(
αiV

−1/2
i − αkV −1/2

k

)[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
]∥∥∥∥∥

2]
︸ ︷︷ ︸

T9

(i) is by β1 ≥ β1,t and (ii) is by We use the fact (a+ b) ≤ 2(‖a‖2 + ‖b‖2) in (i). We first bound T8 as below

T8 = E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
]∥∥∥∥∥

2]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

αkV
−1/2
k

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)gk
])2

j

]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

i−1∑
p=1

(
αkV

−1/2
k gk

)
j

(i−1∏
l=k+1

β1,l
)

(1− β1,k)
(
αpV

−1/2
p gp

)
j

(i−1∏
q=p+1

β1,q
)

(1− β1,p)

)]

≤ E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

i−1∑
p=1

(βi−1−k
1)(βi−1−p

1)
1

2

{(
αkV

−1/2
k gk

)2
j

+
(
αpV

−1/2
p gp

)2
j

})]

= E

[
t∑
i=2

d∑
j=1

(
i−1∑
k=1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2
j

i−1∑
p=1

(βi−1−p
1)

)]

≤ 1

1− β1
E

[
t∑
i=2

d∑
j=1

i−1∑
k=1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2
j

]

=
1

1− β1
E

[
t−1∑
k=1

d∑
j=1

t∑
i=k+1

(βi−1−k
1)

(
αkV

−1/2
k gk

)2
j

]

=
(1

1− β1

)2
E

[
t−1∑
k=1

d∑
j=1

(
αkV

−1/2
k gk

)2
j

]
=
(1

1− β1

)2
E

[
t−1∑
i=1

∥∥∥αiV −1/2
i gi

∥∥∥2]

24

Under review as a conference paper at ICLR 2020

For the T9 bound, we have

T9 = E

[
t∑
i=2

∥∥∥∥∥
i−1∑
k=1

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)
](
αiV

−1/2
i − αkV −1/2

k

)
gk

∥∥∥∥∥
2]

≤ E

[
t∑
i=2

(
i−1∑
k=1

[(i−1∏
l=k+1

β1,l
)

(1− β1,k)
]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

‖gk‖2

)2]

≤ E

[
t−1∑
i=1

(
i∑

k=1

[(i∏
l=k+1

β1,l
)]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

‖gk‖2

)2]

≤ G2E

[
t−1∑
i=1

(
i∑

k=1

βi−k1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αkV −1/2
k

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

)2]

≤ G2E

[
t−1∑
i=1

(
i∑

k=1

βi−k1

i∑
l=k+1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αlV −1/2

l − αl−1V
−1/2
l−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

)2]

≤ G2
(1

1− β1

)2(β1
1− β1

)2
E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

Then, the remaining term is

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

To find the upper bound for this term, we reparameterize gt = ∇f(xt) + δt with E[δt] = 0, and we have

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

= E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i (∇f(xi) + δi)

〉]

= E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
+

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i δi

〉]

For the second term of last equation,

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i δi

〉]

= E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
+ E

[
t∑
i=2

αi−1

〈
∇f(xi), V

−1/2
i−1 δi

〉]
+ E

[
α1

〈
∇f(x1), V

−1/2
1 δ1

〉]

= E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
+ E

[
α1∇f(x1)TV

−1/2
1 δ1

]
(i)

≥ E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
− 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

The reasoning is as follows:

(i) The conditional expectation E
[
V
−1/2
i−1 δi

∣∣∣xi, V̂i−1

]
= 0 since the V̂i−1 only depends on the noise

variables ξ1, · · · , ξi−1 and δi depends on ξi with E[ξk] = 0 for all k ∈ {1, 2, ..., i}. Therefore, they
are independent.

25

Under review as a conference paper at ICLR 2020

Further, we have

E

[
t∑
i=2

〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉]
≥− E

[
t∑
i=2

∣∣∣∣∣
〈
∇f(xi),

(
αiV

−1/2
i − αi−1V

−1/2
i−1

)
δi

〉∣∣∣∣∣
]

(ii)

≥ − E

[
t∑
i=2

∥∥∥∇f(xi)
∥∥∥
2

∥∥∥(αiV −1/2
i − α−1/2

i−1

)
δi

∥∥∥
2

]
(iii)

≥ − 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

Therefore, we can bound the first term

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i gi

〉]

≤ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]

Lemma 10. (Lemma 6.8 in Chen et al. (2019)) For ai ≤ 0, β ∈ [0, 1), and bi =
∑i
k=1 β

i−k∑i
l=k+1 al, we

have

t∑
i=1

b2i ≤
(1

1− β

)2(β

1− β

)2 t∑
i=2

a2i

26

Under review as a conference paper at ICLR 2020

F.2 PROOF OF THEOREM 1

Proof. We combine the above lemmas to bound

E[f(zt+1)− f(z1)] ≤
6∑
i=1

Ti

≤ G2 β1
1− β1

E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
︸ ︷︷ ︸

T1

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2)︸ ︷︷ ︸

T3

+
(β1

1− β1
− β1,t+1

1− β1,t+1

)2
D2︸ ︷︷ ︸

T4

+
(β1

1− β1

)2
G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]
︸ ︷︷ ︸

T5

+ E

[
t∑
i=1

3

2
L

∥∥∥∥∥αiV −1/2
i gi

∥∥∥∥∥
2]

︸ ︷︷ ︸
T6

+ 2G2E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
︸ ︷︷ ︸

T2

−E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
︸ ︷︷ ︸

T2

+ L2
(β1

1− β1

)2((1

1− β1

)2
E

[
t−1∑
i=1

∥∥∥αiV −1/2
i gi

∥∥∥2]︸ ︷︷ ︸
T2

+G2
(1

1− β1

)2(β1
1− β1

)2
E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV −1/2

i − αi−1V
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

])
︸ ︷︷ ︸

T2

+E

[
1

2

t∑
i=1

‖αiV −1/2
i gi‖2

]
︸ ︷︷ ︸

T2

27

Under review as a conference paper at ICLR 2020

By merging similar terms, we can have

E[f(zt+1)− f(z1)] ≤

(
G2 β1

1− β1
+ 2G2

)
E

[
t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

+

(
3

2
L+

1

2
+ L2(β1

1− β1
)2(1

1− β1
)2)E[t∑

i=1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2]

+

(
1 + L2(1

1− β1
)2(β1

1− β1
)2)(β1

1− β1
)2
G2E

[
t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2) +

(β1
1− β1

− β1,t+1

1− β1,t+1

)2
D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

− E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
We define constants C1, C2, and C3 as

C1 =
3

2
L+

1

2
+ L2(β1

1− β1
)2(1

1− β1
)2

C2 = G2 β1
1− β1

+ 2G2

C3 =

(
1 + L2(1

1− β1
)2(β1

1− β1
)2)(β1

1− β1
)2
G2

By rearranging terms, we obtain

E

[
t∑
i=1

αi

〈
∇f(xi), V

−1/2
i ∇f(xi)

〉]
≤ E

[
t∑
i=1

C1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2 + C2

t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+ C3

t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1
− β1,t+1

1− β1,t+1

)
(G2 +D2) +

(β1
1− β1

− β1,t+1

1− β1,t+1

)2
D2

+ 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

≤ E

[
t∑
i=1

C1

∥∥∥αiV̂ −1/2
i gi

∥∥∥2 + C2

t∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

+ C3

t−1∑
i=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αiV̂ −1/2

i − αi−1V̂
−1/2
i−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]

+

(
β1

1− β1

)
(G2 +D2) +

(β1
1− β1

)2
D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]
Finally, we can get

E

[
T∑
t=1

αi

〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]

≤ E

[
C1

T∑
t=1

∥∥∥∥∥αtV̂ −1/2
t gi

∥∥∥∥∥
2

︸ ︷︷ ︸
Term A

+ C2

T∑
t=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αtV̂ −1/2

t − αt−1V̂
−1/2
t−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2︸ ︷︷ ︸

Term B

+ C3

T−1∑
t=2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣αtV̂ −1/2

t − αt−1V̂
−1/2
t−1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

]
+ C4

with constants

C4 =

(
β1

1− β1

)
(G2 +D2) +

(β1
1− β1

)2
D2 + 2G2E

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣α1V

−1/2
1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

]

28

Under review as a conference paper at ICLR 2020

with almost same constant for the diagonal version. Lastly, we have γt = λmin(αtV̂
−1/2
t), so

E

[
T∑
t=1

αt

〈
∇f(xt), V̂

−1/2
t ∇f(xt)

〉]
≥ E

[
T∑
t=1

γt

∥∥∥∇f(xt)
∥∥∥2]

≥ min
t∈[T]

E
[
‖∇f(xt)‖2

] T∑
t=1

γt

Therefore, we finally have

min
t∈[T]

[
‖∇f(xt)‖2

]
≤

E

[
C1

Term A︷ ︸︸ ︷
T∑
t=1

∥∥∥αtV̂ −1/2
t gt

∥∥∥2 + C2

Term B︷ ︸︸ ︷
T∑
t=2

Qt + C3

T−1∑
t=2

Q2
t

]
+ C4

T∑
t=1

γt

,
s1(T)

s2(T)

F.3 PROOF OF THEOREM 2

For generalization error bounds, we refer the following references (Hardt et al., 2015; Zheng & Kwok, 2019).
Since we have bounded gradient ‖gt‖2 ≤ G and ‖∇f(x)‖2 ≤ G, we also have G-Lipschitz condition.
Therefore, we obtain the following relation

sup
z

EA
[
f(A(S); z)− f(A(S′); z)

]
≤ GEA

[
‖A(S)−A(S′)‖2

]
= GEA

[
‖θ − θ′‖2

]
Therefore, we only have to bound the term ∆t := ‖θ− θ′‖2. From now, we denote θ := A(S) and θ′ := A(S′).
We assume αt = α and β1,t = 0 for all t ∈ [T].

θT+1 = θT − αT (V̂
1/2
T + δI)−1mT

= · · ·

= θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1gt

= θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1∇f(θt; zit)

where zik is the selected example at iteration k. Then, we can bound

E[∆T+1] = E
[
‖θT+1 − θ′T+1‖2

]
= E

[∥∥∥∥∥θ1 −
T∑
t=1

αt(V̂
1/2
t + δI)−1∇f(θt; zit)− θ

′
1 +

T∑
t=1

αt(V̂
′
t
1/2 + δI)−1∇f(θ′t; z

′
it)

∥∥∥∥∥
2

]

≤ E
[
‖θ1 − θ′1‖2

]
+

T∑
t=1

αtE

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

=

T∑
t=1

αtE

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

29

Under review as a conference paper at ICLR 2020

The probability of zik = z′ik is 1− 1/n. Then,

E

[∥∥∥∥∥(V̂
1/2
t + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; z
′
it)

∥∥∥∥∥
2

]

≤ 1

n
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

+
1

n
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]
+
(

1− 1

n

)
E
[
‖(V̂ 1/2

t + δ)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θ′t; zit)‖2

]
≤ 1

n
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]︸ ︷︷ ︸

T1

+
1

n
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]︸ ︷︷ ︸
T2

+
(

1− 1

n

)
E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θt; zit)‖2

]︸ ︷︷ ︸
T3

+
(

1− 1

n

)
E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; zit)‖2
]︸ ︷︷ ︸

T4

Let t0 denote the time when V̂t and V̂ ′t becomes full-rank. Then, we can bound T1 as
T∑
t=1

αtE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

≤
√
T

√√√√ T∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

=
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
(V̂

1/2
t + δI)−2∇f(θt; zit)∇f(θt; zit)

T
)]

≤
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
V̂ −1
t ∇f(θt; zit)∇f(θt; zit)

)]

≤
√
T

√√√√ t0∑
t=1

α2E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+
α2

1− β2
E
[

log det(V̂T)− log det(V̂t0) + d(T − t0) log
1

β2

]

=
α
√
T√

1− β2

√√√√(1− β2)

t0∑
t=1

E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+ E
[

log det(V̂T)− log det(V̂t0)
]

+ d(T − t0) log
1

β2

≤ α
√
T√

1− β2

√√√√(1− β2)

t0∑
t=1

E
[
‖(δI)−1∇f(θt; zit)‖22

]
+ E

[
log det(V̂T)− log det(V̂t0)

]
+ d(T − t0) log

1

β2

≤ α
√
T√

1− β2

√
t0(1− β2)G2

δ2
+ E

[
log
|V̂T |
|V̂t0 |

]
+ d(T − t0) log

1

β2

In the same way, we can bound T2 as

T∑
t=1

αtE
[
‖(V̂ ′t 1/2 + δI)−1∇f(θ′t; z

′
it)‖2

]
≤ α

√
T√

1− β2

√√√√ t0(1− β2)G2

δ2
+ E

[
log
|V̂ ′T |
|V̂ ′t0 |

]
+ d(T − t0) log

1

β2

For notational convenience, we set the function g as

g(V̂T) =
α
√
T√

1− β2

√
t0(1− β2)G2

δ2
+ E

[
log
|V̂T |
|V̂t0 |

]
+ d(T − t0) log

1

β2

Now, we can easily bound T3 and T4 as

E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)− (V̂ ′t
1/2 + δI)−1∇f(θt; zit)‖2

]
≤ GE

[∣∣∣∣∣∣(V̂ 1/2
t + δI)−1 − (V̂ ′t

1/2 + δI)−1
∣∣∣∣∣∣

2

]
≤ GE

[∣∣∣∣∣∣(V̂ 1/2
t + δI)−1

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2

]
30

Under review as a conference paper at ICLR 2020

and

E
[
‖(V̂ ′t 1/2 + δI)−1∇f(θt; zit)− (V̂ ′t

1/2 + δI)−1∇f(θ′t; zit)‖2
]
≤ LE

[∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1
∣∣∣∣∣∣

2
∆t

]
from ‖Ax‖2 ≤ |||A|||2‖x‖2 and Lipschitz continuous gradients. Combining all the terms, we finally have

E
[
∆T+1

]
≤ α

√
T

n
√

1− β2

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

where

g(V̂T) =
t0(1− β2)G2

δ2
+ E

[
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Term C

] + d(T − t0) log
1

β2

and

JT = G

T∑
t=1

E
[∣∣∣∣∣∣(V̂ 1/2

t + δI)−1
∣∣∣∣∣∣

2︸ ︷︷ ︸
Term D

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2︸ ︷︷ ︸

Term D

]
+ L

T∑
t=1

E
[
|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D

∆t

]

F.4 GENERALIZATION BOUNDS FOR ADAGRAD

The main difference with EMA-BASED algorithms is the way of bounding T1. For ADAGRAD, we set
αt = α/

√
t and V̂t = 1

t

∑t
i=1 gig

T
i =: 1

t
Gt as in Corollary 1.

Let t0 denote the time when V̂t and V̂ ′t becomes full-rank. Then, we can bound T1 for ADAGRAD as
T∑
t=1

αtE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖2
]

≤
√
T

√√√√ T∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

=
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
(V̂

1/2
t + δI)−2∇f(θt; zit)∇f(θt; zit)

T
)]

≤
√
T

√√√√ t0∑
t=1

α2
tE
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+

T∑
t=t0+1

α2
tE
[
Tr
(
V̂ −1
t ∇f(θt; zit)∇f(θt; zit)

)]

≤
√
T

√√√√ t0∑
t=1

α2E
[
‖(V̂ 1/2

t + δI)−1∇f(θt; zit)‖22
]

+ α2E
[

log |V̂T | − log |V̂t0 |+ d log
T

t0

]

≤ α
√
T

√√√√ t0∑
t=1

E
[
‖(δI)−1∇f(θt; zit)‖22

]
+ E

[
log |V̂T | − log |V̂t0 |+ d log

T

t0

]
≤ α
√
T

√
t0G2

δ2
+ E

[
log |V̂T | − log |V̂t0 |+ d log

T

t0

]
We can similarly bound the term T2 only replacing V̂t with V̂ ′t . Also, the remaining terms T3 and T4 can be
bound in the same way as in section F.3. Therefore, we have

E
[
∆T+1

]
≤ α
√
T

n

[√
g(V̂T) +

√
g(V̂ ′T)

]
+ α

(
1− 1

n

)
JT

where

g(V̂T) =
t0G

2

δ2
+ E

[
log |V̂T | − log |V̂t0 |︸ ︷︷ ︸

Term C

] + d log
T

t0

and

JT = G

T∑
t=1

E
[∣∣∣∣∣∣(V̂ 1/2

t + δI)−1
∣∣∣∣∣∣

2︸ ︷︷ ︸
Term D

+
∣∣∣∣∣∣(V̂ ′t 1/2 + δI)−1

∣∣∣∣∣∣
2︸ ︷︷ ︸

Term D

]
+ L

T∑
t=1

E
[
|||(V̂ ′t 1/2 + δI)−1|||2︸ ︷︷ ︸

Term D

∆t

]

31

	Introduction
	Adaptive Gradient Methods with Block Diagonal Matrix Adaptations via Coordinate Partitioning
	Analysis on Block Diagonal Matrix Adaptations
	Convergence in Non-convex Optimization
	Uniform Stability and Generalization Error Bounds of Algorithm 1

	Improving Generalization and Computational Cost
	Experiments
	Concluding Remarks
	Toy MLP example: Full GOP adaptation vs. Diagonal approximation
	Computations and memory considerations
	Hyperparameters and Additional Experimental Results
	General Frameworks
	Details for Convergence Analysis in Section 3.1
	Proofs for Corollary 1
	Proposition for RMSprop/Adam

	Proofs of Main Theorems
	Technical Lemmas for Theorem 1
	Proof of Theorem 1
	Proof of Theorem 2
	Generalization Bounds for AdaGrad

