
Under review as a conference paper at ICLR 2020

SSE-PT: SEQUENTIAL RECOMMENDATION
VIA PERSONALIZED TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal information is crucial for recommendation problems because user prefer-
ences are naturally dynamic in the real world. Recent advances in deep learning,
especially the discovery of various attention mechanisms and newer architectures
in addition to widely used RNN and CNN in natural language processing, have
allowed for better use of the temporal ordering of items that each user has engaged
with. In particular, the SASRec model, inspired by the popular Transformer model
in natural languages processing, has achieved state-of-the-art results. However,
SASRec, just like the original Transformer model, is inherently an un-personalized
model and does not include personalized user embeddings. To overcome this
limitation, we propose a Personalized Transformer (SSE-PT) model, outperforming
SASRec by almost 5% in terms of NDCG@10 on 5 real-world datasets. Further-
more, after examining some random users’ engagement history, we find our model
not only more interpretable but also able to focus on recent engagement patterns for
each user. Moreover, our SSE-PT model with a slight modification, which we call
SSE-PT++, can handle extremely long sequences and outperform SASRec in rank-
ing results with comparable training speed, striking a balance between performance
and speed requirements. Our novel application of the Stochastic Shared Embed-
dings (SSE) regularization is essential to the success of personalization. Code and
data are open-sourced at https://github.com/SSE-PT/SSE-PT.

1 INTRODUCTION

The sequential recommendation problem has been an important open research question, yet using tem-
poral information to improve recommendation performance has proven to be challenging. SASRec,
proposed by (Kang and McAuley, 2018) for sequential recommendation problems, has achieved state-
of-the-art results and enjoyed more than 10x speed-up when compared to earlier CNN/RNN-based
methods. However, the model used in SASRec is the standard Transformer which is inherently an
un-personalized model. In practice, it is important to include a personalized Transformer in SASRec
especially for recommender systems, but (Kang and McAuley, 2018) found that adding additional
personalized embeddings did not improve the performance of their Transformer model, and postulate
that the failure of adding personalization is due to the fact that they already use the user history
and the user embeddings only contribute to overfitting. In this work, we propose a novel method,
Personalized Transformer (SSE-PT), that successfully introduces personalization into self-attentive
neural network architectures.

Introducing user embeddings into the standard transformer model is intrinsically difficult with existing
regularization techniques, as unavoidably a large number of user parameters are introduced, which
is often at the same scale of the number of training data. But we show that personalization can
greatly improve ranking performance with a recent regularization technique called Stochastic Shared
Embeddings (SSE) (Wu et al., 2019). The personalized Transformer (SSE-PT) model with SSE
regularization works well for all 5 real-world datasets we consider without overfitting, outperforming
previous state-of-the-art algorithm SASRec by almost 5% in terms of NDCG@10. Furthermore, after
examining some random users’ engagement history, we find our model is not only more interpretable
but also able to focus on recent engagement patterns for each user. Moreover, our SSE-PT model with
a slight modification, which we call SSE-PT++, can handle extremely long sequences and outperform
SASRec in ranking results with comparable training speed, striking a balance between performance
and speed requirements.

1

https://github.com/SSE-PT/SSE-PT


Under review as a conference paper at ICLR 2020

2 RELATED WORK

2.1 SESSION-BASED AND SEQUENTIAL RECOMMENDATION

Both session-based and sequential (i.e., next-basket) recommendation algorithms take advantage of
additional temporal information to make better personalized recommendations. The main difference
between session-based recommendations (Hidasi et al., 2015) and sequential recommendations (Kang
and McAuley, 2018) is that the former assumes that the user ids are not recorded and therefore the
length of engagement sequences are relatively short. Therefore, session-based recommendations
normally do not consider user factors. On the other hand, sequential recommendation treats each
sequence as a user’s engagement history (Kang and McAuley, 2018). Both settings, do not explicitly
require time-stamps: only the relative temporal orderings are assumed known (in contrast to, for
example, timeSVD++ (Koren, 2009) using time-stamps). Initially, sequence data in temporal order
are usually modelled with Markov models, in which a future observation is conditioned on the last
few observed items (Rendle et al., 2010). In (Rendle et al., 2010), a personalized Markov model with
user latent factors is proposed for more personalized results.

In recent years, deep learning techniques, borrowed from natural language processing (NLP) literature,
are getting widely used in tackling sequential data. Like word sentences in NLP, item sequences
in recommendations can be similarly modelled by recurrent neural networks (RNN) (Hidasi et al.,
2015; Hidasi and Karatzoglou, 2018) and convolutional neural network (CNN) (Tang and Wang,
2018) models. Recently, attention models are increasingly used in both NLP (Vaswani et al., 2017;
Devlin et al., 2018) and recommender systems (Liu et al., 2018; Kang and McAuley, 2018). SASRec
(Kang and McAuley, 2018) is a recent method with state-of-the-art performance among the many
deep learning models. Motivated by the Transformer model in neural machine translation (Vaswani
et al., 2017), SASRec utilizes a similar architecture to the encoder part of the Transformer model.
Our proposed model, SSE-PT, is a personalized extension of the transformer model.

2.2 REGULARIZATION TECHNIQUES

In deep learning, models with many more parameters than data points can easily overfit to the training
data. This may prevent us from adding user embeddings as additional parameters into complicated
models like the Transformer model (Kang and McAuley, 2018), which can easily have 20 layers
with millions of parameters for a medium-sized dataset like Movielens10M (Harper and Konstan,
2016). `2 regularization (Hoerl and Kennard, 1970) is the most widely used approach and has been
used in many matrix factorization models in recommender systems; `1 regularization (Tibshirani,
1996) is used when a sparse model is preferred. For deep neural networks, it has been shown that `p
regularizations are often too weak, while dropout (Hinton et al., 2012; Srivastava et al., 2014) is more
effective in practice. There are many other regularization techniques, including parameter sharing
(Goodfellow et al., 2016), max-norm regularization (Srebro et al., 2005), gradient clipping (Pascanu
et al., 2013), etc. Very recently, a new regularization technique called Stochastic Shared Embeddings
(SSE) (Wu et al., 2019) is proposed as a new means of regularizing embedding layers. We find that
the base version SSE-SE is essential to the success of our Personalized Transformer (SSE-PT) model.

3 METHODOLOGY

3.1 SEQUENTIAL RECOMMENDATION

Given n users and each user engaging with a subset of m items in a temporal order, the goal of
sequential recommendation is to learn a good personalized ranking of top K items out of total m
items for any given user at any given time point. We assume data in the format of n item sequences:

si = (ji1, ji2, . . . , jiT ) for 1 ≤ i ≤ n. (1)

Sequences si of length T contain indices of the last T items that user i has interacted with in the
temporal order (from old to new). For different users, the sequence lengths can vary, but we can pad
the shorter sequences so all of them have length T . We cannot simply randomly split data points
into train/validation/test sets because they come in temporal orders. Instead, we need to make sure
our training data is before validation data which is before test data temporally. We use last items
in sequences as test sets, second-to-last items as validation sets and the rest as training sets. We

2



Under review as a conference paper at ICLR 2020

use ranking metrics such as NDCG@K and Recall@K for evaluations, which are defined in the
Appendix.

3.2 PERSONALIZED TRANSFORMER ARCHITECTURE

Our model, which we call SSE-PT, is motivated by the Transformer model in (Vaswani et al., 2017)
and (Kang and McAuley, 2018). It also utilizes a new regularization technique called stochastic
shared embeddings (Wu et al., 2019). In the following sections, we are going to examine each
important component of our Personalized Transformer (SSE-PT) model, especially the embedding
layer, and the novel application of stochastic shared embeddings (SSE) regularization technique.

Embedding Layer We define a learnable user embedding look-up table U ∈ Rn×du and item
embedding look-up table V ∈ Rm×di , where du, di are the number of hidden units for user and item
respectively. We also specify learnable positional encoding table P ∈ RT×d, where d = du + di. So
each input sequence si ∈ RT will be represented by the following embedding:

E =


[vji1 ; ui] + p1

[vji2 ; ui] + p2

...
[vjiT ; ui] + pT

 ∈ RT×d, (2)

where [vjit ;ui] represents concatenating item embedding vjit ∈ Rdi and user embedding ui ∈ Rdu

into embedding Et ∈ Rd for time t. Note that the main difference between our model and (Kang and
McAuley, 2018) is that we introduce the user embeddings ui, making our model personalized.

Figure 1: Illustration of our proposed SSE-PT model

Transformer Encoder On top of the embedding layer, we have B blocks of self-attention layers
and fully connected layers, where each layer extracts features for each time step based on the
previous layer’s outputs. Since this part is identical to the Transformer encoder used in the original
papers (Vaswani et al., 2017; Kang and McAuley, 2018), we will skip the details.

Prediction Layer At time t, the predicted probability of user i engaged item l is:
pitl = σ(ritl), (3)

where σ is the sigmoid function and ritl is the predicted score of item l by user l at time point t,
defined as:

ritl = FB
t−1 · [vl; ui], (4)

where FB
t−1 is the output hidden units associated with the transformer encoder at the last timestamp.

Although we can use another set of user and item embedding look-up tables for the ui and vl, we

3



Under review as a conference paper at ICLR 2020

find it better to use the same set of embedding look-up tables U, V as in the embedding layer. But
regularization for those embeddings can be different. To distinguish the ui and vl in (4) from ui, vj
in (2), we call embeddings in (4) output embeddings and those in (2) input embeddings.

The binary cross entropy loss between predicted probability for the positive item l = ji(t+1) and one
uniformly sampled negative item k ∈ Ω is given as −[log(pitl) + log(1− pitk)]. Summing over si
and t, we obtain the objective function that we want to minimize is:∑

i

∑T−1

t=1

∑
k∈Ω

−
[

log(pitl) + log(1− pitk)
]
. (5)

At the inference time, top-K recommendations for user i at time t can be made by sorting scores ritl
for all items ` and recommending the first K items in the sorted list.

Novel Application of Stochastic Shared Embeddings The most important regularization tech-
nique to SSE-PT model is the Stochastic Shared Embeddings (SSE) (Wu et al., 2019). The main
idea of SSE is to stochastically replace embeddings with another embedding with some pre-defined
probability during SGD, which has the effect of regularizing the embedding layers. Without SSE, all
the existing well-known regularization techniques like layer normalization, dropout and weight decay
fail and cannot prevent the model from over-fitting badly after introducing user embeddings. (Wu
et al., 2019) develops two versions of SSE, SSE-Graph and SSE-SE. In the simplest uniform case,
SSE-SE replaces one embedding with another embedding uniformly with probability p, which is
called SSE probability in (Wu et al., 2019). Since we don’t have knowledge graphs for user or items,
we simply apply the SSE-SE to our SSE-PT model. We find SSE-SE makes possible training this
personalized model with O(ndu) additional parameters.

There are 3 different places in our model that SSE-SE can be applied. We can apply SSE-SE to
input/output user embeddings, input item embeddings, and output item embeddings with probabilities
pu, pi and py respectively. Note that input user embedding and output user embedding are always
replaced at the same time with SSE probability pu. Empirically, we find that SSE-SE to user
embeddings and output item embeddings always helps, but SSE-SE to input item embeddings is
only useful when the average sequence length is large, e.g., more than 100 in Movielens1M and
Movielens10M datasets.

Other Regularization Techniques Besides the SSE (Wu et al., 2019), we also utilized other widely
used regularization techniques, including layer normalization (Ba et al., 2016), batch normalization
(Ioffe and Szegedy, 2015), residual connections (He et al., 2016), weight decay (Krogh and Hertz,
1992), and dropout (Srivastava et al., 2014). Since they are used in the same way in the previous
paper (Kang and McAuley, 2018), we omit the details to the Appendix.

3.3 HANDLING LONG SEQUENCES: SSE-PT++

To handle extremely long sequences, a slight modification can be made on the base SSE-PT model in
terms of how input sequences si’s are fed into the SSE-PT neural network. We call the enhanced
model SSE-PT++ to distinguish it from the previously discussed SSE-PT model, which cannot handle
sequences longer than T .

The motivation of SSE-PT++ over SSE-PT comes from: sometimes we want to make use of extremely
long sequences, si = (ji1, ji2, . . . , jit) for 1 ≤ i ≤ n, where t > T , but our SSE-PT model can only
handle sequences of maximum length of T . The simplest way is to sample starting index 1 ≤ v ≤ t
uniformly and use si = (jiv, ji(v+1), . . . , jiz), where z = min(t, v+T − 1). Although sampling the
starting index uniformly from [1, t] can accommodate long sequences of length t > T , this does not
work well in practice. Uniform sampling does not take into account the importance of recent items in
a long sequence. To solve this dilemma, we introduce an additional hyper-parameter ps which we call
sampling probability. It implies that with probability ps, we sample the starting index v uniformly
from [1, t−T ] and use sequence si = (jiv, ji(v+1), . . . , ji(v+T−1)) as input. With probability 1−ps,
we simply use the recent T items (ji(t−T+1), . . . , jit) as input. If the sequence si is already shorter
than T , then we always use the recent input sequence for user i.

Our proposed SSE-PT++ model can work almost as well as SSE-PT with a much smaller T . One can
see in Table 2 with T = 100, SSE-PT++ can perform almost as well as SSE-PT. The time complexity

4



Under review as a conference paper at ICLR 2020

of the SSE-PT model is of order O(T 2d+ Td2). Therefore, reducing T by one half would lead to
a theoretically 4x speed-up in terms of the training and inference speeds. As to the model’s space
complexity, both SSE-PT and SSE-PT++ are of order O(ndu +mdi + Td+ d2).

4 EXPERIMENTS

In this section, we compare our proposed algorithms, Personalized Transformer (SSE-PT) and SSE-
PT++, with other state-of-the-art algorithms on real-world datasets. We implement our codes in
Tensorflow and conduct all our experiments on a server with 40-core Intel Xeon E5-2630 v4 @
2.20GHz CPU, 256G RAM and Nvidia GTX 1080 GPUs.

Datasets We use 5 datasets. The first 4 have exactly the same train/dev/test splits as in (Kang
and McAuley, 2018). The datasets are: Beauty and Games categories from Amazon product review
datasets1; Steam dataset introduced in (Kang and McAuley, 2018), which contains reviews crawled
from a large video game distribution platform; Movielens1M dataset (Harper and Konstan, 2016), a
widely used benchmark datasets containing one million user movie ratings; Movielens10M dataset
with ten million user ratings cleaned by us. Detailed dataset statistics are given in Table 4. One can
easily see that the first 3 datasets have short sequences (average length < 12) while the last 2 datasets
have very long sequences (> 10x longer).

Evaluation Metrics The evaluation metrics we use are standard ranking metrics, namely NDCG
and Recall for top recommendations (See Appendix). We follow the same evaluation setting as the
previous paper (Kang and McAuley, 2018): predicting ratings at time point t+ 1 given the previous t
ratings. For a large dataset with numerous users and items, the evaluation procedure would be slow
because (6) would require computing the ranking of all items based on their predicted scores for
every single user. As a means of speed-up evaluations, we sample a fixed number C (e.g., 100) of
negative candidates while always keeping the positive item that we know the user will engage next.
This way, both Rij and Πi will be narrowed down to a small set of item candidates, and prediction
scores will only be computed for those items through a single forward pass of the neural network.

Ideally, we want both NDCG and Recall to be as close to 1 as possible, because NDCG@K = 1 means
the positive item is always put on the top-1 position of the top-K ranking list, and Recall@K = 1
means the positive item is always contained by the top-K recommendations the model makes.

Table 1: Comparing various state-of-the-art temporal collaborative ranking algorithms on various
datasets. The (A) to (E) are non-deep-learning methods, the (F) to (K) are deep-learning methods and
the (L) to (O) are our variants. We did not report SSE-PT++ results for beauty, games and steam, as
the input sequence lengths are very short (see Table 4), so there is no need for SSE-PT++.

DATASET BEAUTY GAMES STEAM ML-1M
METRIC RECALL@10 NDCG@10 RECALL@10 NDCG@10 RECALL@10 NDCG@10 RECALL@10 NDCG@10

(A) POPREC 0.4003 0.2277 0.4724 0.2779 0.7172 0.4535 0.4329 0.2377
(B) BPR 0.3775 0.2183 0.4853 0.2875 0.7061 0.4436 0.5781 0.3287
(C) FMC 0.3771 0.2477 0.6358 0.4456 0.7731 0.5193 0.6983 0.4676
(D) FPMC 0.4310 0.2891 0.6802 0.4680 0.7710 0.5011 0.7599 0.5176
(E) TRANSREC 0.4607 0.3020 0.6838 0.4557 0.7624 0.4852 0.6413 0.3969

(F) GRU4REC 0.2125 0.1203 0.2938 0.1837 0.4190 0.2691 0.5581 0.3381
(G) STAMP 0.4607 0.3020 0.6838 0.4557 0.7624 0.4852 0.6413 0.3969
(H) GRU4REC+ 0.3949 0.2556 0.6599 0.4759 0.8018 0.5595 0.7501 0.5513
(I) CASER 0.4264 0.2547 0.5282 0.3214 0.7874 0.5381 0.7886 0.5538
(J) SASREC 0.4837 0.3220 0.7434 0.5401 0.8732 0.6293 0.8233 0.5936
(K) HGN 0.4469 0.2994 0.7164 0.5209 0.7426 0.4871 0.7584 0.5241

(L) SSE-SASREC 0.4878 0.3342 0.7517 0.5535 0.8697 0.6333 0.8230 0.5995
(M) PT 0.3954 0.2449 0.6427 0.4434 0.7535 0.4853 0.7658 0.5241
(N) SSE-PT 0.5028 0.3370 0.7757 0.5660 0.8772 0.6378 0.8341 0.6281
(O) SSE-PT++ – – – – – – 0.8389 0.6292

Baselines We include 5 non-deep-learning and 6 deep-learning algorithms in our comparisons.

1http://jmcauley.ucsd.edu/data/amazon/

5

http://jmcauley.ucsd.edu/data/amazon/


Under review as a conference paper at ICLR 2020

Table 2: Comparing SASRec, SSE-PT and SSE-PT++ on Movielens1M Dataset while varying the
maximum length allowed and dimension of embeddings.

METHODS NDCG@10 RECALL@10 MAX LEN USER DIM ITEM DIM

SASREC 0.5769 0.8045 100 N/A 100
SASREC 0.5936 0.8233 200 N/A 50
SASREC 0.5919 0.8202 200 N/A 100

SSE-PT 0.6142 0.8212 100 50 100
SSE-PT 0.6191 0.8358 200 50 50
SSE-PT 0.6281 0.8341 200 50 100

SSE-PT++ 0.6186 0.8318 100 50 100
SSE-PT++ 0.6208 0.8358 200 50 50
SSE-PT++ 0.6292 0.8389 200 50 100

Non-deep-learning Baselines The simplest baseline is PopRec, basically ranking items according
to their popularity. More advanced methods such as matrix factorization based baselines include
Bayesian personalized ranking for implicit feedback (Rendle et al., 2009), namely BPR; Factorized
Markov Chains and Personalized Factorized Markov Chains models (Rendle et al., 2010) also known
as FMC and PFMC; and translation based method (He et al., 2017) called TransRec.

Deep-learning Baselines Recent years have seen many advances in deep learning for sequential
recommendations. GRU4Rec is the first RNN-based method proposed for this problem (Hidasi et al.,
2015); GRU4Rec+ (Hidasi and Karatzoglou, 2018) later is proposed to address some shortcomings of
the initial version. Caser is the corresponding CNN-based method (Tang and Wang, 2018). STAMP
(Liu et al., 2018) utilizes the attention mechanism without using RNN or CNN as building blocks.
Very recently, SASRec utilizes state-of-art Transformer encoder (Vaswani et al., 2017) with self-
attention mechanisms. Hierarchical gating networks, also known as HGN (Ma et al., 2019) are also
proposed to solve this problem.

Table 3: Comparing Different Regularizations for SSE-PT on Movielen1M Dataset. NO REG stands
for no regularization. PS stands for parameter sharing across all users while PS(AGE) means PS is
used within each age group. SASRec is added to last row after all SSE-PT results as a baseline.

REGULARIZATION NDCG@5 % GAIN RECALL@5 % GAIN

NO REG (BASELINE) 0.4855 - 0.6500 -
PS 0.5065 4.3 0.6656 2.4
PS (JOB) 0.4938 1.7 0.6570 1.1
PS (GENDER) 0.5110 5.3 0.6672 2.6
PS (AGE) 0.5133 5.7 0.6743 3.7
l2 0.5149 6.0 0.6786 4.4
DROPOUT 0.5165 6.4 0.6823 5.0
l2 + DROPOUT 0.5293 9.0 0.6921 6.5
SSE-SE 0.5393 11.1 0.6977 7.3
l2 + SSE-SE + DROPOUT 0.5870 20.9 0.7442 14.5

SASREC (l2 + DROPOUT) 0.5601 0.7164

Experiment Setup We use the same datasets as in (Kang and McAuley, 2018) and follow the same
procedure in the paper: use last items for each user as test data, second-to-last as validation data
and the rest as training data. We implemented our method in Tensorflow and solve it with Adam
Optimizer (Kingma and Ba, 2014) with a learning rate of 0.001, momentum exponential decay rates
β1 = 0.9, β2 = 0.98 and a batch size of 128. In Table 1, since we use the same data, the performance
of previous methods except STAMP have been reported in (Kang and McAuley, 2018). We tune the
dropout rate, and SSE probabilities pu, pi, py for input user/item embeddings and output embeddings
on validation sets and report the best NDCG and Recall for top-K recommendations on test sets.
For a fair comparison, we restrict all algorithms to use up to 50 hidden units for item embeddings.
For the SSE-PT and SASRec models, we use the same number of transformer encoder blocks (i.e.
B = 2) and set the maximum length T = 200 for Movielens 1M and 10M dataset and T = 50 for

6



Under review as a conference paper at ICLR 2020

other datasets. We use top-K with K = 10 and the number of negatives C = 100 in the evaluation
procedure. In practice, using a different K and C does not affect our conclusions.

Comparisons One can easily see from Table 1 that our proposed SSE-PT has the best performance
over all previous methods on all four datasets. On most datasets, our SSE-PT improves NDCG by
more than 4% when compared with SASRec (Kang and McAuley, 2018) and more than 20% when
compared to non-deep-learning methods. SSE-SE, together with dropout and weight decay, is the
best choice for regularization, which is evident from Table 3. SSE-SE is a more effective way to
regularize our neural networks than any existent techniques including parameter sharing, dropout,
weight decay. In practice, these SSE probabilities, just like dropout rate, can be treated as tuning
parameters and easily tuned. Movielens10M results are left to Table 6 in the Appendix.

Figure 2: Illustration of how SASRec (Left) and SSE-PT (Right) differs on utilizing the Engagement
History of A Random User in Movielens1M Dataset.

4.1 ATTENTION MECHANISM VISUALIZATION

Apart from evaluating our SSE-PT against SASRec using well-defined ranking metrics on real-
world datasets, we also visualize the differences between both methods in terms of their attention
mechanisms. In Figure 2, a random user’s engagement history in Movielens1M dataset is given in
temporal order (column-wise). We hide the last item whose index is 26 in test set and hope that a
temporal collaborative ranking model can figure out item-26 is the one this user will watch next using
only previous engagement history. One can see for a typical user; they tend to look at a different style
of movies at different times. Earlier on, they watched a variety of movies, including Sci-Fi, animation,
thriller, romance, horror, action, comedy and adventure. But later on, in the last two columns of
Figure 2, drama and thriller are the two types they like to watch most, especially the drama type. In
fact, they watched 9 drama movies out of recent 10 movies. For humans, it is natural to reason that
the hidden movie should probably also be drama type. So what about the machine’s reasoning?

For our SSE-PT, the hidden item indexed 26 is put in the first place among its top-5 recommendations.
Intelligently, the SSE-PT recommends 3 drama movies, 2 thriller movies and mixing them up in
positions. Interestingly, the top recommendation is ‘Othello’, which like the recently watched
‘Richard III’, is an adaptation of a Shakespeare play, and this dependence is reflected in the attention

7



Under review as a conference paper at ICLR 2020

weight. On the contrast, SASRec cannot provide top-5 recommendations that are personalized enough.
It recommends a variety of action, Sci-Fi, comedy, horror, and drama movies but none of them match
item-26. Although this user has watched all these types of movies in the past, they do not watch these
anymore as one can easily tell from his recent history. Unfortunately, SASRec cannot capture this
and does not provide personalized recommendations for this user by focusing more on drama and
thriller movies. It is easy to see that in contrast, our SSE-PT model shares with human reasoning that
more emphasis should be placed on recent movies.

4.2 TRAINING SPEED

Figure 3: Illustration of the speed of
SSE-PT

In (Kang and McAuley, 2018), it has been shown that SAS-
Rec is about 11 times faster than Caser and 17 times faster
than GRU4Rec+ and achieves much better NDCG@10
results so we did not include Caser and GRU4Rec+ in our
comparisons. In Figure 3, we only compare the training
speeds and ranking performances among SASRec, SSE-
PT and SSE-PT++ for Movielens1M dataset. Given that
we added additional user embeddings into our SSE-PT
model, it is expected that it will take slightly longer to
train our model than un-personalized SASRec. We find
empirically that training speed of the SSE-PT and SSE-
PT++ model are comparable to that of SASRec, with SSE-
PT++ being the fastest and the best performing model. It
is clear that our SSE-PT and SSE-PT++ achieve much
better ranking performances than our baseline SASRec
using the same training time.

4.3 ABLATION STUDY

SSE probability Given the importance of SSE regularization for our SSE-PT model, we carefully
examined the SSE probability for input user embedding in Table 7 in Appendix. We find that the
appropriate hyper-parameter SSE probability is not very sensitive: anywhere between 0.4 and 1.0
gives good results, better than parameter sharing and not using SSE-SE. This is also evident based on
comparison results in Table 3.

Sampling Probability Recall that the sampling probability is unique to our SSE-PT++ model. We
show in Table 8 in Appendix using an appropriate sampling probability like 0.2→ 0.3 would allow
it to outperform SSE-PT when the same maximum length is used.

Number of Attention Blocks We find for our SSE-PT model, a larger number of attention blocks is
preferred. One can easily see in Table 9 in Appendix, the optimal ranking performances are achieved
at B = 4 or 5 for Movielens1M dataset and at B = 6 for Movielens10M dataset.

Personalization and Number of Negatives Sampled Based on the results in Table 10 in Appendix,
we are positive that the personalized model always outperforms the un-personalized one when we use
the same regularization techniques. This holds true regardless of how many negatives sampled or
what ranking metrics are used during evaluation.

5 CONCLUSION

In this paper, we propose a novel neural network architecture called Personalized Transformer for
the temporal collaborative ranking problem. It enjoys the benefits of being a personalized model,
therefore achieving better ranking results for individual users than the current state-of-the-art. By
examining the attention mechanisms during inference, the model is also more interpretable and tends
to pay more attention to recent items in long sequences than un-personalized deep learning models.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):19, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based recommendation. In
Proceedings of the Eleventh ACM Conference on Recommender Systems, pages 161–169. ACM,
2017.

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-k gains for session-
based recommendations. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 843–852. ACM, 2018.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. arXiv preprint
arXiv:1808.09781, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 447–456.
ACM, 2009.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances in
neural information processing systems, pages 950–957, 1992.

Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. Stamp: short-term attention/memory
priority model for session-based recommendation. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1831–1839. ACM, 2018.

Chen Ma, Peng Kang, and Xue Liu. Hierarchical gating networks for sequential recommendation.
arXiv preprint arXiv:1906.09217, 2019.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pages 1310–1318, 2013.

9



Under review as a conference paper at ICLR 2020

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on
uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized markov
chains for next-basket recommendation. In Proceedings of the 19th international conference on
World wide web, pages 811–820. ACM, 2010.

Badrul Munir Sarwar, George Karypis, Joseph A Konstan, John Riedl, et al. Item-based collaborative
filtering recommendation algorithms. Www, 1:285–295, 2001.

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization. In
Advances in neural information processing systems, pages 1329–1336, 2005.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, pages 565–573. ACM, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

Liwei Wu, Cho-Jui Hsieh, and James Sharpnack. Sql-rank: A listwise approach to collaborative
ranking. In Proceedings of Machine Learning Research (35th International Conference on Machine
Learning), volume 80, 2018.

Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Stochastic shared embeddings: Data-
driven regularization of embedding layers. arXiv preprint arXiv:1905.10630, 2019.

10



Under review as a conference paper at ICLR 2020

6 APPENDIX

• NDCG@K: defined as:

NDCG@K =
1

n

n∑
i=1

DCG@K(i,Πi)

DCG@K(i,Π∗i )
, (6)

where i represents i-th user and

DCG@K(i,Πi) =

K∑
l=1

2RiΠil − 1

log2(l + 1)
. (7)

In the DCG definition, Πil represents the index of the l-th ranked item for user i in test data
based on the learned score matrix X . R is the rating matrix and Rij is the rating given to
item j by user i. Π∗i is the ordering provided by the ground truth rating.

• Recall@K: defined as a fraction of positive items retrieved by the top K recommendations
the model makes:

Recall@K =

∑n
i=1 1{∃1 ≤ l ≤ K : RiΠil

= 1}
n

, (8)

here we already assume there is only a single positive item that user will engage next and the
indicator function 1{∃1 ≤ l ≤ k : RiΠil

= 1} is defined to indicate whether the positive
item falls into the top K position in our obtained ranked list using scores predicted in (4).

Layer Normalization Layer normalization (Ba et al., 2016) normalizes neurons within a layer.
Previous studies (Ba et al., 2016) show it is more effective than batch normalization for training
recurrent neural networks (RNNs). One alternative is the batch normalization (Ioffe and Szegedy,
2015) but we find it does not work as well as the layer normalization in practice even for a reasonable
large batch size of 128. Therefore, our SSE-PT model adopts layer normalization.

Residual Connections Residual connections are firstly proposed in ResNet for image classification
problems (He et al., 2016). Recent research finds that residual connections can help training very
deep neural networks even if they are not convolutional neural networks (Vaswani et al., 2017).
Using residual connections allows us to train very deep neural networks here. For example, the best
performing model for Movielens10M dataset in Table 9 is the SSE-PT with 6 attention blocks, in
which 1 + 6 ∗ 3 + 1 = 20 layers are trained end-to-end.

Weight Decay Weight decay (Krogh and Hertz, 1992), also known as l2 regularization (Hoerl and
Kennard, 1970), is applied to all embeddings, including both user and item embeddings.

Dropout Dropout (Srivastava et al., 2014) is applied to the embedding layer E, self-attention layer
and pointwise feed-forward layer by stochastically dropping some percentage of hidden units to
prevent co-adaption of neurons. Dropout has been shown to be an effective way of regularizing deep
learning models.

In summary, layer normalization and dropout are used in all layers except prediction layer. Residual
connections are used in both self-attention layer and pointwise feed-forward layer. SSE-SE is used in
embedding layer and prediction layer.

Table 4: Description of Datasets Used in Evaluations.

DATASET #USERS #ITEMS AVG SEQUENCE LEN MAX SEQUENCE LEN

BEAUTY 52,024 57,289 7.6 291
GAMES 31,013 23,715 7.3 858
STEAM 334,730 13,047 11.0 1,229
ML-1M 6,040 3,416 163.5 2,275

ML-10M 69,878 65,133 141.1 7,357

11



Under review as a conference paper at ICLR 2020

Table 5: Comparing our SSE-PT, SSE-PT++ with SASRec on Movielen1M dataset. We use number
of negatives C = 100, dropout probability of 0.2 and learning rate of 1e−3 for all experiments while
varying others. pu, pi, pu are SSE probabilities for user embedding, input item embedding and output
item embedding respectively.

Movielens1m Dimensions Number of Blocks Sampling Probability SSE-SE Parameters

Model NDCG@10 Recall@10 du di b ps pu pi py

SASRec 0.5961 0.8195 - 50 2 - - - -
SASRec 0.5941 0.8182 - 100 2 - - - -
SASRec 0.5996 0.8272 - 100 6 - - - -

SSE-PT 0.6101 0.8343 50 50 2 - 0.92 0.1 0
SSE-PT 0.6164 0.8336 50 50 2 - 0.92 0 0.1
SSE-PT 0.5832 0.8091 50 50 2 - 0 0.1 0.1
SSE-PT 0.6174 0.8351 50 50 2 - 0.92 0.1 0.1

SSE-PT 0.5949 0.8205 75 25 2 - 0.92 0.1 0.1
SSE-PT 0.6214 0.8359 25 75 2 - 0.92 0.1 0.1

SSE-PT 0.6281 0.8341 50 100 2 - 0.92 0.1 0.1
SSE-PT++ 0.6292 0.8389 50 100 2 0.3 0.92 0.1 0.1

Table 6: Comparing our SSE-PT with SASRec on Movielens10M dataset. Unlike Table 5, we use the
number of negatives C = 500 instead of 100 as C = 100 is too easy for this dataset and it gets too
difficult to tell the differences between different methods: Hit Ratio@10 approaches 1.

Movielens1m Dimensions Number of Blocks SSE-SE Parameters

Model NDCG@10 Hit Ratio@10 du di b pu pi py

SASRec 0.7268 0.9429 - 50 2 - - -
SASRec 0.7413 0.9474 - 100 2 - - -

SSE-PT 0.7199 0.9331 50 100 2 PS 0.01 0.01
SSE-PT 0.7169 0.9296 50 100 2 0.0 0.01 0.01
SSE-PT 0.7398 0.9418 50 100 2 0.2 0.01 0.01
SSE-PT 0.7500 0.9500 50 100 2 0.4 0.01 0.01
SSE-PT 0.7484 0.9480 50 100 2 0.6 0.01 0.01
SSE-PT 0.7529 0.9485 50 100 2 0.8 0.01 0.01
SSE-PT 0.7503 0.9505 50 100 2 1.0 0.01 0.01

• PopRec: ranking items according to their popularity.

• BPR: Bayesian personalized ranking for implicit feedback setting (Rendle et al., 2009).
It is a low-rank matrix factorization model with a pairwise loss function. But it does not
utilize the temporal information. Therefore, it serves as a strong baseline for non-temporal
methods.

• FMC: Factorized Markov Chains: a first-order Markov Chain method, in which predictions
are made only based on previously engaged item.

• PFMC: a personalized Markov chain model (Rendle et al., 2010) that combines matrix
factorization and first-order Markov Chain to take advantage of both users’ latent long-term
preferences as well as short-term item transitions.

• TransRec: a first-order sequential recommendation method (He et al., 2017) in which items
are embedded into a transition space and users are modelled as translation vectors operating
on item sequences.

SQL-Rank (Wu et al., 2018) and item-based recommendations (Sarwar et al., 2001) are omitted
because the former is similar to BPR (Rendle et al., 2009) except using the listwise loss function
instead of the pairwise loss function and the latter has been shown inferior to TransRec (He et al.,
2017).

6.0.1 DEEP-LEARNING BASELINES

• GRU4Rec: the first RNN-based method proposed for the session-based recommendation
problem (Hidasi et al., 2015). It utilizes the GRU structures (Chung et al., 2014) initially
proposed for speech modelling.

12



Under review as a conference paper at ICLR 2020

• GRU4Rec+: follow-up work of GRU4Rec by the same authors: the model has a very similar
architecture to GRU4Rec but has a more complicated loss function (Hidasi and Karatzoglou,
2018).
• Caser: a CNN-based method (Tang and Wang, 2018) which embeds a sequence of recent

items in both time and latent spaces forming an ‘image’ before learning local features through
horizontal and vertical convolutional filters. In (Tang and Wang, 2018), user embeddings are
included in the prediction layer only. On the contrast, in our Personalized Transformer, user
embeddings are also introduced in the lowest embedding layer so they can play an important
role in self-attention mechanisms as well as in prediction stages.
• STAMP: a session-based recommendation algorithm (Liu et al., 2018) using attention

mechanism. (Liu et al., 2018) only uses fully connected layers with one attention block that
is not self-attentive.
• SASRec: a self-attentive sequential recommendation method (Kang and McAuley, 2018)

motivated by Transformer in NLP (Vaswani et al., 2017). Unlike our method SSE-PT,
SASRec does not incorporate user embedding and therefore is not a personalized method.
SASRec paper (Kang and McAuley, 2018) also does not utilize SSE (Wu et al., 2019) for
further regularization: only dropout and weight decay are used.
• HGN: hierarchical gating networks method to solve the sequential recommendation problem

(Ma et al., 2019), which incorporates the user embeddings and gating networks for better
personalization than the SASRec model.

Table 7: Comparing Different SSE probability for user embeddings for SSE-PT on Movielens1M
Dataset. Embedding hidden units of 50 for users and 100 for items, attention blocks of 2, SSE
probability of 0.01 for item embeddings, dropout probability of 0.2 and max length of 200 are used.

USER-SIDE SSE-SE PROBABILITY NDCG@10 RECALL@10

PARAMETER SHARING 0.6188 0.8294

1.0 0.6258 0.8346
0.9 0.6275 0.8321
0.8 0.6244 0.8359
0.6 0.6256 0.8341
0.4 0.6237 0.8369
0.2 0.6163 0.8281
0.0 0.5908 0.8048

Table 8: Comparing Different Sampling Probability, ps, of SSE-PT++ on Movielens1M Dataset.
Hyper-parameters the same as Table 7, except that the max length T allowed is set 100 instead of 200
to show effects of sampling sequences.

SAMPLING PROBABILITY NDCG@10 RECALL@10

SASREC (T = 100) 0.5769 0.8045
SSE-PT (T = 100) 0.6142 0.8212

1.0 0.5697 0.7977
0.8 0.5735 0.7801
0.6 0.6062 0.8242
0.4 0.6113 0.8273
0.3 0.6186 0.8318
0.2 0.6193 0.8233
0.0 0.6142 0.8212

13



Under review as a conference paper at ICLR 2020

Table 9: Comparing Different Number of Blocks for SSE-PT while Keeping The Rest Fixed on
Movielens1M and Movielens10M Datasets.

DATASETS # OF BLOCKS NDCG@10 RECALL@10

MOVIELENS1M

SASREC (6 BLOCKS) 0.5984 0.8207

1 0.6162 0.8301
2 0.6280 0.8365
3 0.6293 0.8376
4 0.6270 0.8401
5 0.6308 0.8361
6 0.6270 0.8397

MOVIELENS10M

SASREC (6 BLOCKS) 0.7531 0.9490

1 0.7454 0.9478
2 0.7512 0.9522
3 0.7543 0.9491
4 0.7608 0.9485
5 0.7619 0.9524
6 0.7683 0.9537

Table 10: Varying number of negatives C in evaluation on Movielens1M dataset. Other hyper-
parameters are fixed for a fair comparison.

METRIC NDCG@10 RECALL@10 C

UN-PERSONALIZED 0.3787 0.6119 500
PERSONALIZED 0.3846 0.6171 500

UN-PERSONALIZED 0.2791 0.4781 1000
PERSONALIZED 0.2860 0.4929 1000

UN-PERSONALIZED 0.1939 0.3515 2000
PERSONALIZED 0.1993 0.3667 2000

14


	Introduction
	Related Work
	Session-based and Sequential Recommendation
	Regularization Techniques

	Methodology
	Sequential Recommendation
	Personalized Transformer Architecture
	Handling Long Sequences: SSE-PT++

	Experiments
	Attention Mechanism Visualization
	Training Speed
	Ablation Study

	Conclusion
	Appendix
	Deep-learning baselines


