
Under review as a conference paper at ICLR 2020

MMA TRAINING: DIRECT INPUT SPACE MARGIN
MAXIMIZATION THROUGH ADVERSARIAL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study adversarial robustness of neural networks from a margin maximization
perspective, where margins are defined as the distances from inputs to a classifier’s
decision boundary. Our study shows that maximizing margins can be achieved by
minimizing the adversarial loss on the decision boundary at the “shortest success-
ful perturbation”, demonstrating a close connection between adversarial losses
and the margins. We propose Max-Margin Adversarial (MMA) training to di-
rectly maximize the margins to achieve adversarial robustness. Instead of adver-
sarial training with a fixed ε, MMA offers an improvement by enabling adaptive
selection of the “correct” ε as the margin individually for each datapoint. In ad-
dition, we rigorously analyze adversarial training with the perspective of margin
maximization, and provide an alternative interpretation for adversarial training,
maximizing either a lower or an upper bound of the margins. Our experiments
empirically confirm our theory and demonstrate MMA training’s efficacy on the
MNIST and CIFAR10 datasets w.r.t. `∞ and `2 robustness.

1 INTRODUCTION

Figure 1: Illustration of decision bound-
ary, margin, and shortest successful per-
turbation on application of an adversar-
ial perturbation.

Despite their impressive performance on various learning
tasks, neural networks have been shown to be vulnerable
to adversarial perturbations (Szegedy et al., 2013; Big-
gio et al., 2013). An artificially constructed imperceptible
perturbation can cause a significant drop in the prediction
accuracy of an otherwise accurate network. The level of
distortion is measured by the magnitude of the perturba-
tions (e.g. in `∞ or `2 norms), i.e. the distance from the
original input to the perturbed input. Figure 1 shows an
example, where the classifier changes its prediction from
panda to bucket when the input is perturbed from the blue
sample point to the red one.

Figure 1 also shows the natural connection between ad-
versarial robustness and the margins of the data points, where the margin is defined as the distance
from a data point to the classifier’s decision boundary. Intuitively, the margin of a data point is the
minimum distance that x has to be perturbed to change the classifier’s prediction. Thus, the larger
the margin is, the farther the distance from the input to the decision boundary of the classifier is, the
more robust the classifier is w.r.t. this input.

Although naturally connected to adversarial robustness, “directly” maximizing margins has not yet
been thoroughly studied in the adversarial robustness literature. Instead, the method of minimax
adversarial training (Madry et al., 2017; Huang et al., 2015) is arguably the most common defense
to adversarial perturbations due to its effectiveness and simplicity. Adversarial training attempts
to minimize the maximum loss within a fixed sized neighborhood about the training data using
projected gradient descent (PGD). Despite advancements made in recent years (Hendrycks et al.,
2019; Zhang et al., 2019a; Shafahi et al., 2019; Zhang et al., 2019b; Stanforth et al., 2019; Carmon
et al., 2019), adversarial training still suffers from a fundamental problem, the perturbation length
ε has to be set and is fixed throughout the training process. In general, the setting of ε is arbitrary,
based on assumptions on whether perturbations within the defined ball are “imperceptible” or not.
Recent work (Guo et al., 2018; Sharma et al., 2019) has demonstrated that these assumptions do not
consistently hold true, commonly used ε settings assumed to only allow imperceptible perturbations

1

Under review as a conference paper at ICLR 2020

in fact do not. If ε is set too small, the resulting models lack robustness, if too large, the resulting
models lack in accuracy. Moreover, individual data points may have different intrinsic robustness,
the variation in ambiguity in collected data is highly diverse, and fixing one ε for all data points
across the whole training procedure is likely suboptimal.

Instead of further improving adversarial training with a fixed perturbation magnitude, we revisit
adversarial robustness from the margin perspective, and propose Max-Margin Adversarial (MMA)
training, a practical algorithm for direct input margin maximization. By directly maximizing mar-
gins calculated for each data point, MMA training allows for optimizing the “current robustness” of
the data, the “correct” ε at this point in training for each sample individually, instead of robustness
w.r.t. a predefined magnitude.

While it is intuitive that one can achieve the greatest possible robustness by maximizing the margin
of a classifier, this maximization has technical difficulties. In Section 2, we overcome these difficul-
ties and show that margin maximization can be achieved by minimizing a classification loss w.r.t.
model parameters, at the “shortest successful perturbation”. This makes gradient descent viable for
margin maximization, despite the fact that model parameters are entangled in the constraints.

We further analyze adversarial training (Madry et al., 2017; Huang et al., 2015) from the perspective
of margin maximization in Section 3. We show that, for each training example, adversarial training
with fixed perturbation length ε is maximizing a lower (or upper) bound of the margin, if ε is smaller
(or larger) than the margin of that training point. As such, MMA training improves adversarial
training, in the sense that it selects the “correct” ε, the margin value for each example.

Finally in Section 4, we test and compare MMA training with adversarial training on MNIST and
CIFAR10 w.r.t. `∞ and `2 robustness. Our method achieves higher robustness accuracies on average
under a variety of perturbation magnitudes, which echoes its goal of maximizing the average margin.
Moreover, MMA training automatically balances accuracy vs robustness while being insensitive
to its hyperparameter setting, which contrasts sharply with the sensitivity of standard adversarial
training to its fixed perturbation magnitude. MMA trained models not only match the performance
of the best adversarially trained models with carefully chosen training ε under different scenarios, it
also matches the performance of ensembles of adversarially trained models.

In this paper, we focus our theoretical efforts on the formulation for directly maximizing the input
space margin, and understanding the standard adversarial training method from a margin maxi-
mization perspective. We focus our empirical efforts on thoroughly examining our MMA training
algorithm, comparing with adversarial training with a fixed perturbation magnitude.

1.1 RELATED WORKS
Although not often explicitly stated, many defense methods are related to increasing the margin.
One class uses regularization to constrain the model’s Lipschitz constant (Cisse et al., 2017; Ross &
Doshi-Velez, 2017; Hein & Andriushchenko, 2017; Tsuzuku et al., 2018), thus samples with small
loss would have large margin since the loss cannot increase too fast. If the Lipschitz constant is
merely regularized at the data points, it is often too local and not accurate in a neighborhood. When
globally enforced, the Lipschitz constraint on the model is often too strong that it harms accuracy.
So far, such methods have not achieved strong robustness. There are also efforts using first-order
approximation to estimate and maximize input space margin (Elsayed et al., 2018; Sokolic et al.,
2017; Matyasko & Chau, 2017). Similar to local Lipschitz regularization, the reliance on local
information often does not provide accurate margin estimation and efficient maximization. Such
approaches have also not achieved strong robustness at this point in time.

We defer some detailed discussions on related works to Appendix B, including a comparison be-
tween MMA training and SVM.

1.2 NOTATIONS AND DEFINITIONS
We focus on K-class classification problems. Denote S = {xi, yi} as the training set of input-
label data pairs sampled from data distribution D. We consider the classifier as a score function
fθ(x) =

(
f1
θ (x), . . . , fKθ (x)

)
, parametrized by θ, which assigns score f iθ(x) to the i-th class. The

predicted label of x is then decided by ŷ = arg maxi f
i
θ(x).

Let L01
θ (x, y) = I(ŷ 6= y) be the 0-1 loss indicating classification error, where I(·) is the indicator

function. For an input (x, y), we define its margin w.r.t. the classifier fθ(·) as:

dθ(x, y) = ‖δ∗‖ = min ‖δ‖ s.t. δ : L01
θ (x+ δ, y) = 1, (1)

2

Under review as a conference paper at ICLR 2020

where δ∗ = arg minL01
θ (x+δ,y)=1 ‖δ‖ is the “shortest successful perturbation”. We give an equivalent

definition of margin with the “logit margin loss” LLM
θ (x, y) = maxj 6=y f

j
θ (x)− fyθ (x). 1 The level

set {x : LLM
θ (x, y) = 0} corresponds to the decision boundary of class y. Also, when LLM

θ (x, y) <
0, the classification is correct, and when LLM

θ (x, y) ≥ 0, the classification is wrong. Therefore, we
can define the margin in Eq. (1) in an equivalent way by LLM

θ (·) as:

dθ(x, y) = ‖δ∗‖ = min ‖δ‖ s.t. δ : LLM
θ (x+ δ, y) ≥ 0, (2)

where δ∗ = arg minLLM
θ (x+δ,y)≥0 ‖δ‖ is again the “shortest successful perturbation”. For the rest of

the paper, we use the term “margin” to denote dθ(x, y) in Eq. (2). For other notions of margin, we
will use specific phrases, e.g. “SLM-margin” or “logit margin.”

2 MAX-MARGIN ADVERSARIAL TRAINING
We propose to improve adversarial robustness by maximizing the average margin of the data distri-
bution D, called Max-Margin Adversarial (MMA) training, by optimizing the following objective:

min
θ
{
∑
i∈S+

θ

max{0, dmax − dθ(xi, yi)}+ β
∑
j∈S−

θ

Jθ(xj , yj)}, (3)

where S+
θ = {i : LLM

θ (xi, yi) < 0} is the set of correctly classified examples, S−θ = {i :
LLM
θ (xi, yi) ≥ 0} is the set of wrongly classified examples, Jθ(·) is a regular classification loss

function, e.g. cross-entropy loss, dθ(xi, yi) is the margin for correctly classified samples, and β is
the coefficient for balancing correct classification and margin maximization. Note that the margin
dθ(xi, yi) is inside the hinge loss with threshold dmax (a hyperparameter), which forces the learn-
ing to focus on the margins that are smaller than dmax. Intuitively, MMA training simultaneously
minimizes classification loss on wrongly classified points in S−θ and maximizes the margins of cor-
rectly classified points in dθ(xi, yi) until it reaches dmax. Note that we do not maximize margins on
wrongly classified examples. Minimizing the objective in Eq. (3) turns out to be a technical chal-
lenge. While ∇θJθ(xj , yj) can be easily computed by standard back-propagation, computing the
gradient of dθ(xi, yi) needs some technical developments.

In the next section, we show that margin maximization can still be achieved by minimizing a classifi-
cation loss w.r.t. model parameters, at the “shortest successful perturbation”. For smooth functions,
a stronger result exists: the gradient of the margin w.r.t. model parameters can be analytically
calculated, as a scaled gradient of the loss. Such results make gradient descent viable for margin
maximization, despite the fact that model parameters are entangled in the constraints.

2.1 MARGIN MAXIMIZATION
Recall that

dθ(x, y) = ‖δ∗‖ = min ‖δ‖ s.t. δ : LLM
θ (x+ δ, y) ≥ 0.

Note that the constraint of the above optimization problem depends on model parameters, thus mar-
gin maximization is a max-min nested optimization problem with a parameter-dependent constraint
in its inner minimization.2 Computing such gradients for a linear model is easy due to the existence
of its closed-form solution, e.g. SVM, but it is not so for general functions such as neural networks.

The next theorem provides a viable way to increase dθ(x, y).

Theorem 2.1. Gradient descent on LLM
θ (x+δ∗, y) w.r.t. θ with a proper step size increases dθ(x, y),

where δ∗ = arg minLLM
θ (x+δ,y)≥0 ‖δ‖ is the shortest successful perturbation given the current θ.

Theorem 2.1 summarizes the theoretical results, where we show separately later
1) how to calculate the gradient of the margin under some smoothness assumptions;
2) without smoothness, margin maximization can still be achieved by minimizing the loss at

the shortest successful perturbation.

Calculating gradients of margins for smooth loss and norm: Denote LLM
θ (x+ δ, y) by L(θ, δ)

for brevity. It is easy to see that for a wrongly classified example (x, y), δ∗ is achieved at 0 and thus
∇θdθ(x, y) = 0. Therefore we focus on correctly classified examples. Denote the Lagrangian as
Lθ(δ, λ) = ‖δ‖ + λL(δ, θ). For a fixed θ, denote the optimizers of Lθ(δ, λ) by δ∗ and λ∗ . The
following theorem shows how to compute∇θdθ(x, y).

1Since the scores
(
f1
θ (x), . . . , fKθ (x)

)
output by fθ are also called logits in neural network literature.

2In adversarial training (Madry et al., 2017), the constraint on the inner max does NOT have such problem.

3

Under review as a conference paper at ICLR 2020

Figure 2: A 1-D example on how margin is affected by decreasing the loss at different locations.

Proposition 2.1. Let ε(δ) = ‖δ‖. Given a fixed θ, assume that δ∗ is unique, ε(δ) and L(δ, θ) are

C2 functions in a neighborhood of (θ, δ∗), and the matrix

(
∂2ε(δ∗)
∂δ2 + λ∗ ∂

2L(δ∗,θ)
∂δ2

∂L(δ∗,θ)
∂δ

∂L(δ∗,θ)
∂δ

>
0

)
is full rank, then

∇θdθ(x, y) = C(θ, x, y)
∂L(δ∗, θ)

∂θ
, where C(θ, x, y) =

〈
∂ε(δ∗)
∂δ , ∂L(δ∗,θ)

∂δ

〉
‖∂L(δ∗,θ)

∂δ ‖22
is a scalar.

Remark 2.1. By Proposition 2.1, the margin’s gradient w.r.t. to the model parameter θ is propor-
tional to the loss’ gradient w.r.t. θ at δ∗, the shortest successful perturbation. Therefore to perform
gradient ascent on margin, we just need to find δ∗ and perform gradient descent on the loss.

Margin maximization for non-smooth loss and norm: Proposition 2.1 requires the loss function
and the norm to be C2 at δ∗. This might not be the case for many functions used in practice, e.g.
ReLU networks and the `∞ norm. Our next result shows that under a weaker condition of directional
differentiability (instead of C2), learning θ to maximize the margin can still be done by decreasing
L(θ, δ∗) w.r.t. θ, at θ = θ0. Due to space limitations, we only present an informal statement here.
Rigorous statements can be found in the Appendix A.2.

Proposition 2.2. Let δ∗ be unique andL(δ, θ) be the loss of a deep ReLU network. There exists some
direction ~v in the parameter space, such that the loss L(δ, θ)|δ=δ∗ can be reduced in the direction of
~v. Furthermore, by reducing L(δ, θ)|δ=δ∗ , the margin is also guaranteed to be increased.

Figure 2 illustrates the relationship between the margin and the adversarial loss with an imaginary
example. Consider a 1-D example in Figure 2 (a), where the input example x is a scalar. We
perturb x in the positive direction with perturbation δ. As we fix (x, y), we overload L(δ, θ) =
LLM
θ (x+ δ, y), which is monotonically increasing on δ, namely larger perturbation results in higher

loss. Let L(·, θ0) (the dashed curve) denote the original function before an update step, and δ∗0 =
arg minL(δ,θ0)≥0 ‖δ‖ denote the corresponding margin (same as shortest successful perturbation in
1D). As shown in Figure 2 (b), as the parameter is updated to θ1 such that L(δ∗0 , θ1) is reduced, the
new margin δ∗1 = arg minL(δ,θ1)≥0 ‖δ‖ is enlarged. Intuitively, a reduced value of the loss at the
shortest successful perturbation leads to an increase in margin.

2.2 STABILIZING THE LEARNING WITH CROSS ENTROPY SURROGATE LOSS

In practice, we find the gradients of the “logit margin loss” LLM
θ to be unstable. The piecewise nature

of the LLM
θ loss can lead to discontinuity of its gradient, causing large fluctuations on the boundary

between the pieces. It also does not fully utilize information provided by all the logits.

4

Under review as a conference paper at ICLR 2020

In our MMA algorithm, we instead use the “soft logit margin loss” (SLM)

LSLM
θ (x, y) = log

∑
j 6=y

exp(f jθ (x))− fyθ (x),

which serves as a surrogate loss to the “logit margin loss” LLM
θ (x, y) by replacing the the max

function by the LogSumExp (sometimes also called softmax) function. One immediate property is
that the SLM loss is smooth and convex (w.r.t. logits). The next proposition shows that SLM loss is
a good approximation to the LM loss.

Proposition 2.3.
LSLM
θ (x, y)− log(K − 1) ≤ LLM

θ (x, y) ≤ LSLM
θ (x, y), (4)

where K denote the number of classes.

Remark 2.2. By using the soft logit margin loss, MMA maximizes a lower bound of the margin, the
SLM-margin, dSLMθ (x, y):

dSLM
θ (x, y) = ‖δ∗‖ = min ‖δ‖ s.t. δ : LSLM

θ (x+ δ, y) ≥ 0.

To see that, note by Proposition 2.3, LSLM
θ (x, y) upper bounds LLM

θ (x, y). So we have {δ : LLM
θ (x+

δ, y) ≤ 0} ⊆ {δ : LSLM
θ (x+ δ, y) ≤ 0}. Therefore, dSLM

θ (x, y) ≤ dθ(x, y), i.e. the SLM-margin is a
lower bound of the margin.

Our next proposition shows that the gradient of the SLM loss is proportional to the gradient of the
cross entropy loss, thus minimizing LCE

θ (x+ δ∗, y) w.r.t. θ “is” minimizing LSLM
θ (x+ δ∗, y).

Proposition 2.4. For a fixed (x, y) and θ,

∇θLCE
θ (x, y) = r(θ, x, y)∇θLSLM

θ (x, y), and ∇xLCE
θ (x, y) = r(θ, x, y)∇xLSLM

θ (x, y) (5)

where the scalar r(θ, x, y) =

∑
i 6=y exp(f iθ(x))∑
i exp(f iθ(x))

. (6)

Therefore, to simplify the learning algorithm, we perform gradient descent on model parameters
using LCE

θ (x + δ∗, y). As such, we use LCE
θ on both clean and adversarial examples, which in

practice stabilizes training:

min
θ
LMMA
θ (S), where LMMA

θ (S) =
∑

i∈S+
θ ∩Hθ

LCE
θ (xi + δ∗, yi) +

∑
j∈S−

θ

LCE
θ (xj , yj), (7)

where δ∗ = arg minLSLM
θ (x+δ,y)≥0 ‖δ‖ is found with the SLM loss, and Hθ = {i : dθ(xi, yi) <

dmax} is the set of examples that have margins smaller than the hinge threshold.

2.3 FINDING THE OPTIMAL PERTURBATION δ∗

To implement MMA, we still need to find the δ∗, which is intractable in general settings. We
propose an adaptation of the projected gradient descent (PGD) (Madry et al., 2017) attack to give
an approximate solution of δ∗, the Adaptive Norm Projective Gradient Descent Attack (AN-PGD).
In AN-PGD, we apply PGD on an initial perturbation magnitude εinit to find a norm-constrained
perturbation δ1, then we search along the direction of δ1 to find a scaled perturbation that gives
L = 0, we then use this scaled perturbation to approximate ε∗. Note that AN-PGD here only serves
as an algorithm to give an approximate solution of δ∗, and it can be decoupled from the remaining
parts of MMA training. Other attacks that can serve a similar purpose can also fit into our MMA
training framework, e.g. the Decoupled Direction and Norm (DDN) attack (Rony et al., 2018).
Algorithm 1 describes the Adaptive Norm PGD Attack (AN-PGD) algorithm.

Remark 2.3. Finding the δ∗ in Proposition 2.2 and Proposition 2.1 requires solving a non-convex
optimization problem, where the optimality cannot be guaranteed in practice. Previous adversarial
training methods, e.g. Madry et al. (2017), suffer the same problem. Nevertheless, as we show later
in Figure 4, our proposed MMA training algorithm does achieve the desired behavior of maximizing
the margin of each individual example in practice.

5

Under review as a conference paper at ICLR 2020

Algorithm 1 Adaptive Norm PGD Attack for approximately solving δ∗.
Inputs: (x, y) is the data example. εinit is the initial norm constraint used in the first PGD attack.
Outputs: δ∗, approximate shortest successful perturbation. Parameters: εmax is the maximum
perturbation length. PGD(x, y, ε) represents PGD perturbation δ with magnitude ε.

1: Adversarial example δ1 = PGD(x, y, εinit)
2: Unit perturbation δu = δ1

‖δ1‖
3: if prediction on x+ δ1 is correct then
4: Binary search to find ε′, the zero-crossing of L(x+ ηδu, y) w.r.t. η, η ∈ [‖δ1‖, εmax]
5: else
6: Binary search to find ε′, the zero-crossing of L(x+ ηδu, y) w.r.t. η, η ∈ [0, ‖δ1‖)
7: end if
8: δ∗ = ε′δu

(a) OMMA-32 (b) PGD-8 (c) MMA-32

Figure 3: Visualization of loss landscape in the input space for MMA and PGD trained models.

2.4 ADDITIONAL CLEAN LOSS DURING TRAINING

In practice, we observe that when the model is only trained with the objective function in Eq. (7),
the input space loss landscape is very flat, which makes PGD less efficient in finding δ∗ for training,
as shown in Figure 3. Here we choose 50 examples from both the training and test sets respectively,
then perform the PGD attack with ε = 8/255 and keep those failed perturbations. For each, we
linearly interpolate 9 more points between the original example and the perturbed, and plot their
logit margin losses. In each sub-figure, the horizontal axis is the relative position of the interpolated
example: e.g. 0.0 represents the original example, 1.0 represents the perturbed example with ε =
8/255, 0.5 represents the average of them. The vertical axis is the logit margin loss. Recall that
when LLM

θ (x+ δ, y) < 0, the perturbation δ fails.

OMMA-32 in Figure 3a represents model trained with only LMMA
θ in Eq. (7) with dmax = 8. PGD-8

Figure 3b represents model trained with PGD training (Madry et al., 2017) with ε = 8. As one can
see, OMMA-32 has “flatter” loss curves compared to PGD-8. This could potentially weaken the
adversary during training, which leads to poor approximation of δ∗ and hampers training.

To alleviate this issue, we add an additional clean loss term to the MMA objective in Eq. (7) to lower
the loss on clean examples, such that the input space loss landscape is steeper. Specifically, we use
the following combined loss

LCB
θ (S) =

1

3

∑
j∈S

LCE
θ (xj , yj) +

2

3
LMMA
θ (S). (8)

The model trained with this combined loss and dmax = 32 is the MMA-32 shown in Figure 3c.
Adding the clean loss is indeed effective. Most of the loss curves are more tilted, and the losses
of perturbed examples are lower. We use LCB

θ for MMA training in the rest of the paper due to its
higher performance. A more detailed comparison between LCB

θ and LMMA
θ is delayed to Appendix E.

2.5 THE MMA TRAINING ALGORITHM

Algorithm 2 summarizes our practical MMA training algorithm. During training for each minibatch,
we 1) separate it into 2 batches based on if the current prediction matches the label; 2) find δ∗ for
each example in the “correct batch”; 3) calculate the gradient of θ based on Eqs. (7) and (8).

6

Under review as a conference paper at ICLR 2020

Algorithm 2 Max-Margin Adversarial Training.
Inputs: The training set {(xi, yi)}. Outputs: the trained model fθ(·). Parameters: ε contains
perturbation lengths of training data. εmin is the minimum perturbation length. εmax is the maxi-
mum perturbation length. A(x, y, εinit) represents the approximate shortest successful perturbation
returned by an algorithm A (e.g. AN-PGD) on the data example (x, y) and at the initial norm εinit.

1: Randomly initialize the parameter θ of model f , and initialize every element of ε as εmin
2: repeat
3: Read minibatch B = {(x1, y1), . . . , (xm, ym)}
4: Make predictions on B and into two: wrongly predicted B0 and correctly predicted B1

5: Initialize an empty batch Badv
1

6: for (xi, yi) in B1 do
7: Retrieve perturbation length εi from ε
8: δ∗i = A(xi, yi, εi)
9: Update the εi in ε as ‖δ∗i ‖. If ‖δ∗i ‖ < dmax then put (xi + δ∗i , yi) into Badv

1
10: end for
11: Calculate gradients of

∑
j∈B0 LCE

θ (xj , yj)+ 1
3

∑
j∈B1 LCE

θ (xj , yj)+ 2
3

∑
j∈Badv

1
LCE
θ (xj , yj),

the combined loss on B0, B1, and Badv
1 , w.r.t. θ, according to Eqs. (7) and (8)

12: Perform one step gradient step update on θ
13: until meet training stopping criterion

3 UNDERSTANDING ADVERSARIAL TRAINING THROUGH MARGIN
MAXIMIZATION

Through our development of MMA training in the last section, we have shown that margin maxi-
mization is closely related to adversarial training with the optimal perturbation length ‖δ∗‖. In this
section, we further investigate the behavior of adversarial training in the perspective of margin max-
imization. Adversarial training (Huang et al., 2015; Madry et al., 2017) minimizes the “worst-case”
loss under a fixed perturbation magnitude ε, as follows.

min
θ

Ex,y∼D max
‖δ‖≤ε

Lθ(x+ δ, y). (9)

Looking again at Figure 2, we can see that an adversarial training update step does not necessarily
increase the margin. In particular, as we perform an update to reduce the value of loss at the fixed
perturbation ε, the parameter is updated from θ0 to θ1. After this update, we can imagine two
different scenarios for the updated loss functions Lθ1(·) (the solid curve) in Figure 2 (c) and (d). In
both (c) and (d), Lθ1(ε) is decreased by the same amount. However, the margin is increased in (c)
with δ∗1 > δ∗0 , but decreased in (d) with δ∗1 < δ∗0 . Formalizing the intuitive analysis, we present two
theorems connecting adversarial training and margin maximization. For brevity, fixing {(x, y)}, let
L(θ, δ) = LLM

θ (x+ δ, y), dθ = dθ(x, y), and ε∗θ(ρ) = minδ:L(δ,θ)≥ρ ‖δ‖.
Theorem 3.1. Assuming an update from adversarial training changes θ0 to θ1, such that ρ∗ =
max‖δ‖≤ε L(θ0, δ) > max‖δ‖≤ε L(θ1, δ), then

1) if ε = dθ0 , then ρ∗ = 0, ε∗θ1(ρ∗) = dθ1 ≥ dθ0 = ε∗θ0(ρ∗);
2) if ε < dθ0 , then ρ∗ ≤ 0, ε∗θ0(ρ∗) ≤ dθ0 , ε∗θ1(ρ∗) ≤ dθ1 , and ε∗θ1(ρ∗) ≥ ε∗θ0(ρ∗);
3) if ε > dθ0 , then ρ∗ ≥ 0, ε∗θ0(ρ∗) ≥ dθ0 , ε∗θ1(ρ∗) ≥ dθ1 , and ε∗θ1(ρ∗) ≥ ε∗θ0(ρ∗).

Remark 3.1. In other words, adversarial training, with the logit margin loss and a fixed perturba-
tion length ε

1) exactly maximizes the margin, if ε is equal to the margin;
2) maximizes a lower bound of the margin, if ε is less than the margin;
3) maximizes an upper bound of the margin, if ε is greater than the margin.

Next we look at adversarial training with the cross-entropy loss (Madry et al., 2017) through the
connection between cross-entropy and the soft logit margin loss from Proposition 2.4. We first look
at adversarial training on the SLM loss. Fixing {(x, y)}, let dSLM

θ = dSLM
θ (x, y), and ε∗SLM,θ(ρ) =

minLSLM
θ (x+δ,y)≥ρ ‖δ‖.

7

Under review as a conference paper at ICLR 2020

Corollary 3.1. Assuming an update from adversarial training changes θ0 to θ1, such that
max‖δ‖≤ε L

SLM
θ0

(x+ δ, y) > max‖δ‖≤ε L
SLM
θ1

(x+ δ, y), if ε ≤ dSLM
θ0

, then ρ∗ = max‖δ‖≤ε L
SLM
θ0

(x+
δ, y) ≤ 0, ε∗SLM,θ0(ρ∗) ≤ dθ0 , ε∗SLM,θ1(ρ∗) ≤ dθ1 , and ε∗SLM,θ1(ρ∗) ≥ ε∗SLM,θ0(ρ∗).

Remark 3.2. In other words, if ε is less than or equal to the SLM-margin, adversarial training, with
the SLM loss and a fixed perturbation length ε, maximizes a lower bound of the SLM-margin, thus a
lower bound of the margin.

Recall Proposition 2.4 shows that LCE
θ and LSLM

θ have the same gradient direction w.r.t. both the
model parameter and the input. In adversarial training (Madry et al., 2017), the PGD attack only
uses the gradient direction w.r.t. the input, but not the gradient magnitude. Therefore, in the inner
maximization loop, using the SLM and CE loss will result in the same approximate δ∗. Furthermore,
∇θLCE

θ (x + δ∗, y) and ∇θLSLM
θ (x + δ∗, y) have the same direction. If the step size is chosen

appropriately, then a gradient update that reduces LCE
θ (x+ δ∗, y) will also reduce LSLM

θ (x+ δ∗, y).
Combined with Remark 3.2, these suggest:

Adversarial training with cross entropy loss (Madry et al., 2017) approximately maximizes a lower
bound of the margin, if ε is smaller than or equal to the SLM-margin.

On the other hand, when ε is larger then the margin, such a relation no longer exists. We can
anticipate that when ε is too large, adversarial training is likely maximizing an upper bound of the
margin, which might not necessarily increase the margin. This suggests that for adversarial training
with a large ε, starting with a smaller ε then gradually increasing it could help, since the lower bound
of the margin is maximized at the start of training. Results in Sections 4.1 and 4.2 corroborate exactly
with this theoretical prediction.

4 EXPERIMENTS

We empirically examine several hypotheses and compare MMA training with different adversarial
training algorithms on the MNIST and CIFAR10 datasets under `∞/`2-norm constrained perturba-
tions. Due to space limitations, we mainly present results on CIFAR10-`∞ for representative models
in Table 1. Full results are in Table 2 to 13 in Appendix F. Implementation details are also left to the
appendix, including neural network architecture, training and attack hyperparameters.

Our results confirm our theory and show that MMA training is stable to its hyperparameter dmax,
and balances better among various attack lengths compared to adversarial training with fixed per-
turbation magnitude. This suggests that MMA training is a better choice for defense when the
perturbation length is unknown, which is often the case in practice.

Measuring Adversarial Robustness: We use the robust accuracy under multiple projected gra-
dient descent (PGD) attacks (Madry et al., 2017) as the robustness measure. Specifically, given an
example, each model is attacked by both repeated randomly initialized whitebox PGD attacks and
numerous transfer attacks, generated from whitebox PGD attacking other models. If any one of
these attacks succeed, then the model is considered “not robust under attack” on this example. For
each dataset-norm setting and for each example, under a particular magnitude ε, we first perform N
randomly initialized whitebox PGD attacks on each individual model, then use N · (m − 1) PGD
attacks from all the other models to perform transfer attacks, where m is the total number of models
considered under each setting. In our experiments, we use N = 10 for models trained on CIFAR10,
thus the total number of the “combined” (whitebox and transfer) set of attacks is 320 for CIFAR10-
`∞ (m = 32). 3 We use ClnAcc for clean accuracy, AvgAcc for the average over both clean accuracy
and robust accuracies at different ε’s, AvgRobAcc for the average over only robust accuracies under
attack.

4.1 EFFECTIVENESS OF MARGIN MAXIMIZATION DURING TRAINING

As discussed in Section 3, MMA training enlarges margins of all training points,while PGD training,
by minimizing the adversarial loss with a fixed ε, might fail to enlarge margins for points with initial
margins smaller than ε. This is because when dθ(x, y) < ε, PGD training is maximizing an upper
bound of dθ(x, y), which may not necessarily increase the margin. To verify this, we track how the
margin distribution changes during training processes in two models under the CIFAR10-`2 4 case,

3N = 50 for models trained on MNIST. Total number of attacks is 900 for MNIST-`∞ (m = 18), 1200 for
MNIST-`2 (m = 24) and 260 for CIFAR10-`2 (m = 26).

4Here we choose CIFAR10-`2 because the DDN-`2 attack is both fast and effective for estimating margins.

8

Under review as a conference paper at ICLR 2020

Figure 4: Margin distributions during training, under the CIFAR10-`2 case. Each blue histogram
represents the margin value distribution of MMA-3.0, and the orange represents PGD-2.5.

Table 1: Accuracies of representative models trained on CIFAR10 with `∞-norm constrained at-
tacks. These robust accuracies are calculated under combined (whitebox+transfer) PGD attacks.
AvgAcc averages over clean and all robust accuracies; AvgRobAcc averages over all robust accura-
cies.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, combined (whitebox+transfer) attacks

4 8 12 16 20 24 28 32

PGD-8 85.14 27.27 20.03 67.73 46.47 26.63 12.33 4.69 1.56 0.62 0.22
PGD-16 68.86 28.28 23.21 57.99 46.09 33.64 22.73 13.37 7.01 3.32 1.54
PGD-24 10.90 9.95 9.83 10.60 10.34 10.11 10.00 9.89 9.69 9.34 8.68

PGDLS-8 85.63 27.20 19.90 67.96 46.19 26.19 12.22 4.51 1.48 0.44 0.21
PGDLS-16 70.68 28.44 23.16 59.43 47.00 33.64 21.72 12.66 6.54 2.98 1.31
PGDLS-24 58.36 26.53 22.55 49.05 41.13 32.10 23.76 15.70 9.66 5.86 3.11

MMA-12 88.59 26.87 19.15 67.96 43.42 24.07 11.45 4.27 1.43 0.45 0.16
MMA-20 86.56 28.86 21.65 66.92 46.89 29.83 16.55 8.14 3.25 1.17 0.43
MMA-32 84.36 29.39 22.51 64.82 47.18 31.49 18.91 10.16 4.77 1.97 0.81

PGD-ens 87.38 28.10 20.69 64.59 46.95 28.88 15.10 6.35 2.35 0.91 0.39
PGDLS-ens 76.73 29.52 23.62 60.52 48.21 35.06 22.14 12.28 6.17 3.14 1.43

MMA-3.0 vs PGD-2.5. We use MMA-dmax to denote the MMA trained model with the combined
loss in Eq. (8) and hinge threshold dmax, and PGD-ε to represent the PGD trained (Madry et al.,
2017) model with fixed perturbation magnitude ε.

Specifically, we randomly select 500 training points, and measure their margins after each training
epoch. We use the norm of the perturbation, generated by the 1000-step DDN attack (Rony et al.,
2018), to approximate the margin. The results are shown in Figure 4, where each subplot is a
histogram (rotated by 90◦) of margin values. For the convenience of comparing across epochs, we
use the vertical axis to indicate margin value, and the horizontal axis for counts in the histogram. The
number below each subplot is the corresponding training epoch. Margins mostly concentrate near 0
for both models at the beginning. As training progresses, both enlarge margins on average. However,
in PGD training, a portion of the margins stay close to 0 throughout the training process, at the same
time, also pushing some margins to be even higher than 2.5, likely because PGD training continues
to maximize lower bounds of this subset of the total margins, as we discussed in Section 3, the ε
value that the PGD-2.5 model is trained for. MMA training, on the other hand, does not “give up” on
those data points with small margins. At the end of training, 37.8% of the data points for PGD-2.5
have margins smaller than 0.05, while only 20.4% for MMA. As such, PGD training enlarges the
margins of “easy data” which are already robust enough, but “gives up” on “hard data” with small
margins. Instead, MMA training pushes the margin of every data point, by finding the proper ε. In
general, when the attack magnitude is unknown, MMA training is more capable in achieving a better
balance between small and large margins, and thus a better balance among adversarial attacks with
various ε as a whole.

4.2 GRADUALLY INCREASING ε HELPS PGD TRAINING WHEN ε IS LARGE

Our previous analysis in Section 3 suggests that when the fixed perturbation magnitude ε is small,
PGD training increases the lower bound of the margin. On the other hand, when ε is larger than
the margin, PGD training does not necessarily increase the margin. This is indeed confirmed by our
experiments. PGD training fails at larger ε, in particular ε = 24/255 for the CIFAR10-`∞ as shown
in Table 1. We can see that PGD-24’s accuracies at all test ε’s are around 10%.

Aiming to improve PGD training, we propose a variant of PGD training, named PGD with Linear
Scaling (PGDLS), in which we grow the perturbation magnitude from 0 to the fixed magnitude
linearly in 50 epochs. According to our theory, gradually increasing the perturbation magnitude
could avoid picking a ε that is larger than the margin, thus managing to maximizing the lower bound

9

Under review as a conference paper at ICLR 2020

of the margin rather than its upper bound, which is more sensible. It can also be seen as a “global
magnitude scheduling” shared by all data points, which is to be contrasted to MMA training that
gives magnitude scheduling for each individual example.

We use PGDLS-ε to represent these models and show their performances also in Table 1. We can see
that PGDLS-24 is trained successfully, whereas PGD-24 fails. At ε = 8 or 16, PGDLS also performs
similar or better than PGD training, confirming the benefit of training with small perturbation at the
beginning.

4.3 COMPARING MMA TRAINING WITH PGD TRAINING
From the first three columns in Table 1, we can see that MMA training is very stable with respect
to its hyperparameter, the hinge threshold dmax. When dmax is set to smaller values (e.g. 12 and
20), MMA models attain good robustness across different attacking magnitudes, with the best clean
accuracies in the comparison set. When dmax is large, MMA training can still learn a reasonable
model that is both accurate and robust. For MMA-32, although dmax is set to a “impossible-to-
be-robust” level at 32/255, it still achieves 84.36% clean accuracy and 47.18% robust accuracy at
8/255, thus automatically “ignoring” the demand to be robust at larger ε’s, including 20, 24, 28 and
32, recognizing its infeasibility due to the intrinsic difficulty of the problem. In contrast, PGD trained
models are more sensitive to their specified fixed perturbation magnitude. In terms of the overall
performance, we notice that MMA training with a large dmax, e.g. 20 or 32, achieves high AvgAcc
values, e.g. 28.86% or 29.39%. However, for PGD training to achieve a similar performance, ε needs
to be carefully picked (PGD-16 and PGDLS-16), and their clean accuracies suffer a significant drop.

We also compare MMA models with ensemble of PGD trained models. PGD-ens/PGDLS-ens rep-
resents the ensemble of PGD/PGDLS trained models with different ε(s). The ensemble produces a
prediction by performing a majority vote on label predictions, and using the softmax scores as the
tie breaker.

MMA training achieves similar performance compared to the ensembled PGD models. PGD-ens
maintains a good clean accuracy, but it is still marginally outperformed by MMA-32 w.r.t. robustness
at various ε’s. Further note that 1) the ensembling requires significantly higher computation costs
both at training and test times; 2) Unlike attacking individual models, attacking ensembles is still
relatively unexplored in the literature, thus our whitebox PGD attacks on the ensembles may not be
sufficiently effective; 5 and 3) as shown in Appendix F, for MNIST-`∞/`2, MMA trained models
significantly outperform the PGD ensemble models.

Testing on gradient free attacks: As a sanity check for gradient obfuscation (Athalye et al., 2018),
we also performed the gradient-free SPSA attack (Uesato et al., 2018), to all our `∞-MMA trained
models on the first 100 test examples. We find that, in all cases, SPSA does not compute adversarial
examples successfully when gradient-based PGD did not.

5 CONCLUSIONS

In this paper, we proposed to directly maximize the margins to improve adversarial robustness. We
developed the MMA training algorithm that optimizes the margins via adversarial training with
perturbation magnitude adapted both throughout training and individually for the distinct datapoints
in the training dataset. Furthermore, we rigorously analyzed the relation between adversarial training
and margin maximization. Our experiments on CIFAR10 and MNIST empirically confirmed our
theory and demonstrate that MMA training outperforms adversarial training in terms of sensitivity
to hyperparameter setting and robustness to variable attack lengths, suggesting MMA is a better
choice for defense when the adversary is unknown, which is often the case in practice.

5Attacks on ensembles are explained in Appendix D.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International Conference on Machine
Learning, pp. 274–283, 2018. 4.3

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013. 1

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pp. 39–57. IEEE, 2017. D

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C Duchi. Unlabeled data
improves adversarial robustness. arXiv preprint arXiv:1905.13736, 2019. 1

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863, 2017. 1.1

Gavin Weiguang Ding, Kry Yik-Chau Lui, Xiaomeng Jin, Luyu Wang, and Ruitong Huang. On
the sensitivity of adversarial robustness to input data distributions. In International Confer-
ence on Learning Representations, 2019a. URL https://openreview.net/forum?id=
S1xNEhR9KX. F

Gavin Weiguang Ding, Luyu Wang, and Xiaomeng Jin. AdverTorch v0.1: An adversarial robustness
toolbox based on pytorch. arXiv preprint arXiv:1902.07623, 2019b. D

Gamaleldin F Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. arXiv preprint arXiv:1803.05598, 2018. 1.1, B

Chuan Guo, Jared Frank, and Kilian Weinberger. Low frequency adversarial perturbation. arXiv
preprint arXiv:1809.08758, 2018. 1

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. arXiv preprint arXiv:1705.08475, 2017. 1.1

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. arXiv preprint arXiv:1901.09960, 2019. 1

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adver-
sary. arXiv preprint arXiv:1511.03034, 2015. 1, 3

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017. 1, 2, 2.3, 2.3, 2.4, 3, 3, 3, 4, 4.1, C

Alexander Matyasko and Lap-Pui Chau. Margin maximization for robust classification using deep
learning. In Neural Networks (IJCNN), 2017 International Joint Conference on, pp. 300–307.
IEEE, 2017. 1.1, B

Jérôme Rony, Luiz G Hafemann, Luis S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric
Granger. Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and
defenses. arXiv preprint arXiv:1811.09600, 2018. 2.3, 4.1, B.1

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients. arXiv preprint
arXiv:1711.09404, 2017. 1.1

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! arXiv preprint
arXiv:1904.12843, 2019. 1

11

https://openreview.net/forum?id=S1xNEhR9KX
https://openreview.net/forum?id=S1xNEhR9KX

Under review as a conference paper at ICLR 2020

Yash Sharma, Gavin Ding, and Marcus Brubaker. On the effectiveness of low frequency perturba-
tions. arXiv preprint arXiv:1903.00073, 2019. 1

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 2017. 1.1, B

Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al. Are labels required for improving adver-
sarial robustness? arXiv preprint arXiv:1905.13725, 2019. 1

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
1

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-margin training: Scalable certifi-
cation of perturbation invariance for deep neural networks. In Advances in Neural Information
Processing Systems, pp. 6542–6551, 2018. 1.1, B

Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial risk
and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018. 4.3,
D

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,
2013. B

Yao-Liang Yu. The differentiability of the upper envelop. Technical note, 2012. A.2

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. C

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. arXiv preprint arXiv:1905.00877,
2019a. 1

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I
Jordan. Theoretically principled trade-off between robustness and accuracy. arXiv preprint
arXiv:1901.08573, 2019b. 1

Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit S Dhillon, and Cho-Jui Hsieh. The
limitations of adversarial training and the blind-spot attack. arXiv preprint arXiv:1901.04684,
2019c. F

12

Under review as a conference paper at ICLR 2020

Appendix
A PROOFS

A.1 PROOF OF PROPOSITION 2.1

Proof. Recall ε(δ) = ‖δ‖. Here we compute the gradient for dθ(x, y) in its general form. Consider
the following optimization problem:

dθ(x, y) = min
δ∈∆(θ)

ε(δ),

where ∆(θ) = {δ : Lθ(x+δ, y) = 0}, ε and L(δ, θ) are bothC2 functions 6. Denotes its Lagrangian
by L(δ, λ), where

L(δ, λ) = ε(δ) + λLθ(x+ δ, y)

For a fixed θ, the optimizer δ∗ and λ∗ must satisfy the first-order conditions (FOC)

∂ε(δ)

∂δ
+ λ

∂Lθ(x+ δ, y)

∂δ

∣∣∣∣
δ=δ∗,λ=λ∗

= 0, (10)

Lθ(x+ δ, y)|δ=δ∗ = 0.

Put the FOC equations in vector form,

G((δ, λ), θ) =

(
∂ε(δ)
∂δ + λ∂Lθ(x+δ,y)

∂δ
Lθ(x+ δ, y)

) ∣∣∣∣
δ=δ∗,λ=λ∗

= 0.

Note thatG is C1 continuously differentiable since ε and L(δ, θ) are C2 functions. Furthermore, the
Jacobian matrix of G w.r.t (δ, λ) is

∇(δ,λ)G((δ∗, λ∗), θ)

=

(
∂2ε(δ∗)
∂δ2 + λ∗ ∂

2L(δ∗,L(δ,θ))
∂δ2

∂L(δ∗,θ)
∂δ

∂L(δ∗,θ)
∂δ

>
0

)
which by assumption is full rank. Therefore, by the implicit function theorem, δ∗ and λ∗ can be
expressed as a function of θ, denoted by δ∗(θ) and λ∗(θ).

To further compute ∇θdθ(x, y), note that dθ(x, y) = ε(δ∗(θ)). Thus,

∇θdθ(x, y) =
∂ε(δ∗)

∂δ

∂δ∗(θ)

∂θ
= −λ∗ ∂L(δ∗, θ)

∂δ

∂δ∗(θ)

∂θ
, (11)

where the second equality is by Eq. (10). The implicit function theorem also provides a way of
computing ∂δ∗(θ)

∂θ which is complicated involving taking inverse of the matrix∇(δ,λ)G((δ∗, λ∗), θ).

Here we present a relatively simple way to compute this gradient. Note that by the definition of
δ∗(θ),

L(δ∗(θ), θ) ≡ 0.

and δ∗(θ) is a differentiable implicit function of θ restricted to this level set. Differentiate with w.r.t.
θ on both sides:

∂L(δ∗, θ)

∂θ
+
∂L(δ∗, θ)

∂δ

∂δ∗(θ)

∂θ
= 0. (12)

Combining Eq. (11) and Eq. (12),

∇θdθ(x, y) = λ∗(θ)
∂L(δ∗, θ)

∂θ
. (13)

Lastly, note that ∥∥∥∥∥∂ε(δ)∂δ
+ λ

∂Lθ(x+ δ, y)

∂δ

∣∣∣∣
δ=δ∗,λ=λ∗

∥∥∥∥∥
2

= 0.

6Note that a simple application of Danskin’s theorem would not be valid as the constraint set ∆(θ) depends
on the parameter θ.

13

Under review as a conference paper at ICLR 2020

Therefore, one way to calculate λ∗(θ) is by

λ∗(θ) =
∂ε(δ)
∂δ

> ∂Lθ(x+δ,y)
∂δ

∂Lθ(x+δ,y)
∂δ

> ∂Lθ(x+δ,y)
∂δ

∣∣∣∣∣
δ=δ∗

A.2 PROOF OF PROPOSITION 2.2
We provide more detailed and formal statements of Proposition 2.2.

For brevity, consider a K-layers fully-connected ReLU network, f(θ;x) = fθ(x) as a function of θ.

f(θ;x) = V >DKWKDK−1WK−1 · · ·D1W
>
Kx (14)

where the Dk are diagonal matrices dependent on ReLU’s activation pattern over the layers, and
Wk’s and V are the weights (i.e. θ). Note that f(θ;x) is a piecewise polynomial functions of θ with
finitely many pieces. We further define the directional derivative of a function g, along the direction
of ~v, to be:

g′(θ;~v) := lim
t↓0

g(θ + t~v)− g(θ)

t
.

Note that for every direction ~v, there exists α > 0 such that f(θ;x) is a polynomial restricted to a
line segment [θ, θ + α~v]. Thus the above limit exists and the directional derivative is well defined.

We first show the existence of ~v and t for l(θ0 + t~v) given any ε. Let lθ0,~v,ε(t) := sup‖δ‖≤ε L(δ, θ0 +

t~v).

Proposition A.1. For ε > 0, t ∈ [0, 1], and θ0 ∈ Θ, there exists a direction ~v ∈ Θ, such that the
derivative of lθ0,~v,ε(t) exists and is negative. Moreover, it is given by

l′θ0,~v,ε(t) = L′(δ∗, θ0;~v).

Proof. [Proof sketch] Since θ0 is not a local minimum, there exists a direction d, such that
L′(δ∗, θ0;~v) = ∂L(δ∗,θ0+t~v)

∂t is negative.

The Danskin theorem provides a way to compute the directional gradient along this direction ~v. We
basically apply a version of Danskin theorem for directional absolutely continuous maps and semi-
continuous maps (Yu, 2012). 1. the constraint set {δ : ‖δ‖ ≤ ε} is compact; 2. L(θ0 + t~v;x +
δ, y) is piecewise Lipschitz and hence absolutely continuous (an induction argument on the integral
representation over the finite pieces). 3. L(θ0 + t~v;x + δ, y) is continuous on both δ and along the
direction ~v and hence upper semi continuous. Hence we can apply Theorem 1 in Yu (2012).

Therefore, for any ε > 0, if θ0 is not a local minimum, then there exits a direction d, such that for
θ1 = θ0 + t~v for a proper t,

sup
‖δ‖≤ε

L(δ, θ0 + t~v) < sup
‖δ‖≤ε

L(δ, θ0) . (15)

Our next proposition provides an alternative way to increase the margin of fθ.

Proposition A.2. Assume fθ0 has a margin ε0, and θ1 such that lθ0,~v,ε0(t) ≤ lθ1,~v,ε0(0) , then fθ1
has a larger margin than ε0.

Proof. Since fθ0 has a margin ε0, thus
max
‖δ‖≤ε0

L(θ0;x+ δ, y) = 0

Further by lθ0,~v,ε0(t) ≤ lθ0,~v,ε0(0) ,
sup
‖δ‖≤ε

L(δ, θ0 + t~v) ≤ sup
‖δ‖≤ε

L(δ, θ0).

To see the equality (constraint not binding), we use the following argument. The envolope function’s
continuity is passed from the continuity of L(θ0;x+ δ, y). The inverse image of a closed set under
continuous function is closed. If δ∗ lies in the interior of max‖δ‖≤ε0 L~v,ε(θ0;x + δ, y) ≥ 0, we
would have a contradiction. Therefore the constraint is not binding, due to the continuity of the
envolope function. By Eq. (15), max‖δ‖≤ε0 L(θ1;x + δ, y) < 0. So for the parameter θ1, fθ1 has a
margin ε1 > ε0.

14

Under review as a conference paper at ICLR 2020

Therefore, the update θ0 → θ1 = θ0 + t~v increases the margin of fθ.

A.3 PROOF OF PROPOSITION 2.3

Proof.

LLM
θ (x, y) = (max

j 6=y
f jθ (x))− fyθ (x) (16)

= log(exp(max
j 6=y

f jθ (x)))− fyθ (x) (17)

≤ log(exp(
∑
j 6=y

f jθ (x)))− fyθ (x) (18)

= LSLM
θ (x, y) (19)

≤ log((K − 1) exp(max
j 6=y

f jθ (x)))− fyθ (x) (20)

= log(K − 1) + (max
j 6=y

f jθ (x))− fyθ (x) (21)

= log(K − 1) + LLM
θ (x, y) (22)

Therefore,
LSLM
θ (x, y)− log(K − 1) ≤ LLM

θ (x, y) ≤ LSLM
θ (x, y).

A.4 A LEMMA FOR LATER PROOFS

The following lemma helps relate the objective of adversarial training with that of our MMA train-
ing. Here, we denote Lθ(x+ δ, y) as L(δ, θ) for brevity.

Lemma A.1. Given (x, y) and θ , assume that L(δ, θ) is continuous in δ, then for ε ≥ 0, and
ρ ≥ L(0, θ) ∈ Range(L(δ, θ)), it holds that

min
L(δ,θ)≥ρ

‖δ‖ = ε =⇒ max
‖δ‖≤ε

L(δ, θ) = ρ ; (23)

max
‖δ‖≤ε

L(δ, θ) = ρ =⇒ min
L(δ,θ)≥ρ

‖δ‖ ≤ ε . (24)

Proof. Eq. (23). We prove this by contradiction. Suppose max‖δ‖≤ε L(δ, θ) > ρ. When ε = 0, this
violates our asssumption ρ ≥ L(0, θ) in the theorem. So assume ε > 0. Since L(δ, θ) is a continuous
function defined on a compact set, the maximum is attained by δ̄ such that ‖δ̄‖ ≤ ε and L(δ̄, θ) > ρ.
Note that L(δ, θ)) is continuous and ρ ≥ L(0, θ), then there exists δ̃ ∈ 〈0, δ̄〉 i.e. the line segment
connecting 0 and δ̄, such that ‖δ̃‖ < ε and L(δ̃, θ) = ρ. This follows from the intermediate value
theorem by restricting L(δ, θ) onto 〈0, δ̄〉. This contradicts minL(δ,θ)≥ρ ‖δ‖ = ε.

If max‖δ‖≤ε L(δ, θ) < ρ, then {δ : ‖δ‖ ≤ ε} ⊂ {δ : L(δ, θ) < ρ}. Every point p ∈ {δ : ‖δ‖ ≤ ε}
is in the open set {δ : L(δ, θ) < ρ}, there exists an open ball with some radius rp centered at p such
that Brp ⊂ {δ : L(δ, θ) < ρ}. This forms an open cover for {δ : ‖δ‖ ≤ ε}. Since {δ : ‖δ‖ ≤ ε}
is compact, there is an open finite subcover Uε such that: {δ : ‖δ‖ ≤ ε} ⊂ Uε ⊂ {δ : L(δ, θ) < ρ}.
Since Uε is finite, there exists h > 0 such that {δ : ‖δ‖ ≤ ε + h} ⊂ {δ : L(δ, θ) < ρ}. Thus
{δ : L(δ, θ) ≥ ρ} ⊂ {δ : ‖δ‖ > ε+ h}, contradicting minL(δ,θ)≥ρ ‖δ‖ = ε again.

Eq. (24). Assume that minL(δ,θ)≥ρ ‖δ‖ > ε, then {δ : L(δ, θ) ≥ ρ} ⊂ {δ : ‖δ‖ > ε}. Taking
complementary set of both sides, {δ : ‖δ‖ ≤ ε} ⊂ {δ : L(δ, θ) < ρ}. Therefore, by the compactness
of {δ : ‖δ‖ ≤ ε}, max‖δ‖≤ε L(δ, θ) < ρ, contradiction.

A.5 PROOF OF THEOREM 3.1

Proof. Recall that L(θ, δ) = LLM
θ (x + δ, y), dθ = dθ(x, y), ε∗θ(ρ) = minδ:L(δ,θ)≥ρ ‖δ‖, and ρ∗ =

max‖δ‖≤ε L(θ0, δ) > max‖δ‖≤ε L(θ1, δ).

We first prove that ∀ε, ε∗θ1(ρ∗) ≥ ε∗θ0(ρ∗) by contradiction. We assume ε∗θ1(ρ∗) < ε∗θ0(ρ∗). Let
δ∗θ (ρ) = arg minδ:L(δ,θ)≥ρ ‖δ‖, which is ‖δ∗θ1(ρ∗)‖ < ‖δ∗θ0(ρ∗)‖. By Eq. (24), we have ‖δ∗θ0(ρ∗)‖ ≤

15

Under review as a conference paper at ICLR 2020

ε. Therefore, ‖δ∗θ1(ρ∗)‖ < ε. Then there exist a δ# ∈ {δ : ‖δ‖ ≤ ε} such that L(θ1, δ
#) ≥ ρ∗. This

contradicts max‖δ‖≤ε L(θ1, δ) < ρ∗. Therefore ε∗θ1(ρ∗) ≥ ε∗θ0(ρ∗).

For 1), ε = dθ0 . By definition of margin in Eq. (1), we have ρ∗ = max‖δ‖≤dθ0 L(θ0, δ) = 0. Also
by definition of ε∗θ(ρ), ε∗θ0(0) = dθ0 and ε∗θ1(0) = dθ1 .

For 2), ε < dθ0 . We have ρ∗ = max‖δ‖≤ε L(θ0, δ) ≤ max‖δ‖≤dθ0 L(θ0, δ) = 0. Therefore
ε∗θ0(ρ∗) ≤ ε∗θ0(0) = dθ0 and ε∗θ1(ρ∗) ≤ ε∗θ1(0) = dθ1 .

For 3), ε > dθ0 . We have ρ∗ = max‖δ‖≤ε L(θ0, δ) ≥ max‖δ‖≤dθ0 L(θ0, δ) = 0. Therefore
ε∗θ0(ρ∗) ≥ ε∗θ0(0) = dθ0 and ε∗θ1(ρ∗) ≥ ε∗θ1(0) = dθ1 .

B MORE RELATED WORKS

We next discuss a few related works in details.

First-order Large Margin: Previous works (Elsayed et al., 2018; Sokolic et al., 2017; Matyasko
& Chau, 2017) have attempted to use first-order approximation to estimate the input space margin.
For first-order methods, the margin will be accurately estimated when the classification function
is linear. MMA’s margin estimation is exact when the shortest successful perturbation δ∗ can be
solved, which is not only satisfied by linear models, but also by a broader range of models, e.g.
models that are convex w.r.t. input x. This relaxed condition could potentially enable more accurate
margin estimation which improves MMA training’s performance.

(Cross-)Lipschitz Regularization: Tsuzuku et al. (2018) enlarges their margin by controlling the
global Lipschitz constant, which in return places a strong constraint on the model and harms its
learning capabilities. Instead, our method, alike adversarial training, uses adversarial attacks to
estimate the margin to the decision boundary. With a strong method, our estimate is much more
precise in the neighborhood around the data point, while being much more flexible due to not relying
on a global Lipschitz constraint.

Hard-Margin SVM (Vapnik, 2013) in the separable case: Assuming that all the training examples
are correctly classified and using our notations on general classifiers, the hard-margin SVM objective
can be written as:

max
θ

{
min
i
dθ(zi)

}
s.t. Lθ(zi) < 0,∀i . (25)

On the other hand, under the same “separable and correct” assumptions, MMA formulation in Eq. (3)
can be written as

max
θ

{∑
i

dθ(zi)

}
s.t. Lθ(zi) < 0,∀i , (26)

which is maximizing the average margin rather than the minimum margin in SVM. Note that the
theorem on gradient calculation of the margin in Section 2.1 also applies to the SVM formulation of
differentiable functions. Because of this, we can also use SGD to solve the following “SVM-style”
formulation:

max
θ

min
i∈S+

θ

dθ(zi)−
∑
j∈S−

θ

Jθ(zj)

 . (27)

As our focus is using MMA to improve adversarial robustness which involves maximizing the aver-
age margin, we delay the maximization of minimum margin to future work.

B.1 DETAILED COMPARISON WITH ADVERSARIAL TRAINING WITH DDN
For `2 robustness, we also compare to models adversarially trained on the “Decoupled Direction and
Norm” (DDN) attack (Rony et al., 2018), which is concurrent to our work. The DDN attack aims
to achieve successful perturbation with minimal `2 norm, thus, DDN could be used as a drop-in re-
placement for the AN-PGD attack for MMA training. We performed evaluations on the downloaded
7 DDN trained models.

The DDN MNIST model is a larger ConvNet with similar structure to our LeNet5, and the CIFAR10
model is wideresnet-28-10, which is similar but larger than the wideresnet-28-4 that we use.

7github.com/jeromerony/fast_adversarial

16

github.com/jeromerony/fast_adversarial

Under review as a conference paper at ICLR 2020

DDN training, “training on adversarial examples generated by the DDN attack”, differs from MMA
in the following ways. When the DDN attack does not find a successful adversarial example, it re-
turns the clean image, and the model will use it for training. In MMA, when a successful adversarial
example cannot be found, it is treated as a perturbation with very large magnitude, which will be
ignored by the hinge loss when we calculate the gradient for this example. Also, in DDN training,
there exists a maximum norm of the perturbation. This maximum norm constraint does not exist
for MMA training. When a perturbation is larger than the hinge threshold, it will be ignored by
the hinge loss. There also are differences in training hyperparameters, which we refer the reader to
Rony et al. (2018) for details.

Despite these differences, in our experiments MMA training achieves similar performances under
the `2 cases. While DDN attack and training only focus on `2 cases, we also show that the MMA
training framework provides significant improvements over PGD training in the `∞ case.

C DETAILED SETTINGS FOR TRAINING

We train LeNet5 models for the MNIST experiments and use wide residual networks (Zagoruyko
& Komodakis, 2016) with depth 28 and widen factor 4 for all the CIFAR10 experiments. For all
the experiments, we monitor the average margin from AN-PGD on the validation set and choose the
model with largest average margin from the sequence of checkpoints during training. The validation
set contains first 5000 images of training set. It is only used to monitor training progress and not
used in training. Here all the models are trained and tested under the same type of norm constraints,
namely if trained on `∞, then tested on `∞; if trained on `2, then tested on `2.

The LeNet5 is composed of 32-channel conv filter + ReLU + size 2 max pooling + 64-channel conv
filter + ReLU + size 2 max pooling + fc layer with 1024 units + ReLU + fc layer with 10 output
classes. We do not preprocess MNIST images before feeding into the model.

For training LeNet5 on all MNIST experiments, for both PGD and MMA training, we use the Adam
optimizer with an initial learning rate of 0.0001 and train for 100000 steps with batch size 50. In
our initial experiments, we tested different initial learning rate at 0.0001, 0.001, 0.01, and 0.1 and
do not find noticeable differences.

We use the WideResNet-28-4 as described in Zagoruyko & Komodakis (2016) for our experiments,
where 28 is the depth and 4 is the widen factor. We use “per image standardization” 8 to preprocess
CIFAR10 images, following Madry et al. (2017).

For training WideResNet on CIFAR10 variants, we use stochastic gradient descent with momentum
0.9 and weight decay 0.0002. We train 50000 steps in total with batch size 128. The learning rate
is set to 0.3 at step 0, 0.09 at step 20000, 0.03 at step 30000, and 0.009 at step 40000. This setting
is the same for PGD and MMA training. In our initial experiments, we tested different learning rate
at 0.03, 0.1, 0.3, and 0.6, and kept using 0.3 for all our later experiments. We also tested a longer
training schedule, following Madry et al. (2017), where we train 80000 steps with different learning
rate schedules. We did not observe improvement with this longer training, therefore kept using the
50000 steps training.

For models trained on MNIST, we use 40-step PGD attack with the soft logit margin (SLM) loss
defined in Section 3, for CIFAR10 we use 10 step-PGD, also with the SLM loss. For both MNIST
and CIFAR10, the step size of PGD attack at training time is 2.5ε

number of steps · In AN-PGD, we always
perform 10 step binary search after PGD, with the SLM loss. For AN-PGD, the maximum pertur-
bation length is always 1.05 times the hinge threshold: εmax = 1.05dmax. The initial perturbation
length at the first epoch, εinit, have different values under different settings. εinit = 0.5 for MNIST
`2, εinit = 0.1 for MNIST `∞, εinit = 0.5 for CIFAR10 `2, εinit = 0.05 for CIFAR10 `2. In epochs
after the first, εinit will be set to the margin of the same example from last epoch.

Trained models: Various PGD/PGDLS models are trained with different perturbation magnitude
ε, denoted by PGD-ε or PGDLS-ε. PGD-ens/PGDLS-ens represents the ensemble of PGD/PGDLS
trained models with different ε’s. The ensemble makes prediction by majority voting on label pre-
dictions, and uses softmax scores as the tie breaker. We perform MMA training with different hinge
thresholds dmax, also with/without the additional clean loss (see next section for details). We use

8Description can be found at https://www.tensorflow.org/api_docs/python/tf/image/
per_image_standardization. We implemented our own version in PyTorch.

17

https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization

Under review as a conference paper at ICLR 2020

OMMA to represent training with only LMMA
θ in Eq. (7), and MMA to represent training with the

combined loss in Eq. (8). When train For each dmax value, we train two models with different ran-
dom seeds, which serves two purposes: 1) confirming the performance of MMA trained models are
not significantly affected by random initialization; 2) to provide transfer attacks from an “identical”
model. As such, MMA trained models are named as OMMA/MMA-dmax-seed. Models shown in
the main body correspond to those with seed “sd0”.

For MNIST-`∞, we train PGD/PGDLS models with ε = 0.1, 0.2, 0.3, 0.4, 0.45, OMMA/MMA
models with dmax = 0.45. For MNIST-`2, we train PGD/PGDLS models with ε = 1.0, 2.0, 3.0, 4.0,
OMMA/MMA models with dmax = 2.0, 4.0, 6.0. For CIFAR10-`∞, we train PGD/PGDLS models
with ε = 4, 8, 12, 16, 20, 24, 28, 32, OMMA/MMA models with dmax = 12, 20, 32. For CIFAR10-
`2, we train PGD/PGDLS models with ε = 0.5, 1.0, 1.5, 2.0, 2.5, OMMA/MMA models with
dmax = 1.0, 2.0, 3.0.

With regard to ensemble models, for MNIST-`2 PGD/PGDLS-ens, CIFAR10-`2 PGD/PGDLS-ens,
MNIST-`∞PGDLS-ens, and CIFAR10-`∞ PGDLS-ens, they all use the PGD (or PGDLS) models
trained at all testing (attacking) ε’s. For CIFAR10-`∞ PGD-ens, PGD-24,28,32 are excluded for the
same reason.

D DETAILED SETTINGS OF ATTACKS

For both `∞ and `2 PGD attacks, we use the implementation from the AdverTorch toolbox (Ding
et al., 2019b). Regarding the loss function of PGD, we use both the cross-entropy (CE) loss and the
Carlini & Wagner (CW) loss. 9

As previously stated, each model will have N whitebox PGD attacks on them, N/2 of them are
CE-PGD attacks, and the other N/2 are CW-PGD attacks. Recall that N = 50 for MNIST and
N = 10 for CIFAR10. At test time, all the PGD attack run 100 iterations. We manually tune the
step size parameter on a few MMA and PGD models and then fix them thereafter. The step size for
MNIST-`∞ when ε = 0.3 is 0.0075, the step size for CIFAR10-`∞ when ε = 8/255 is 2/255, the
step size for MNIST-`2 when ε = 1.0 is 0.25, the step size for CIFAR10-`2 when ε = 1.0 is 0.25.
For other ε values, the step size is linearly scaled accordingly.

The ensemble model we considered uses the majority vote for prediction, and uses softmax score as
the tie breaker. So it is not obvious how to perform CW-PGD and CE-PGD directly on them. Here
we take 2 strategies. The first one is a naive strategy, where we minimize the sum of losses of all
the models used in the ensemble. Here, similar to attacking single models, we CW and CE loss here
and perform the same number attacks.

The second strategy is still a PGD attack with a customized loss towards attacking ensemble models.
For the group of classifiers in the ensemble, at each PGD step, if less than half of the classifiers give
wrong classification, we sum up the CW losses from correct classifiers as the loss for the PGD attack.
If more than half of the classifiers give wrong classification, then we find the wrong prediction that
appeared most frequently among classifiers, and denote it as label0, with its corresponding logit,
logit0. For each classifier, we then find the largest logit that is not logit0, denoted as logit1. The
loss we maximize, in the PGD attack, is the sum of “logit1 - logit0” from each classifier. Using
this strategy, we perform additional (compared to attacking single models) whitebox PGD attacks
on ensemble models. For MNIST, we perform 50 repeated attacks, for CIFAR10 we perform 10.
These are also 100-step PGD attacks.

We expect more carefully designed attacks could work better on ensembles, but we delay it to future
work.

For the SPSA attack (Uesato et al., 2018), we run the attack for 100 iterations with perturbation size
0.01 (for gradient estimation), Adam learning rate 0.01, stopping threshold -5.0 and 2048 samples
for each gradient estimate. For CIFAR10-`∞, we use ε = 8/255. For MNIST-`∞, we use ε = 0.3.

9The CW loss is almost equivalent to the logit margin (LM) loss. We use CW loss for the ease of comparing
with literature. Here CW (x) = min{maxj 6=y fj(x)− fy(x), 0}. When the classification is correct, CW and
LM loss have the same gradient.

18

Under review as a conference paper at ICLR 2020

E EFFECTS OF ADDING CLEAN LOSS IN ADDITION TO THE MMA LOSS

We further examine the effectiveness of adding a clean loss term to the MMA loss. We represent
MMA trained models with the MMA loss in Eq. (7) as MMA-dmax. In Section 2.4, we introduced
MMAC-dmax models to resolve MMA-dmax model’s problem of having flat input space loss land-
scape and showed its effectiveness qualitatively. Here we demonstrate the quantitative benefit of
adding the clean loss.

We observe that models trained with the MMA loss in Eq. (7) have certain degrees of TransferGaps.
The term TransferGaps represents the difference between robust accuracy under “combined (white-
box+transfer) attacks” and under “only whitebox PGD attacks”. In other words, it is the additional
attack success rate that transfer attacks bring. For example, OMMA-32 achieves 53.70% under
whitebox PGD attacks, but achieves a lower robust accuracy at 46.31% under combined (white-
box+transfer) attacks, therefore it has a TransferGap of 7.39% (See Appendix F for full results.).
After adding the clean loss, MMA-32 reduces its TransferGap at ε = 8/255 to 3.02%. This corre-
sponds to our observation in Section 2.4 that adding clean loss makes the loss landscape more tilted,
such that whitebox PGD attacks can succeed more easily.

Recall that MMA trained models are robust to gradient free attacks, as described in Section 4.3.
Therefore, robustness of MMA trained models and the TransferGaps are likely not due to gradient
masking.

We also note that TransferGaps for both MNIST-`∞ and `2 cases are almost zero for the MMA
trained models, indicating that TransferGaps, observed on CIFAR10 cases, are not solely due to the
MMA algorithm, data distributions (MNIST vs CIFAR10) also play an important role.

Another interesting observation is that, for MMA trained models trained on CIFAR10, adding ad-
ditional clean loss results in a decrease in clean accuracy and an increase in the average robust
accuracy, e.g. OMMA-32 has ClnAcc 86.11%, and AvgRobAcc 28.36%, whereas MMA-32 has
ClnAcc 84.36%, and AvgRobAcc 29.39%. The fact that “adding additional clean loss results in
a model with lower accuracy and more robustness” seems counter-intuitive. However, it actually
confirms our motivation and reasoning of the additional clean loss: it makes the input space loss
landscape steeper, which leads to stronger adversaries at training time, which in turn poses more
emphasis on “robustness training”, instead of clean accuracy training.

F FULL RESULTS AND TABLES

We present all the empirical results in Table 2 to 13. Specifically, we show model performances
under combined (whitebox+transfer) attacks in Tables 2 to 5. This is our proxy for true robustness
measure. We show model performances under only whitebox PGD attacks in Tables 6 to 9. We
show TransferGaps in Tables 10 to 13.

In these tables, PGD-Madry et al. models are the “secret” models downloaded from https://
github.com/MadryLab/mnist_challenge and https://github.com/MadryLab/
cifar10_challenge/. DDN-Rony et al. models are downloaded from https://github.
com/jeromerony/fast_adversarial/.

For MNIST PGD-Madry et al. models, our whitebox attacks brings the robust accuracy at ε = 0.3
down to 89.79%, which is at the same level with the reported 89.62% on the website, also with 50
repeated random initialized PGD attacks. For CIFAR10 PGD-Madry et al. models, our whitebox
attacks brings the robust accuracy at ε = 8/255 down to 44.70%, which is stronger than the reported
45.21% on the website, with 10 repeated random initialized 20-step PGD attacks. As our PGD
attacks are 100-step, this is not surprising.

As we mentioned previously, DDN training can be seen as a specific instantiation of the general
MMA training idea, and the DDN-Rony et al. models indeed performs very similar to MMA trained
models when dmax is set relatively low. Therefore, we do not discuss the performance of DDN-Rony
et al. separately.

In Section 4, we have mainly discussed different phenomena under the case of CIFAR10-`∞. For
CIFAR10-`2, we see very similar patterns in Tables 5, 9 and 13. These include

• MMA training is fairly stable to dmax, and achieves good robustness-accuracy trade-offs.
On the other hand, to achieve good AvgRobAcc, PGD/PGDLS trained models need to have
large sacrifices on clean accuracies.

19

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge/
https://github.com/MadryLab/cifar10_challenge/
https://github.com/jeromerony/fast_adversarial/
https://github.com/jeromerony/fast_adversarial/

Under review as a conference paper at ICLR 2020

• Adding additional clean loss increases the robustness of the model, reduce TransferGap, at
a cost of slightly reducing clean accuracy.

As a simpler datasets, different adversarial training algorithms, including MMA training, have very
different behaviors on MNIST as compared to CIFAR10.

We first look at MNIST-`∞. Similar to CIFAR10 cases, PGD training is incompetent on large
ε’s, e.g. PGD-0.4 has significant drop on clean accuracy (to 96.64%) and PGD-0.45 fails to train.
PGDLS training, on the other hand, is able to handle large ε’s training very well on MNIST-`∞,
and MMA training does not bring extra benefit on top of PGDLS. We suspect that this is due to the
“easiness” of this specific task on MNIST, where finding proper ε for each individual example is
not necessary, and a global scheduling of ε is enough. We note that this phenomenon confirms our
understanding of adversarial training from the margin maximization perspective in Section 3.

Under the case of MNIST-`2, we notice that MMA training almost does not need to sacrifice clean
accuracy in order to get higher robustness. All the models with dmax ≥ 4.0 behaves similarly
w.r.t. both clean and robust accuracies. Achieving 40% robust accuracy at ε = 3.0 seems to be the
robustness limit of MMA trained models. On the other hand, PGD/PGDLS models are able to get
higher robustness at ε = 3.0 with robust accuracy of 44.5%, although with some sacrifices to clean
accuracy. This is similar to what we have observed in the case of CIFAR10.

We notice that on both MNIST-`∞ and MNIST-`2, unlike CIFAR10 cases, PGD(LS)-ens model
performs poorly in terms of robustness. This is likely due to that PGD trained models on MNIST
usually have a very sharp robustness drop when the ε used for attacking is larger than the ε used for
training.

Another significant differences between MNIST cases and CIFAR10 cases is that TransferGaps are
very small for OMMA/MMA trained models on MNIST cases. This again is likely due to that
MNIST is an “easier” dataset. It also indicates that the TransferGap is not purely due to the MMA
training algorithm, it is also largely affected by the property of datasets. Although previous litera-
ture (Ding et al., 2019a; Zhang et al., 2019c) also discusses related topics on the difference between
MNIST and CIFAR10 w.r.t. adversarial robustness, they do not directly explain the observed phe-
nomena here. We delay a thorough understanding of this topic to future work.

20

Under review as a conference paper at ICLR 2020

Table 2: Accuracies of models trained on MNIST with `∞-norm constrained attacks. These ro-
bust accuracies are calculated under both combined (whitebox+transfer) PGD attacks. sd0 and sd1
indicate 2 different random seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, combined (whitebox+transfer) attacks

0.1 0.2 0.3 0.4

STD 99.21 35.02 18.97 73.58 2.31 0.00 0.00

PGD-0.1 99.40 48.85 36.22 96.35 48.51 0.01 0.00
PGD-0.2 99.22 57.92 47.60 97.44 92.12 0.84 0.00
PGD-0.3 98.96 76.97 71.47 97.90 96.00 91.76 0.22
PGD-0.4 96.64 89.37 87.55 94.69 91.57 86.49 77.47

PGD-0.45 11.35 11.35 11.35 11.35 11.35 11.35 11.35

PGDLS-0.1 99.43 46.85 33.71 95.41 39.42 0.00 0.00
PGDLS-0.2 99.38 58.36 48.10 97.38 89.49 5.53 0.00
PGDLS-0.3 99.10 76.56 70.93 97.97 95.66 90.09 0.00
PGDLS-0.4 98.98 93.07 91.59 98.12 96.29 93.01 78.96
PGDLS-0.45 98.89 94.74 93.70 97.91 96.34 93.29 87.28

MMA-0.45-sd0 98.95 94.13 92.93 97.87 96.01 92.59 85.24
MMA-0.45-sd1 98.90 94.04 92.82 97.82 96.00 92.63 84.83

OMMA-0.45-sd0 98.98 93.94 92.68 97.90 96.05 92.35 84.41
OMMA-0.45-sd1 99.02 94.03 92.78 97.93 96.02 92.44 84.73

PGD-ens 99.28 57.98 47.65 97.25 89.99 3.37 0.00
PGDLS-ens 99.34 59.04 48.96 97.48 90.40 7.96 0.00

PGD-Madry et al. 98.53 76.04 70.41 97.08 94.83 89.64 0.11

Table 3: Accuracies of models trained on CIFAR10 with `∞-norm constrained attacks. These ro-
bust accuracies are calculated under both combined (whitebox+transfer) PGD attacks. sd0 and sd1
indicate 2 different random seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, combined (whitebox+transfer) attacks

4 8 12 16 20 24 28 32

STD 94.92 10.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PGD-4 90.44 22.95 14.51 66.31 33.49 12.22 3.01 0.75 0.24 0.06 0.01
PGD-8 85.14 27.27 20.03 67.73 46.47 26.63 12.33 4.69 1.56 0.62 0.22
PGD-12 77.86 28.51 22.34 63.88 48.22 32.13 18.67 9.48 4.05 1.56 0.70
PGD-16 68.86 28.28 23.21 57.99 46.09 33.64 22.73 13.37 7.01 3.32 1.54
PGD-20 61.06 27.34 23.12 51.72 43.13 33.73 24.55 15.66 9.05 4.74 2.42
PGD-24 10.90 9.95 9.83 10.60 10.34 10.11 10.00 9.89 9.69 9.34 8.68
PGD-28 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
PGD-32 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

PGDLS-4 89.87 22.39 13.96 63.98 31.92 11.47 3.32 0.68 0.16 0.08 0.05
PGDLS-8 85.63 27.20 19.90 67.96 46.19 26.19 12.22 4.51 1.48 0.44 0.21
PGDLS-12 79.39 28.45 22.08 64.62 48.08 31.34 17.86 8.69 3.95 1.48 0.65
PGDLS-16 70.68 28.44 23.16 59.43 47.00 33.64 21.72 12.66 6.54 2.98 1.31
PGDLS-20 65.81 27.60 22.83 54.96 44.39 33.13 22.53 13.80 7.79 4.08 1.95
PGDLS-24 58.36 26.53 22.55 49.05 41.13 32.10 23.76 15.70 9.66 5.86 3.11
PGDLS-28 50.07 24.20 20.97 40.71 34.61 29.00 22.77 16.83 11.49 7.62 4.73
PGDLS-32 38.80 19.88 17.52 26.16 24.96 23.22 19.96 16.22 12.92 9.82 6.88

MMA-12-sd0 88.59 26.87 19.15 67.96 43.42 24.07 11.45 4.27 1.43 0.45 0.16
MMA-12-sd1 88.91 26.23 18.39 67.08 42.97 22.57 9.76 3.37 0.92 0.35 0.12
MMA-20-sd0 86.56 28.86 21.65 66.92 46.89 29.83 16.55 8.14 3.25 1.17 0.43
MMA-20-sd1 85.87 28.72 21.57 65.44 46.11 29.96 17.30 8.27 3.60 1.33 0.56
MMA-32-sd0 84.36 29.39 22.51 64.82 47.18 31.49 18.91 10.16 4.77 1.97 0.81
MMA-32-sd1 84.76 29.08 22.11 64.41 45.95 30.36 18.24 9.85 4.99 2.20 0.92

OMMA-12-sd0 88.52 26.31 18.54 66.96 42.58 23.22 10.29 3.43 1.24 0.46 0.13
OMMA-12-sd1 87.82 26.24 18.54 66.23 43.10 23.57 10.32 3.56 1.04 0.38 0.14
OMMA-20-sd0 87.06 27.41 19.95 66.54 45.39 26.29 13.09 5.32 1.96 0.79 0.23
OMMA-20-sd1 87.44 27.77 20.31 66.28 45.60 27.33 14.00 6.04 2.23 0.74 0.25
OMMA-32-sd0 86.11 28.36 21.14 66.02 46.31 28.88 15.98 7.44 2.94 1.12 0.45
OMMA-32-sd1 86.36 28.75 21.55 66.86 47.12 29.63 16.09 7.56 3.38 1.31 0.47

PGD-ens 87.38 28.10 20.69 64.59 46.95 28.88 15.10 6.35 2.35 0.91 0.39
PGDLS-ens 76.73 29.52 23.62 60.52 48.21 35.06 22.14 12.28 6.17 3.14 1.43

PGD-Madry et al. 87.14 27.22 19.73 68.01 44.68 25.03 12.15 5.18 1.95 0.64 0.23

21

Under review as a conference paper at ICLR 2020

Table 4: Accuracies of models trained on MNIST with `2-norm constrained attacks. These robust
accuracies are calculated under both combined (whitebox+transfer) PGD attacks. sd0 and sd1 indi-
cate 2 different random seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, combined (whitebox+transfer) attacks

1.0 2.0 3.0 4.0

STD 99.21 41.84 27.49 86.61 22.78 0.59 0.00

PGD-1.0 99.30 48.78 36.15 95.06 46.84 2.71 0.00
PGD-2.0 98.76 56.14 45.48 94.82 72.70 14.20 0.21
PGD-3.0 97.14 60.36 51.17 90.01 71.03 38.93 4.71
PGD-4.0 93.41 59.52 51.05 82.34 66.25 43.44 12.18

PGDLS-1.0 99.39 47.61 34.66 94.33 42.44 1.89 0.00
PGDLS-2.0 99.09 54.73 43.64 95.22 69.33 10.01 0.01
PGDLS-3.0 97.52 60.13 50.78 90.86 71.91 36.80 3.56
PGDLS-4.0 93.68 59.49 50.95 82.67 67.21 43.68 10.23

MMA-2.0-sd0 99.27 53.85 42.50 95.59 68.37 6.03 0.01
MMA-2.0-sd1 99.28 54.34 43.10 95.78 68.18 8.45 0.00
MMA-4.0-sd0 98.71 62.25 53.13 93.93 74.01 39.34 5.24
MMA-4.0-sd1 98.81 61.88 52.64 93.98 73.70 37.78 5.11
MMA-6.0-sd0 98.32 62.32 53.31 93.16 72.63 38.78 8.69
MMA-6.0-sd1 98.50 62.49 53.48 93.48 73.50 38.63 8.32

OMMA-2.0-sd0 99.26 54.01 42.69 95.94 67.78 7.03 0.03
OMMA-2.0-sd1 99.21 54.04 42.74 95.72 68.83 6.42 0.00
OMMA-4.0-sd0 98.61 62.17 53.06 94.06 73.51 39.66 5.02
OMMA-4.0-sd1 98.61 62.01 52.86 93.72 73.18 38.98 5.58
OMMA-6.0-sd0 98.16 62.45 53.52 92.90 72.59 39.68 8.93
OMMA-6.0-sd1 98.45 62.24 53.19 93.37 72.93 37.63 8.83

PGD-ens 98.87 56.13 45.44 94.37 70.16 16.79 0.46
PGDLS-ens 99.14 54.71 43.60 94.52 67.45 12.33 0.11

DDN-Rony et al. 99.02 59.93 50.15 95.65 77.65 25.44 1.87

Table 5: Accuracies of models trained on CIFAR10 with `2-norm constrained attacks. These ro-
bust accuracies are calculated under both combined (whitebox+transfer) PGD attacks. sd0 and sd1
indicate 2 different random seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, combined (whitebox+transfer) attacks

0.5 1.0 1.5 2.0 2.5

STD 94.92 15.82 0.00 0.01 0.00 0.00 0.00 0.00

PGD-0.5 89.10 33.63 22.53 65.61 33.21 11.25 2.31 0.28
PGD-1.0 83.25 39.70 30.99 66.69 46.08 26.05 11.92 4.21
PGD-1.5 75.80 41.75 34.94 62.70 48.32 33.72 20.07 9.91
PGD-2.0 71.05 41.78 35.92 59.76 47.85 35.29 23.15 13.56
PGD-2.5 65.17 40.93 36.08 55.60 45.76 35.76 26.00 17.27

PGDLS-0.5 89.43 33.41 22.21 65.49 32.40 10.73 2.09 0.33
PGDLS-1.0 83.62 39.46 30.63 67.29 45.30 25.43 11.08 4.03
PGDLS-1.5 77.03 41.74 34.68 63.76 48.43 33.04 19.00 9.17
PGDLS-2.0 72.14 42.15 36.16 60.90 48.22 35.21 23.19 13.26
PGDLS-2.5 66.21 41.21 36.21 56.45 46.66 35.93 25.51 16.51

MMA-1.0-sd0 88.02 35.55 25.06 66.18 37.75 15.58 4.74 1.03
MMA-1.0-sd1 88.92 35.69 25.05 66.81 37.16 15.71 4.49 1.07
MMA-2.0-sd0 84.22 40.48 31.73 65.91 45.66 27.40 14.18 5.50
MMA-2.0-sd1 85.16 39.81 30.75 65.36 44.44 26.42 12.63 4.88
MMA-3.0-sd0 82.11 41.59 33.49 64.22 46.41 30.23 17.85 8.73
MMA-3.0-sd1 81.79 41.16 33.03 63.58 45.59 29.77 17.52 8.69

OMMA-1.0-sd0 89.02 35.18 24.41 65.43 36.89 14.77 4.18 0.79
OMMA-1.0-sd1 89.97 35.20 24.25 66.16 36.10 14.04 4.17 0.79
OMMA-2.0-sd0 86.06 39.32 29.97 65.28 43.82 24.85 11.53 4.36
OMMA-2.0-sd1 85.04 39.68 30.61 64.69 44.36 25.89 12.92 5.19
OMMA-3.0-sd0 83.86 40.62 31.97 64.14 45.61 28.12 15.00 6.97
OMMA-3.0-sd1 84.00 40.66 32.00 63.81 45.22 28.47 15.41 7.08

PGD-ens 85.63 40.39 31.34 62.98 45.87 27.91 14.23 5.72
PGDLS-ens 86.11 40.38 31.23 63.74 46.21 27.58 13.32 5.31

DDN-Rony et al. 89.05 36.23 25.67 66.51 39.02 16.60 5.02 1.20

22

Under review as a conference paper at ICLR 2020

Table 6: Accuracies of models trained on MNIST with `∞-norm constrained attacks. These robust
accuracies are calculated under only whitebox PGD attacks. sd0 and sd1 indicate 2 different random
seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, whitebox only

0.1 0.2 0.3 0.4

STD 99.21 35.02 18.97 73.59 2.31 0.00 0.00

PGD-0.1 99.40 48.91 36.29 96.35 48.71 0.09 0.00
PGD-0.2 99.22 57.93 47.60 97.44 92.12 0.86 0.00
PGD-0.3 98.96 77.35 71.95 97.90 96.00 91.86 2.03
PGD-0.4 96.64 91.51 90.22 94.79 92.27 88.82 85.02

PGD-0.45 11.35 11.35 11.35 11.35 11.35 11.35 11.35

PGDLS-0.1 99.43 46.94 33.82 95.41 39.85 0.02 0.00
PGDLS-0.2 99.38 58.44 48.20 97.38 89.49 5.95 0.00
PGDLS-0.3 99.10 76.85 71.29 97.98 95.66 90.63 0.90
PGDLS-0.4 98.98 95.49 94.61 98.13 96.42 94.02 89.89
PGDLS-0.45 98.89 95.72 94.92 97.91 96.64 94.54 90.60

MMA-0.45-sd0 98.95 94.97 93.97 97.89 96.26 93.57 88.16
MMA-0.45-sd1 98.90 94.83 93.81 97.83 96.18 93.34 87.91

OMMA-0.45-sd0 98.98 95.06 94.07 97.91 96.22 93.63 88.54
OMMA-0.45-sd1 99.02 95.45 94.55 97.96 96.30 94.16 89.80

PGD-ens 99.28 58.02 47.70 97.31 90.11 3.38 0.00
PGDLS-ens 99.34 59.09 49.02 97.50 90.56 8.03 0.00

PGD-Madry et al. 98.53 76.08 70.47 97.08 94.87 89.79 0.13

Table 7: Accuracies of models trained on CIFAR10 with `∞-norm constrained attacks. These robust
accuracies are calculated under only whitebox PGD attacks. sd0 and sd1 indicate 2 different random
seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, whitebox only

4 8 12 16 20 24 28 32

STD 94.92 10.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PGD-4 90.44 22.97 14.53 66.33 33.51 12.27 3.03 0.77 0.25 0.07 0.02
PGD-8 85.14 27.28 20.05 67.73 46.49 26.69 12.37 4.71 1.58 0.62 0.23
PGD-12 77.86 28.55 22.39 63.90 48.25 32.19 18.78 9.58 4.12 1.59 0.72
PGD-16 68.86 28.42 23.36 58.07 46.17 33.84 22.99 13.65 7.19 3.43 1.57
PGD-20 61.06 27.73 23.57 51.75 43.32 34.22 25.19 16.36 9.65 5.33 2.73
PGD-24 10.90 9.98 9.86 10.60 10.34 10.11 10.01 9.91 9.74 9.39 8.81
PGD-28 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
PGD-32 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

PGDLS-4 89.87 22.43 14.00 63.98 31.93 11.57 3.43 0.77 0.18 0.09 0.05
PGDLS-8 85.63 27.22 19.92 67.96 46.19 26.24 12.28 4.54 1.52 0.45 0.21
PGDLS-12 79.39 28.50 22.14 64.63 48.10 31.40 17.99 8.80 4.01 1.51 0.67
PGDLS-16 70.68 28.53 23.26 59.44 47.04 33.78 21.94 12.79 6.66 3.07 1.34
PGDLS-20 65.81 27.82 23.07 54.96 44.46 33.41 22.94 14.27 8.07 4.37 2.08
PGDLS-24 58.36 27.25 23.36 49.09 41.47 32.90 24.84 16.93 10.88 7.04 3.76
PGDLS-28 50.07 25.68 22.63 40.77 35.07 30.18 24.76 19.40 14.22 9.96 6.65
PGDLS-32 38.80 22.79 20.79 26.19 25.34 24.72 23.21 20.98 18.13 15.12 12.66

MMA-12-sd0 88.59 27.54 19.91 67.99 43.62 24.79 12.74 5.85 2.68 1.09 0.51
MMA-12-sd1 88.91 26.68 18.90 67.17 43.63 23.62 10.80 4.07 1.20 0.50 0.18
MMA-20-sd0 86.56 31.72 24.87 67.07 48.74 34.06 21.97 13.37 7.56 4.06 2.11
MMA-20-sd1 85.87 33.07 26.47 65.63 48.11 34.70 24.73 16.45 10.97 7.00 4.14
MMA-32-sd0 84.36 36.58 30.60 65.25 50.20 38.78 30.01 22.57 16.66 12.30 9.07
MMA-32-sd1 84.76 33.49 27.08 64.66 48.23 35.65 25.74 17.86 11.86 7.79 4.88

OMMA-12-sd0 88.52 29.34 21.94 67.49 46.11 29.22 16.65 8.62 4.36 2.05 1.03
OMMA-12-sd1 87.82 30.30 23.11 66.77 46.77 31.19 19.40 10.93 5.72 2.84 1.29
OMMA-20-sd0 87.06 36.00 29.61 68.00 52.98 40.13 28.92 19.78 13.04 8.47 5.60
OMMA-20-sd1 87.44 34.49 27.87 67.40 51.55 37.94 26.48 17.76 11.31 6.74 3.76
OMMA-32-sd0 86.11 38.87 32.97 67.57 53.70 42.56 32.88 24.91 18.57 13.79 9.76
OMMA-32-sd1 86.36 39.13 33.23 68.80 56.02 44.62 33.97 24.71 17.37 11.94 8.39

PGD-ens 87.38 28.83 21.51 64.85 47.67 30.37 16.63 7.79 3.01 1.25 0.52
PGDLS-ens 76.73 30.60 24.83 61.16 49.46 36.63 23.90 13.92 7.62 3.91 2.05

PGD-Madry et al. 87.14 27.36 19.89 68.01 44.70 25.15 12.52 5.50 2.25 0.73 0.27

23

Under review as a conference paper at ICLR 2020

Table 8: Accuracies of models trained on MNIST with `2-norm constrained attacks. These robust
accuracies are calculated under only whitebox PGD attacks. sd0 and sd1 indicate 2 different random
seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, whitebox only

1.0 2.0 3.0 4.0

STD 99.21 41.90 27.57 86.61 23.02 0.64 0.00

PGD-1.0 99.30 49.55 37.11 95.07 48.99 4.36 0.01
PGD-2.0 98.76 56.38 45.79 94.82 72.94 15.08 0.31
PGD-3.0 97.14 60.94 51.89 90.02 71.53 40.72 5.28
PGD-4.0 93.41 59.93 51.56 82.41 66.49 44.36 12.99

PGDLS-1.0 99.39 48.17 35.36 94.35 43.96 2.97 0.16
PGDLS-2.0 99.09 55.17 44.19 95.22 69.73 11.80 0.03
PGDLS-3.0 97.52 60.60 51.37 90.87 72.24 38.39 3.99
PGDLS-4.0 93.68 59.89 51.44 82.73 67.37 44.59 11.07

MMA-2.0-sd0 99.27 53.97 42.64 95.59 68.66 6.32 0.01
MMA-2.0-sd1 99.28 54.46 43.26 95.79 68.45 8.79 0.01
MMA-4.0-sd0 98.71 62.51 53.45 93.93 74.06 40.02 5.81
MMA-4.0-sd1 98.81 62.22 53.07 93.98 73.81 38.76 5.75
MMA-6.0-sd0 98.32 62.60 53.67 93.16 72.72 39.47 9.35
MMA-6.0-sd1 98.50 62.73 53.79 93.48 73.57 39.25 8.86

OMMA-2.0-sd0 99.26 54.12 42.83 95.94 68.08 7.27 0.03
OMMA-2.0-sd1 99.21 54.12 42.85 95.72 68.96 6.72 0.00
OMMA-4.0-sd0 98.61 62.44 53.40 94.06 73.60 40.29 5.66
OMMA-4.0-sd1 98.61 62.22 53.13 93.72 73.23 39.53 6.03
OMMA-6.0-sd0 98.16 62.67 53.79 92.90 72.71 40.28 9.29
OMMA-6.0-sd1 98.45 62.52 53.54 93.37 73.02 38.49 9.28

PGD-ens 98.87 56.57 45.99 94.73 70.98 17.76 0.51
PGDLS-ens 99.14 54.98 43.93 94.86 68.08 12.68 0.12

DDN-Rony et al. 99.02 60.34 50.67 95.65 77.79 26.59 2.64

Table 9: Accuracies of models trained on CIFAR10 with `2-norm constrained attacks. These robust
accuracies are calculated under only whitebox PGD attacks. sd0 and sd1 indicate 2 different random
seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc RobAcc under different ε, whitebox only

0.5 1.0 1.5 2.0 2.5

STD 94.92 15.82 0.00 0.01 0.00 0.00 0.00 0.00

PGD-0.5 89.10 33.64 22.55 65.61 33.23 11.29 2.34 0.29
PGD-1.0 83.25 39.74 31.04 66.69 46.11 26.16 12.00 4.26
PGD-1.5 75.80 41.81 35.02 62.74 48.35 33.80 20.17 10.03
PGD-2.0 71.05 41.88 36.05 59.80 47.92 35.39 23.34 13.81
PGD-2.5 65.17 41.03 36.20 55.66 45.82 35.90 26.14 17.49

PGDLS-0.5 89.43 33.44 22.25 65.50 32.42 10.78 2.17 0.36
PGDLS-1.0 83.62 39.50 30.68 67.30 45.35 25.49 11.19 4.08
PGDLS-1.5 77.03 41.80 34.75 63.76 48.46 33.11 19.12 9.32
PGDLS-2.0 72.14 42.24 36.27 60.96 48.28 35.32 23.38 13.39
PGDLS-2.5 66.21 41.34 36.36 56.49 46.72 36.13 25.73 16.75

MMA-1.0-sd0 88.02 35.58 25.09 66.19 37.80 15.61 4.79 1.06
MMA-1.0-sd1 88.92 35.74 25.10 66.81 37.22 15.78 4.57 1.14
MMA-2.0-sd0 84.22 41.22 32.62 65.98 46.11 28.56 15.60 6.86
MMA-2.0-sd1 85.16 40.60 31.69 65.45 45.27 28.07 13.99 5.67
MMA-3.0-sd0 82.11 43.67 35.98 64.25 47.61 33.48 22.07 12.50
MMA-3.0-sd1 81.79 43.75 36.14 63.82 47.33 33.79 22.36 13.40

OMMA-1.0-sd0 89.02 35.49 24.79 65.46 37.38 15.34 4.76 1.00
OMMA-1.0-sd1 89.97 35.41 24.49 66.24 36.47 14.44 4.43 0.89
OMMA-2.0-sd0 86.06 42.80 34.14 65.55 46.29 30.60 18.23 10.05
OMMA-2.0-sd1 85.04 42.96 34.55 65.23 46.32 31.07 19.36 10.75
OMMA-3.0-sd0 83.86 46.46 38.99 64.67 49.34 36.40 26.50 18.02
OMMA-3.0-sd1 84.00 45.59 37.91 64.31 48.50 35.92 24.81 16.03

PGD-ens 85.63 41.32 32.46 63.27 46.66 29.35 15.95 7.09
PGDLS-ens 86.11 41.39 32.45 64.04 46.99 29.11 15.51 6.59

DDN-Rony et al. 89.05 36.25 25.69 66.51 39.02 16.63 5.05 1.24

24

Under review as a conference paper at ICLR 2020

Table 10: The TransferGap of models trained on MNIST with `∞-norm constrained attacks. Trans-
ferGap indicates the gap between robust accuracy under only whitebox PGD attacks and under
combined (whitebox+transfer) PGD attacks. sd0 and sd1 indicate 2 different random seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc TransferGap: RobAcc drop after adding transfer attacks

0.1 0.2 0.3 0.4

STD - 0.00 0.00 0.01 0.00 0.00 0.00

PGD-0.1 - 0.06 0.07 0.00 0.20 0.08 0.00
PGD-0.2 - 0.00 0.00 0.00 0.00 0.02 0.00
PGD-0.3 - 0.38 0.48 0.00 0.00 0.10 1.81
PGD-0.4 - 2.14 2.67 0.10 0.70 2.33 7.55
PGD-0.45 - 0.00 0.00 0.00 0.00 0.00 0.00

PGDLS-0.1 - 0.09 0.11 0.00 0.43 0.02 0.00
PGDLS-0.2 - 0.08 0.11 0.00 0.00 0.42 0.00
PGDLS-0.3 - 0.29 0.36 0.01 0.00 0.54 0.90
PGDLS-0.4 - 2.42 3.02 0.01 0.13 1.01 10.93
PGDLS-0.45 - 0.97 1.22 0.00 0.30 1.25 3.32

MMA-0.45-sd0 - 0.83 1.04 0.02 0.25 0.98 2.92
MMA-0.45-sd1 - 0.80 0.99 0.01 0.18 0.71 3.08

OMMA-0.45-sd0 - 1.12 1.40 0.01 0.17 1.28 4.13
OMMA-0.45-sd1 - 1.42 1.78 0.03 0.28 1.72 5.07

PGD-ens - 0.04 0.05 0.06 0.12 0.01 0.00
PGDLS-ens - 0.05 0.06 0.02 0.16 0.07 0.00

PGD-Madry et al. - 0.04 0.05 0.00 0.04 0.15 0.02

Table 11: The TransferGap of models trained on CIFAR10 with `∞-norm constrained attacks.
TransferGap indicates the gap between robust accuracy under only whitebox PGD attacks and under
combined (whitebox+transfer) PGD attacks. sd0 and sd1 indicate 2 different random seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc TransferGap: RobAcc drop after adding transfer attacks

4 8 12 16 20 24 28 32

STD - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PGD-4 - 0.02 0.02 0.02 0.02 0.05 0.02 0.02 0.01 0.01 0.01
PGD-8 - 0.02 0.02 0.00 0.02 0.06 0.04 0.02 0.02 0.00 0.01
PGD-12 - 0.05 0.05 0.02 0.03 0.06 0.11 0.10 0.07 0.03 0.02
PGD-16 - 0.14 0.15 0.08 0.08 0.20 0.26 0.28 0.18 0.11 0.03
PGD-20 - 0.39 0.44 0.03 0.19 0.49 0.64 0.70 0.60 0.59 0.31
PGD-24 - 0.03 0.03 0.00 0.00 0.00 0.01 0.02 0.05 0.05 0.13
PGD-28 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PGD-32 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PGDLS-4 - 0.04 0.04 0.00 0.01 0.10 0.11 0.09 0.02 0.01 0.00
PGDLS-8 - 0.02 0.02 0.00 0.00 0.05 0.06 0.03 0.04 0.01 0.00
PGDLS-12 - 0.05 0.05 0.01 0.02 0.06 0.13 0.11 0.06 0.03 0.02
PGDLS-16 - 0.09 0.10 0.01 0.04 0.14 0.22 0.13 0.12 0.09 0.03
PGDLS-20 - 0.21 0.24 0.00 0.07 0.28 0.41 0.47 0.28 0.29 0.13
PGDLS-24 - 0.73 0.82 0.04 0.34 0.80 1.08 1.23 1.22 1.18 0.65
PGDLS-28 - 1.47 1.66 0.06 0.46 1.18 1.99 2.57 2.73 2.34 1.92
PGDLS-32 - 2.91 3.28 0.03 0.38 1.50 3.25 4.76 5.21 5.30 5.78

MMA-12-sd0 - 0.67 0.76 0.03 0.20 0.72 1.29 1.58 1.25 0.64 0.35
MMA-12-sd1 - 0.45 0.50 0.09 0.66 1.05 1.04 0.70 0.28 0.15 0.06
MMA-20-sd0 - 2.86 3.22 0.15 1.85 4.23 5.42 5.23 4.31 2.89 1.68
MMA-20-sd1 - 4.35 4.90 0.19 2.00 4.74 7.43 8.18 7.37 5.67 3.58
MMA-32-sd0 - 7.19 8.09 0.43 3.02 7.29 11.10 12.41 11.89 10.33 8.26
MMA-32-sd1 - 4.42 4.97 0.25 2.28 5.29 7.50 8.01 6.87 5.59 3.96

OMMA-12-sd0 - 3.02 3.40 0.53 3.53 6.00 6.36 5.19 3.12 1.59 0.90
OMMA-12-sd1 - 4.06 4.57 0.54 3.67 7.62 9.08 7.37 4.68 2.46 1.15
OMMA-20-sd0 - 8.59 9.66 1.46 7.59 13.84 15.83 14.46 11.08 7.68 5.37
OMMA-20-sd1 - 6.72 7.56 1.12 5.95 10.61 12.48 11.72 9.08 6.00 3.51
OMMA-32-sd0 - 10.51 11.83 1.55 7.39 13.68 16.90 17.47 15.63 12.67 9.31
OMMA-32-sd1 - 10.38 11.67 1.94 8.90 14.99 17.88 17.15 13.99 10.63 7.92

PGD-ens - 0.73 0.82 0.26 0.72 1.49 1.53 1.44 0.66 0.34 0.13
PGDLS-ens - 1.08 1.21 0.64 1.25 1.57 1.76 1.64 1.45 0.77 0.62

PGD-Madry et al. - 0.14 0.16 0.00 0.02 0.12 0.37 0.32 0.30 0.09 0.04

25

Under review as a conference paper at ICLR 2020

Table 12: The TransferGap of models trained on MNIST with `2-norm constrained attacks. Trans-
ferGap indicates the gap between robust accuracy under only whitebox PGD attacks and under
combined (whitebox+transfer) PGD attacks. sd0 and sd1 indicate 2 different random seeds.

MNIST
Model Cln Acc AvgAcc AvgRobAcc TransferGap: RobAcc drop after adding transfer attacks

1.0 2.0 3.0 4.0

STD - 0.06 0.07 0.00 0.24 0.05 0.00

PGD-1.0 - 0.76 0.96 0.01 2.15 1.65 0.01
PGD-2.0 - 0.24 0.30 0.00 0.24 0.88 0.10
PGD-3.0 - 0.57 0.72 0.01 0.50 1.79 0.57
PGD-4.0 - 0.41 0.51 0.07 0.24 0.92 0.81

PGDLS-1.0 - 0.56 0.70 0.02 1.52 1.08 0.16
PGDLS-2.0 - 0.44 0.55 0.00 0.40 1.79 0.02
PGDLS-3.0 - 0.47 0.59 0.01 0.33 1.59 0.43
PGDLS-4.0 - 0.39 0.49 0.06 0.16 0.91 0.84

MMA-2.0-sd0 - 0.12 0.15 0.00 0.29 0.29 0.00
MMA-2.0-sd1 - 0.13 0.16 0.01 0.27 0.34 0.01
MMA-4.0-sd0 - 0.26 0.33 0.00 0.05 0.68 0.57
MMA-4.0-sd1 - 0.35 0.43 0.00 0.11 0.98 0.64
MMA-6.0-sd0 - 0.29 0.36 0.00 0.09 0.69 0.66
MMA-6.0-sd1 - 0.25 0.31 0.00 0.07 0.62 0.54

OMMA-2.0-sd0 - 0.11 0.13 0.00 0.30 0.24 0.00
OMMA-2.0-sd1 - 0.09 0.11 0.00 0.13 0.30 0.00
OMMA-4.0-sd0 - 0.27 0.34 0.00 0.09 0.63 0.64
OMMA-4.0-sd1 - 0.21 0.26 0.00 0.05 0.55 0.45
OMMA-6.0-sd0 - 0.22 0.27 0.00 0.12 0.60 0.36
OMMA-6.0-sd1 - 0.28 0.35 0.00 0.09 0.86 0.45

PGD-ens - 0.44 0.55 0.36 0.82 0.97 0.05
PGDLS-ens - 0.27 0.33 0.34 0.63 0.35 0.01

DDN-Rony et al. - 0.41 0.51 0.00 0.14 1.15 0.77

Table 13: The TransferGap of models trained on CIFAR10 with `2-norm constrained attacks. Trans-
ferGap indicates the gap between robust accuracy under only whitebox PGD attacks and under
combined (whitebox+transfer) PGD attacks. sd0 and sd1 indicate 2 different random seeds.

CIFAR10
Model Cln Acc AvgAcc AvgRobAcc TransferGap: RobAcc drop after adding transfer attacks

0.5 1.0 1.5 2.0 2.5

STD - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PGD-0.5 - 0.02 0.02 0.00 0.02 0.04 0.03 0.01
PGD-1.0 - 0.04 0.05 0.00 0.03 0.11 0.08 0.05
PGD-1.5 - 0.06 0.07 0.04 0.03 0.08 0.10 0.12
PGD-2.0 - 0.11 0.13 0.04 0.07 0.10 0.19 0.25
PGD-2.5 - 0.10 0.12 0.06 0.06 0.14 0.14 0.22

PGDLS-0.5 - 0.03 0.04 0.01 0.02 0.05 0.08 0.03
PGDLS-1.0 - 0.05 0.06 0.01 0.05 0.06 0.11 0.05
PGDLS-1.5 - 0.06 0.07 0.00 0.03 0.07 0.12 0.15
PGDLS-2.0 - 0.09 0.11 0.06 0.06 0.11 0.19 0.13
PGDLS-2.5 - 0.13 0.15 0.04 0.06 0.20 0.22 0.24

MMA-1.0-sd0 - 0.03 0.03 0.01 0.05 0.03 0.05 0.03
MMA-1.0-sd1 - 0.05 0.06 0.00 0.06 0.07 0.08 0.07
MMA-2.0-sd0 - 0.74 0.89 0.07 0.45 1.16 1.42 1.36
MMA-2.0-sd1 - 0.79 0.94 0.09 0.83 1.65 1.36 0.79
MMA-3.0-sd0 - 2.08 2.49 0.03 1.20 3.25 4.22 3.77
MMA-3.0-sd1 - 2.59 3.11 0.24 1.74 4.02 4.84 4.71

OMMA-1.0-sd0 - 0.31 0.38 0.03 0.49 0.57 0.58 0.21
OMMA-1.0-sd1 - 0.20 0.24 0.08 0.37 0.40 0.26 0.10
OMMA-2.0-sd0 - 3.48 4.18 0.27 2.47 5.75 6.70 5.69
OMMA-2.0-sd1 - 3.28 3.94 0.54 1.96 5.18 6.44 5.56
OMMA-3.0-sd0 - 5.85 7.02 0.53 3.73 8.28 11.50 11.05
OMMA-3.0-sd1 - 4.93 5.92 0.50 3.28 7.45 9.40 8.95

PGD-ens - 0.94 1.12 0.29 0.79 1.44 1.72 1.37
PGDLS-ens - 1.01 1.22 0.30 0.78 1.53 2.19 1.28

DDN-Rony et al. - 0.02 0.02 0.00 0.00 0.03 0.03 0.04

26

	1 Introduction
	1.1 Related Works
	1.2 Notations and Definitions

	2 Max-Margin Adversarial Training
	2.1 Margin Maximization
	2.2 Stabilizing the Learning with Cross Entropy Surrogate Loss
	2.3 Finding the optimal perturbation *
	2.4 Additional Clean Loss during Training
	2.5 The MMA Training Algorithm

	3 Understanding Adversarial Training through Margin Maximization
	4 Experiments
	4.1 Effectiveness of Margin Maximization during Training
	4.2 Gradually Increasing Helps PGD Training when is Large
	4.3 Comparing MMA Training with PGD Training

	5 Conclusions
	A Proofs
	A.1 Proof of thm:theoreticalgradmargin
	A.2 Proof of prop:dtexistence
	A.3 Proof of prop:lslmllm
	A.4 A lemma for later proofs
	A.5 Proof of thm:advtrainLM

	B More Related Works
	B.1 Detailed Comparison with Adversarial Training with DDN

	C Detailed Settings for Training
	D Detailed Settings of Attacks
	E Effects of Adding Clean Loss in Addition to the MMA Loss
	F Full Results and Tables

