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ABSTRACT

Designing efficient algorithms for combinatorial optimization appears ubiquitously
in various scientific fields. Recently, deep reinforcement learning (DRL) frame-
works have gained considerable attention as a new approach: they can automatically
learn the design of a good solver without using any sophisticated knowledge or
hand-crafted heuristic specialized for the target problem. However, the number of
stages (until reaching the final solution) required by existing DRL solvers is pro-
portional to the size of the input graph, which hurts their scalability to large-scale
instances. In this paper, we seek to resolve this issue by proposing a novel design
of DRL’s policy, coined auto-deferring policy (ADP), automatically stretching or
shrinking its decision process. Specifically, it decides whether to finalize the value
of each vertex at the current stage or defer to determine it at later stages. We apply
the proposed ADP framework to the maximum independent set (MIS) problem, a
prototype of NP-complete problems, under various scenarios. Our experimental re-
sults demonstrate significant improvement of ADP over the current state-of-the-art
DRL scheme in terms of computational efficiency and approximation quality. The
reported performance of our generic DRL scheme is also comparable with that of
the state-of-the-art solvers specialized for MIS, e.g., ADP outperforms them for
some graphs with millions of vertices.

1 INTRODUCTION

Combinatorial optimization is an important mathematical field addressing fundamental questions
of computation, where its popular examples include the maximum independent set (MIS, Miller &
Muller 1960), satisfiability (SAT, Schaefer 1978) and traveling salesman problem (TSP, Voigt 1831).
Such problems also arise in various applied fields, e.g., sociology (Harary & Ross, 1957), operations
research (Feo et al., 1994) and bioinformatics (Gardiner et al., 2000). However, most combinatorial
optimization problems are NP-hard to solve, i.e., exact solutions are typically intractable to find in
practical situations. To alleviate this issue, there have been huge efforts in designing fast heuristic
solvers (Biere et al., 2009; Knuth, 1997; Mezard et al., 2009) that generate approximate solutions for
such scenarios.

Recently, the remarkable progress in deep learning has stimulated increased interest in learning such
heuristics based on deep neural networks (DNNs). Such learning-based approaches are attractive
since one could obtain an efficient approximation algorithm for any domains of a problem without
sophisticated knowledge. As the most straight-forward way, supervised learning schemes can be used
for training DNNs to imitate the solutions obtained from existing solvers (Vinyals et al., 2015; Li
et al., 2018; Selsam et al., 2019). However, such a direction can be criticized, for its quality and
applicability are bounded by those of existing solvers. An ideal direction is to discover new solutions
in a fully unsupervised manner, potentially outperforming those based on domain-specific knowledge.

To this end, deep reinforcement learning (DRL) schemes have been studied in the literature (Bello
et al., 2016; Khalil et al., 2017; Deudon et al., 2018; Kool et al., 2019) as a Markov decision process
(MDP) can be naturally designed with rewards derived from the optimization objective of the target
problem. Then, the corresponding agent can be trained (without any human guidance) based on
existing training schemes of DRL, e.g., Bello et al. (2016) trained the so-called pointer network for
the TSP based on actor-critic training. Although conceptually appealing, the existing DRL-based
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Figure 1: Illustration of the proposed Markov decision process.

methods struggle to compete with the existing highly optimized solvers. In particular, the gap grows
larger when the problem requires solutions of higher dimension or more complex structure.

Our motivation stems from the observation that existing DRL-based solvers lack efficient policies for
generating solutions to combinatorial problems. Specifically, they are mostly based on emulating
greedy iterative heuristics (Bello et al., 2016; Khalil et al., 2017) and become too slow for training on
large graphs. Their choice seems inevitable since an algorithm that generates a solution based on a
single feed-forward pass of DNN is potentially hard to train due to large variance in reward signals
coming from high dimensional solutions.

Contribution. In this paper, we propose a new scalable DRL framework, coined auto-deferring
policy (ADP), for solving combinatorial problems on large graphs. Although the proposed ADP can
be applied to any combinatorial optimization tasks, we focus on the popular MIS problem which
attempts to find a maximum set of vertices in the graph where no pair of vertices are adjacent to
each other. Our choice of the MIS problem is motivated by its hardness and applicability. First, the
MIS problem is impossible to approximate in polynomial time by a constant factor (Hastad, 1996),
in contrast to (Euclidean or metric) TSP which can be approximated by factor of 1.5 (Christofides,
1976). Next, it has wide applications including classification theory (Feo et al., 1994), computer
vision (Sander et al., 2008) and communication algorithms (Jiang & Walrand, 2010).

The main novelty of ADP is automatically stretching the determination of the solution throughout
multiple steps. In particular, the agent iteratively acts on every undetermined vertex for either (a)
determining the membership of the vertex in the solution or (b) deferring the determination to be
made in later steps (see Figure 1 for illustration). Inspired by the celebrated survey propagation
(Braunstein et al., 2005) for solving the SAT problem, ADP could be interpreted as prioritizing
the “easier” decisions to be made first, which in turn simplifies the harder ones by eliminating the
source of uncertainties. Compared to the greedy strategy (Khalil et al., 2017) which determines the
membership of a single vertex at each step, our framework brings significant speedup by allowing
determinations on as many vertices as possible to happen at once.

Based on such speedup, ADP can solve the optimization problem by generating a large number of
candidate solutions in a limited time budget, then reporting the best solution among them. In such a
scenario, it is beneficial for the algorithm to generate diverse candidates. To this end, we additionally
give a novel diversification bonus to our agent during training, which explicitly encourages the agent
to generate a large variety of solutions. Specifically, we create a “coupling” of Markov decision
processes to generate two solutions for the given MIS problem and reward the agents for a large
deviation between the solutions. The resulting reward efficiently stimulates the agent to explore
high-dimensional input spaces and to improve the performance at the evaluation.

We empirically validate the ADP method on various types of graphs including the Erdös-Rényi (Erdős
& Rényi, 1960) model, the Barabási-Albert (Albert & Barabási, 2002) model, the SATLIB (Hoos &
Stützle, 2000) benchmark and real-world graphs (Hamilton et al., 2017; Yanardag & Vishwanathan,
2015; Leskovec & Sosič, 2016). Our algorithm shows consistent superiority over the existing state-of-
the-art DRL method (Khalil et al., 2017) both in terms of speed and quality of the solution, and can
compete with the state-of-the-art MIS heuristic (ReduMIS, Lamm et al. 2017) under a similar time
budget. For example, ADP even outperforms ReduMIS in the Barabási-Albert graph with two million
vertices using a smaller amount of time. Furthermore, we also show that our fully learning-based
algorithm generalizes well even to graph types unseen during training. This sheds light on its potential
of being a generic solver that works for arbitrary large-scale graphs.

2



Under review as a conference paper at ICLR 2020

Figure 2: Illustration of the transition function with
the update and the clean-up phases.

Figure 3: Illustration of coupled MDP with
the corresponding solution diversity reward.

2 DEEP AUTO-DEFERRING POLICY

In this paper, we focus on solving the maximum independent set (MIS) problem. Given a graph
G = (V, E) with vertices V and edges E , an independent set is a subset of vertices I ⊆ V where no
two vertices in the subset are adjacent to each other. A solution to the MIS problem can be represented
as a binary vector x = [xi : i ∈ V] ∈ {0, 1}V with maximum possible cardinality

∑
i∈V xi, where

each element xi indicates the membership of vertex i in the independent set I, i.e., xi = 1 if and
only if i ∈ I. Initially, the algorithm has no assumption about its output, i.e., both xi = 0 and xi = 1
are possible for all i ∈ V . At each iteration, the agent acts on each undetermined vertex i by either
(a) determining its membership to be a certain value, i.e., set xi = 0 or xi = 1, or (b) deferring the
determination to be made later iterations. The iterations are repeated until all the membership of
vertices in the independent set are determined. Such a strategy could be interpreted as progressively
narrowing down the set of candidate solutions at each iteration (See Figure 1 for illustration).

2.1 DEFERRED MARKOV DECISION PROCESS

To train the agent via reinforcement learning, we formulate the proposed algorithm as a Markov
decision process (MDP).

State. Each state of the MDP is represented as a vertex-state vector s = [si : i ∈ V] ∈ {0, 1, ∗}V ,
where the vertex i ∈ V is determined to be excluded or included in the independent set whenever
si = 0 or si = 1, respectively. Otherwise, si = ∗ indicates the determination has been deferred and
expected to be made in later iterations. The MDP is initialized with the deferred vertex-states, i.e.,
si = ∗ for all i ∈ V , and terminated when there is no deferred vertex-state left.

Action. Actions corresponds to new assignments for the next state of vertices. Since vertex-states
of included and excluded vertices are immutable, the assignments are defined only on the deferred
vertices. It is represented as a vector a∗ = [ai : i ∈ V∗] ∈ {0, 1, ∗}V∗ where V∗ denotes a set of
current deferred vertices, i.e., V∗ = {i : i ∈ V, xi = ∗}.
Transition. Given two consecutive states s, s′ and the corresponding assignment a∗, the transition
Pa∗(s, s

′) consists of two deterministic phases: the update phase and the clean-up phase. In the
update phase, the assignment a∗ generated by the policy is updated for the corresponding vertices
V∗ to result in an intermediate vertex-state ŝ, i.e., ŝi = ai if i ∈ V∗ and ŝi = si otherwise. In the
cleanup phase, the intermediate vertex-state vector ŝ is modified to yield a valid vertex-state vector
s′, where included vertices are only adjacent to the excluded vertices. To this end, whenever there
exists a pair of included vertices adjacent to each other, they are both mapped back to the deferred
vertex-state. Next, any deferred vertex neighboring with an included vertex is excluded. If the state
reaches the pre-defined time limit, all deferred vertices are automatically excluded. See Figure 2 for a
more detailed illustration of the transition.

Reward. Finally, reward R(s, s′) is defined as the increase in cardinality of included vertices, i.e.,
R(s, s′) =

∑
i∈V∗\V′∗

s′i, where V∗ and V ′∗ are the set of vertices with deferred vertex-state with
respect to s and s′, respectively. By doing so, the overall return of the MDP corresponds to the
cardinality of the independent set returned by our algorithm.
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2.2 TRAINING WITH DIVERSIFICATION REWARD

Next, we introduce an additional reward term for encouraging diversification of solutions generated
by the agent. Such regularization is motivated by our evaluation method which samples multiple
candidate solutions in order to report the best one as the final output. For such scenarios, it would be
beneficial to generate diverse solutions of high maximum score, rather than ones of similar scores.
One might argue that the existing entropy regularization (Williams & Peng, 1991) for encouraging
exploration over MDP could be used for this purpose. However, the entropy regularization attempts
to generate diverse trajectories of the same MDP which does not necessarily lead to diverse solutions
at last, since there exist many trajectories resulting in the same solution (see Section 2.1). We instead
directly maximize the diversity among solutions by a new reward term. To this end, we “couple” two
copies of MDPs defined in Section 2.1 into a new MDP by sharing the same graph G with a pair of
distinct vertex-state vectors (s, s̄). Although the coupled MDPs are defined on the same graph, the
corresponding agents work independently to result in a pair of solutions (x, x̄). Then, we directly
reward the deviation between the coupled solutions in terms of `1-norm, i.e., ‖x− x̄‖1. Similar to
the original objective of MIS, it is decomposed into rewards in each iteration of the MDP defined as
follows:

Rdiv(s, s′, s̄, s̄′) =
∑
i∈V̂

|s′i − s̄′i|, where V̂ = (V∗ \ V ′∗) ∪ (V̄∗ \ V̄ ′∗),

where (s′, s̄′) denotes the next pair of vertex-states in the coupled MDP. One can observe that V̂
denotes the most recently updated vertices in each MDP. In practice, such reward Rdiv can be used
along with the maximum entropy regularization for training the agent to achieve the best performance.
See Figure 3 for an example of coupled MDP with the proposed reward.

Our algorithm is based on actor-critic training with policy network πθ(a|s) and value network
Vφ(s) parameterized by the graph convolutional network (GCN, Kipf & Welling 2017). Each GCN
consists of multiple layers hn with n = 1, · · · , N where the n-th layer with weights W(n)

1 and W
(n)
2

performs the following transformation on input H:

h(n)(H) = ReLU
(
HW

(n)
1 + D−

1
2AD−

1
2HW

(n)
2

)
.

Here A,D correspond to adjacency and degree matrix of the graph G, respectively. At the final layer,
the policy and value networks apply softmax function and graph readout function with sum pooling
(Xu et al., 2019) instead of ReLU to generate actions and value estimates, respectively. We only
consider the subgraph that is induced on the deferred vertices V∗ as the input of the networks since
the determined part of the graph no longer affects future rewards of the MDP. Features corresponding
to the vertices are given as their node degrees and the current iteration-index of MDP.

In order to train the agent, proximal policy optimization (Schulman et al., 2017) is used. Specifically,
networks are trained for maximizing the following objective:

L := Et
[

min

(
Â(s(t))

∏
i∈V

r
(t)
i (θ), Â(s(t))

∏
i∈V

clip(r
(t)
i (θ), 1− ε, 1 + ε)

)]
,

r
(t)
i (θ) =

πθ(a
(t)
i |s(t))

πθold(a
(t)
i |s(t))

, Â(s) =

T∑
t′=t

r(t
′) − Vφ(s),

where s(t) denotes the t-th vertex-state vector and other elements of the MDP are defined similarly.
In addition, clip(·) is the clipping function for updating the agent more conservatively and θold is
the parameter of the policy network from the previous iteration of updates.

3 EXPERIMENTS

In this section, we report experimental results on the proposed auto-deferring policy (ADP) described
in Section 2. To this end, experiments were conducted on a large range of graphs varying from
small synthetic graphs to large-scale real-world graphs. We evaluated our ADP scheme by sampling
multiple solutions and then reporting the performance of the best solution. The resulting schemes
are coined ADP-10, ADP-100 and ADP-1000 corresponding to the number of samples chosen from
10, 100 and 1000, respectively. We compared our framework with the deep reinforcement learning

4



Under review as a conference paper at ICLR 2020

Table 1: Performance evaluation on ER and BA datasets. The bold numbers indicate the best
performance within the same category of algorithms. The relative differences shown in brackets are
measured with respect to S2V-DQN.

Traditional DRL-based

Type |V| Value ES CPLEX ReduMIS S2V-DQN ADP-10 ADP-100 ADP-1000

ER

(15, 20) Obj. 7.800 8.844 8.844 8.840 8.844 (+0.1%) 8.844 (+0.1%) 8.844 (+0.1%)
Time 0.005 0.003 0.024 0.004 0.002 (−60.7%) 0.005 (+15.6%) 0.056 (+1185.5%)

(40, 50) Obj. 13.83 16.57 16.57 16.42 16.55 (+0.7%) 16.57 (+0.9%) 16.57 (+0.9%)
Time 0.033 0.062 12.374 0.015 0.004 (−73.1%) 0.016 (+9.6%) 0.164 (+1002.0%)

(50, 100) Obj. 17.01 21.11 21.11 20.61 21.04 (+2.1%) 21.10 (+2.4%) 21.11 (+2.4%)
Time 0.117 0.137 24.387 0.030 0.007 (−77.8%) 0.028 (−4.3%) 0.283 (+852.6%)

(100, 200) Obj. 21.59 27.87 27.95 26.27 27.67 (+5.3%) 27.87 (+6.1%) 27.93 (+6.4%)
Time 0.608 10.748 30.109 0.078 0.029 (−63.5%) 0.085 (+8.5%) 0.666 (+748.7%)

(400, 500) Obj. 29.28 35.76 39.83 35.05 38.29 (+9.2%) 39.11 (+11.6%) 39.54 (+12.8%)
Time 10.823 30.085 30.432 0.633 0.158 (−75.1%) 0.407 (−35.7%) 2.768 (+336.8%)

BA

(15, 20) Obj. 6.06 7.019 7.019 7.011 7.019 (+0.1%) 7.019 (+0.1%) 7.019 (+0.1%)
Time 0.003 0.004 0.041 0.005 0.002 (−60.2%) 0.006 (+19.4) 0.064 (+1103.4)

(40, 50) Obj. 14.81 18.91 18.91 18.87 18.91 (+0.2%) 18.91 (+0.2%) 18.91 (+0.2%)
Time 0.031 0.020 0.396 0.013 0.003 (−79.2%) 0.011 (−18.4%) 0.118 (+778.1%)

(50, 100) Obj. 24.77 32.07 32.07 31.96 32.07 (+0.3%) 32.07 (+0.3%) 32.07 (+0.3%)
Time 0.130 0.038 0.739 0.022 0.003 (−84.7%) 0.018 (−19.0%) 0.199 (+794.3%)

(100, 200) Obj. 49.87 66.07 66.07 65.52 66.05 (+0.8%) 66.07 (+0.8%) 66.07 (+0.8%)
Time 0.938 0.088 2.417 0.047 0.007 (−85.2%) 0.038 (−19.6%) 0.380 (+703.6%)

(400, 500) Obj. 148.51 204.14 204.14 202.91 204.04 (+0.6%) 204.10 (+0.6%) 204.12 (+0.6)%
Time 23.277 0.322 15.080 0.177 0.024 (−86.4%) 0.131 (−25.8%) 1.111 (+527.5%)

Table 2: Performance evaluation on SATLIB, PPI, REDDIT and as-Caida datasets. The bold numbers
indicate the best performance within the same category of algorithms. The relative differences shown
in brackets are measured with respect to S2V-DQN, except for the case of as-Caida dataset where
S2V-DQN underperforms significantly.1

Traditional DRL-based

Type |V| Value CPLEX ReduMIS S2V-DQN ADP-10 ADP-100 ADP-1000

SATLIB (1209, 1347) Obj. 426.8 426.9 413.8 423.8 (+2.4%) 424.8 (+2.7%) 425.4 (+2.8%)
Time 9.490 30.110 2.260 0.311 (−86.2%) 1.830 (−19.0%) 16.409 (+626.1%)

PPI (591, 3480) Obj. 1147.5 1147.5 893.0 1144.5 (+28.2%) 1146.5 (+28.4%) 1147.0 (+28.4%)
Time 24.685 30.23 6.285 0.786 (−87.5%) 1.770 (−71.8%) 11.469 (+82.3%)

REDDIT
(MULTI-5K) (22, 3648) Obj. 370.6 370.6 370.1 370.6 (+0.1%) 370.6 (+0.1%) 370.6 (+0.1%)

Time 0.008 0.159 0.076 0.071 (−6.6%) 0.551 (+625.0%) 5.500 (+7136.8%)

REDDIT
(MULTI-12K) (2, 3782) Obj. 303.5 303.5 302.8 257.4 (−15.0%) 292.6 (−3.4%) 303.5 (+0.2%)

Time 0.007 0.188 1.883 0.003 (−99.8%) 0.025 (−98.7%) 0.451 (−76.1%)

REDDIT
(BINARY) (6, 3782) Obj. 329.3 329.3 328.6 329.3 (+0.2%) 329.3 (+0.2%) 329.3 (+0.2%)

Time 0.007 0.306 0.055 0.020 (−63.6%) 0.173 (+214.6%) 2.627 (+4676.4%)

as-Caida (8020, 26 475) Obj. 20 049.2 20 049.2 324.0 20 049.2
0.812

20 049.2
6.106

20 049.2
62.286Time 0.477 1.719 601.351

(DRL) algorithm by Khalil et al. (2017), coined S2V-DQN, for solving the MIS problem. Note
that other DRL schemes in the literature, e.g., pointer network (Bello et al., 2016), and attention
layer (Kool et al., 2019) are not comparable since they are specialized to TSP-like problems. We
additionally consider three conventional MIS solvers as baselines. First, we consider the theoretically
guaranteed algorithm of Boppana & Halldórsson (1992) based on iterative exclusion of subgraphs,
coined ES, having approximation ratioO(|V|/(log |V|)2) for the MIS problem. Next, we consider the
integer programming solver IBM ILOG CPLEX Optimization Studio V12.9.0 (ILO, 2014), coined
CPLEX. Finally, we also consider the heuristic proposed by Lamm et al. (2017), coined ReduMIS,
which reported state-of-the-art performance on the MIS problem. Details on the implementation of
the algorithms are provided in the appendix.

3.1 PERFORMANCE EVALUATION

We now demonstrate the performance of our algorithm along with other baselines on various datasets.
First, we consider experiments on randomly generated synthetic graphs from the Erdös-Rényi (ER,
Erdős & Rényi 1960) and Barabási-Albert (BA, Albert & Barabási 2002) models. Following Khalil

1 The authors of S2V-DQN only reported experiments with respect to graphs of size up to five hundred.

5



Under review as a conference paper at ICLR 2020

(a) ER-(400, 500) dataset (b) SATLIB dataset

Figure 4: Evaluation of trade-off between time and objective (upper-left side is of better trade-off).

et al. (2017), the edge ratio of ER graphs and average degree of BA graphs are set to 0.15 and 8,
respectively. Datasets are specified by their type of model and an interval for choosing the number
of vertices uniformly at random, e.g., ER-(50, 100) denotes the set of ER graphs generated with the
number of vertices larger than 50 and smaller than 100. Next, we consider experiments on more
challenging datasets with larger sizes, namely the SATLIB, PPI, REDDIT, and as-Caida datasets
constructed from SATLIB benchmark (Hoos & Stützle, 2000), protein-protein interactions (Hamilton
et al., 2017), social networks (Yanardag & Vishwanathan, 2015) and road networks (Leskovec &
Sosič, 2016), respectively. See the appendix for more details on the datasets. The time limit of the
CPLEX and ReduMIS are set to 30 seconds on ER and BA datasets and 1800 seconds on the rest
of the datasets in order to provide comparable baselines.2 The corresponding results are reported
in Table 1 and 2. Note that the ES method was excluded from comparison in large graphs since it
required a prohibitive amount of computation.

In Table 1 and 2, one can observe that our ADP algorithms significantly outperform the deep
reinforcement learning baseline, i.e., S2V-DQN, across all types of graphs and datasets. For example,
ADP-10 is always able to find a better solution than S2V-DQN much faster. The gap grows larger in
more challenging datasets, e.g., see Table 2. It is also impressive to observe that our algorithm is able
to find the best solution in seven out of ten datasets in Table 1 and four out of five datasets in Table 2.
Furthermore, we observe that our algorithm outperforms the CPLEX solver on ER-(100, 200) and
ER-(400, 500) datasets, while consuming a smaller amount of time. The highly optimized ReduMIS
solver tends to acquire the best solutions consistently under the maximum time limit we set. However,
it is often worse than ours given a limited time budget, as described in what follows.

We investigate the trade-off between objective and time for algorithms in Figure 4. To this end, we
evaluate algorithms on ER-(400, 500) and SATLIB datasets with varying number of samples for
ADP and time limits for ReduMIS and CPLEX. It is remarkable to observe that ADP outperforms the
CPLEX solver on both datasets under reasonably limited time. Furthermore, for time limits smaller
than 10 seconds, ADP outperforms ReduMIS on ER-(400, 500) dataset.

3.2 ABLATION STUDY

We ablate each component of our algorithm to validate its effectiveness. We first show that “stretching”
the determination with deferred MDP indeed helps for solving the MIS problem. Specifically, we
experiment with varying the maximum number of iterations T in MDP by T ∈ {2, 4, 8, 16, 32} on
ER-(50, 100) dataset. Figure 5a reports the training curve for validation score of the corresponding
experiments. We observe that the performance of ADP improves whenever an agent is given more
time to generate the final solution, which verifies our claim that the choice of deferring the decision
plays a crucial role in solving the MIS problem.

Next, we inspect the contribution of the solution diversity reward used in our algorithm. To this
end, we trained agents with four options: (a) without any exploration bonus, coined Base, (b) with
the conventional entropy bonus (Williams & Peng, 1991), coined Entropy, (c) with the proposed

2 The solvers occasionally violate the time limit due to their pre-solving process.
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(a) Performance with varying T (b) Contribution of each regularizers (c) Deviation in intermediate stages

Figure 5: Illustration of ablation studies done on ER-(50, 100) dataset. The solid line and shaded
regions represent the mean and standard deviation across 3 runs respectively Note that the standard
deviation in (c) was enlarged ten times for better visibility.

Table 3: Generalization performance of ADP-1000 across synthetic graphs with varying types
and sizes. Rows and columns correspond to datasets used for training and evaluating the model,
respectively.

ER BA

Type |V| (40, 50) (50, 100) (100, 200) (400, 500) (40, 50) (50, 100) (100, 200) (400, 500)

(15, 20) 16.57 21.06 26.50 30.36 18.91 32.07 66.00 200.96
(40, 50) 16.57 21.11 27.88 36.95 18.91 32.07 66.07 204.09

ER (50, 100) - 21.11 27.94 38.20 - 32.07 66.07 204.07
(100, 200) - - 27.93 39.39 - - 66.07 204.08
(400, 500) - - - 39.54 - - - 203.90

(15, 20) 16.57 21.10 27.28 33.87 18.91 32.07 66.05 202.47
(40, 50) 16.57 21.11 27.89 37.01 18.91 32.07 66.07 204.03

BA (50, 100) - 21.11 27.89 37.01 - 32.07 66.07 204.11
(100, 200) - - 27.86 36.52 - - 66.07 204.11
(400, 500) - - - 35.31 - - - 204.12

diversification bonus, coined Diverse, and (d) with both of the bonuses, coined Entropy+Diverse.
The corresponding training curves for validation scores are reported in Figure 5b. We observe that the
agent trained with the proposed diversification bonus outperforms other agents in terms of validation
score, confirming the effectiveness of our proposed reward. One can also observe that both methods
can be combined to yield better performance, i.e., Entropy+Diverse.

Finally, we further verify our claim that the maximum entropy regularization fails to capture the
diversity of solutions effectively, while the proposed solution diversity reward term does. To this
end, we compare the fore-mentioned agents with respect to the `1-deviations between the coupled
intermediate vertex-states s and s̄, defined as |{i : i ∈ V, si 6= s̄i}|. The corresponding results
are shown in Figure 5c. Indeed, one can observe that the entropy regularization leads to large
deviations during the intermediate stages, but converges to solutions with smaller deviations. On the
contrary, agents trained on diversification rewards succeed in enlarging the deviation between the
final solutions.

3.3 GENERALIZATION TO UNSEEN GRAPHS

Now we examine the potential of our method as a generic solver, i.e., whether the algorithm’s
performance generalizes well to graphs unseen during training. To this end, we first construct
experiments on generalization between ER and BA graphs, where we evaluate our method on
different types and sizes of graphs from the training dataset. As shown in Table 3, our algorithm
generalizes excellently across different sizes of graphs, e.g., the model trained on BA-(50, 100)
dataset achieves the best performance even on BA-(400, 500) dataset. On the other side, models
evaluated on unseen type of graphs tend to work slightly worse as expected. However, the results
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Table 4: Performance evaluation for large-scale graphs. Out of budget (OB) is marked for runs
violating the time and the memory budget of 10 000 seconds and 32 GB RAM, respectively. The
bold numbers indicate the best performance within the same category of algorithms. The relative
differences shown in brackets are measured with respect to S2V-DQN.

Traditional DRL-based

Type |V| Value CPLEX ReduMIS S2V-DQN ADP-10 ADP-100 ADP-1000

BA
1 000 000 Obj. 434 896 457 349 OB 457 753

324.02
457 772
5112.25 OBTime 5967.82 1802.35

2 000 000 Obj.
OB 909 988 OB 915 553

772.18
915 573
7662.87 OBTime 4276.43

Citation
(Cora) 2708 Obj. 1451 1451 1393 1451 (+4.2%) 1451 (+4.2%) 1451 (+4.2%)

Time 0.08 0.04 2.57 1.63 (−36.5%) 2.71 (+5.3%) 13.82 (+437.7%)

Citation
(Citeseer) 3327 Obj. 1867 1867 1840 1867 (+1.5%) 1867 (+1.5%) 1867 (+1.5%)

Time 0.08 0.03 3.07 1.80 (−41.4%) 2.74 (−10.9%) 19.00 (+518.4%)

Amazon
(Photo) 7487 Obj. 2733 2733 725 2705 (+273.1%) 2708 (+273.5%) 2712 (+274.1%)

Time 38.80 39.02 66.53 2.00 (−97.0%) 4.91 (−92.6%) 32.96 (−50.5%)

Amazon
(Computers) 13 381 Obj. 4829 4829 1281 4773 (+272.6%) 4782 (+273.3%) 4783 (+273.4%)

Time 188.61 61.78 235.80 3.02 (−98.7%) 8.63 (−96.3%) 79.19 (−66.4%)

Coauthor
(CS) 18 333 Obj. 7506 7506 6635 7479 (+12.7%) 7479 (+12.7%) 7483 (+12.8%)

Time 1.50 0.09 197.39 3.03 (−98.5%) 13.23 (−93.3%) 122.44 (−38.0%)

Coauthor
(Physics) 34 493 Obj. 11 351 11 353 2156 11 176 (+418.4%) 11 186 (+418.8%) 11 190 (+419.0%)

Time 1802.80 81.34 1564.13 8.63 (−99.5%) 38.71 (−97.5%) 385.93 (−75.3%)

SNAP
(web-Stanford) 281 903 Obj. 163 385 163 391 OB 160 784

13.35
160 837
137.98

160 872
1357.11Time 996.25 44.85

SNAP
(web-NotreDame) 325 729 Obj. 251 846 251 850 OB 250 365

11.81
250 384
119.48

250 409
1046.48Time 64.97 1802.34

SNAP
(web-BerkStan) 685 230 Obj. 125 194 408 483 OB 403 166

88.67
403 189
975.35

403 231
9940.93Time 1875.96 100.17

SNAP
(soc-Pokec) 1 632 803 Obj.

OB 788 907 OB 784 843
770.55

784 891
OBTime 1805.95 7512.06

SNAP
(wiki-topcats) 1 791 489 Obj.

OB 986 180 OB 958 980
850.80

959 051
9121.85 OBTime 1060.09

are still remarkable, e.g., the model trained on ER-(40, 50) dataset almost achieves the best score in
BA-(400, 500) dataset.

Next, we consider the generalization of the algorithm to large graphs with the number of vertices
up to two million. We train ADP and S2V-DQN models on BA-(400, 500) dataset and evaluate
them on the following real-world graph datasets: Citation (Sen et al., 2008), Coauthor, Amazon
(Shchur et al., 2018) and Stanford Network Analysis Platform (SNAP, Leskovec & Sosič 2016). We
additionally evaluate on BA graphs with millions of vertices. Similar to the experiments in Table 2,
we set the time limit on CPLEX and ReduMIS by 1800 seconds. The ES method is again excluded as
being computationally prohibitive to compare. As reported in Table 4, ADP successfully generates
solutions for large scale instances which scale up to two million (2M), even though it was trained on
graphs of size smaller than five hundred vertices. Most notably, ADP-10 outperforms the ReduMIS
(state-of-the-art solver) in BA graph with 2M vertices, but six times faster. It also outperforms the
CPLEX in the graphs with more than 0.5M vertices, indicating better scalability of our algorithm.
Note that CPLEX also fails to generate solutions on graphs with more than 1M vertices. Such a
result strongly supports the potential of ADP being a generic solver that could be used in place of
conventional solvers. On the contrary, we found that S2V-DQN does not generalize well to large
graphs: it performs worse and takes much more time for generation of solution as it requires number
of decisions proportional to the graph size.

4 CONCLUSION

In this paper, we propose a new reinforcement learning framework for combinatorial problems that is
scalable to large graphs. Our main contribution is the auto-deferring policy, which allows the agent to
defer the determinations on vertices for efficient expression of complex structures in the solutions.
Through extensive experiments, our algorithm shows performance that is both superior to the existing
reinforcement learning baseline and competitive with the highly optimized conventional solvers. We
expect our framework can be influential to future works that require policies with actions of high
dimension and complex structure.
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A IMPLEMENTATION DETAILS

In this section, we provide additional details for our implementation of the experiments.

Normalization of feature and reward. The iteration-index of MDP used for input of the policy and
value networks was normalized by the maximum number of iterations. Furthermore both the MIS
objective and the solution diversification rewards were normalized by maximum number of vertices
in the corresponding dataset.

Hardware. Computations for our method and S2V-DQN were done on a NVIDIA RTX 2080Ti GPU
and a NVIDIA TITAN X Pascal GPU, respectively. Experiments for ES, CPLEX and ReduMIS were
run in AWS EC2 c5 instances with Intel Xeon Platinum 8124M CPU. We additionally let the CPLEX
use 16 CPU cores as it allows multi-processing.

Hyperparameter. Every hyperparameter was optimized on a per graph type basis and used across
all sizes within each graph type. Throughout every experiment, policy and value networks were
parameterized by graph convolutional network with 4 layers and 128 hidden dimensions. Every
instance of the model was trained for 20000 updates of proximal policy optimization (Schulman et al.,
2017), based on the Adam optimizer with learning rate of 0.0001. Validation dataset was used for
choosing the best performing model while using 10 samples for evaluating the performance. Reward
was not decayed throughout the episodes of the Markov decision process. Gradient norms were
clipped by the value of 0.5. We further provide details specific to each type of datasets in Table 5.

Table 5: Choice of hyperparameters for the experiments on performance evaluation. The REDDIT
column indicates hyperparameters used for the REDDIT (BINARY, MULTI-5K, MULTI-12K)
datasets.

Parameters ER BA SATLIB PPI REDDIT as-Caida

Maximum iterations per episode 32 32 128 128 64 128

Number of unrolling iteration 32 32 128 128 64 128

Number of environments (graph instances) 32 32 32 10 64 1

Batch size for gradient step 16 16 8 8 16 8

Number of gradient steps per update 4 4 8 8 16 8

Solution diversity reward coefficient 0.1 0.1 0.01 0.1 0.1 0.1

Maximum entropy coefficient 0.1 0.1 0.01 0.001 0.0 0.1

Baselines. We implemented the S2V-DQN algorithm based on the code (written in C++) provided
by the authors.3 Note that the provided code solves the minimum vertex cover (MVC) problem,
which is equivalent to solving the MIS problem. Specifically, complement of every vertex cover is an
independent set. Then complement of minimum vertex cover is a maximum independent set, which
implies two problems are equivalent. For ER and BA models, S2V-DQN was unstable to be trained on
graphs of size from (100, 200) and (400, 500) without pre-training. Instead we performed fine-tuning
as mentioned in the original paper (Khalil et al., 2017). First, for the ER-(100, 200) and BA-(100, 200)
datasets, we fine-tuned the model trained on ER-(50, 100) and BA-(50, 100), respectively. Next, for
the ER-(400, 500) and BA-(400, 500) datasets, we performed “curriculum learning”, e.g., a model
was first trained on the ER-(50, 100) dataset, then fine-tuned on the ER-(100, 200), ER-(200, 300),
ER-(300, 400) and ER-(400, 500) in sequence. Finally, for training S2V-DQN on large graphs used
in Table 2, we were unable to train on the raw graph under available computational budget. Hence we
trained S2V-DQN on subgraphs sampled from the training graphs. To this end, we sampled edges
from the model uniformly at random without replacment, until the number of vertices reach 300. Then
we used the subgraph induced from the sampled vertices. For other algorithms, we run ES algorithm
and ReduMIS based on NetworkX package4 and code provided by the authors,5 respectively.

3https://github.com/Hanjun-Dai/graph_comb_opt
4https://networkx.github.io/
5http://algo2.iti.kit.edu/kamis/
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Table 6: Number of nodes, edges and graphs for each dataset used in the Table 2. Number of graphs
indicates the number of training, validation and test graphs, respectively.

Dataset Number of nodes Number of edges Number of graphs

SATLIB (1209, 1347) (4696, 6065) (38 000, 1000, 1000)

PPI (591, 3480) (3854, 53 377) (20, 2, 2)

REDDIT (BINARY) (6, 3782) (4, 4071) (1600, 200)

REDDIT (MULTI-5K) (22, 3648) (21, 4783) (4001, 499, 499)

REDDIT (MULTI-12K) (2, 3782) (1, 5171) (9545, 1192, 1192)

as-Caida (8020, 26 475) (36 406, 106 762) (108, 12, 12)

Table 7: Number of nodes and edges for each dataset used in the Table 4.

Dataset Number of nodes Number of edges

Citeseer 3327 3668

Cora 2708 5069

Pubmed 19 717 44 324

Coauthor CS 18 333 81 894

Coauthor Physics 34 493 247 962

Amazon Computers 13 381 245 778

Amazon Photo 7487 119 043

web-Stanford 281 903 2 312 497

web-NotreDame 325 729 1 497 134

web-BerkStan 685 230 7 600 595

soc-Pokec 1 632 803 30 622 564

wiki-topcats 1 791 489 28 511 807

BA-1M 1 000 000 3 999 984

BA-2M 2 000 000 7 999 984

B DATASET DETAILS

In this section, we provide additional details on the datasets used for the experiments.

ER and BA datasets. For the ER and BA datasets, we train on graphs randomly generated on the fly,
and perform validation and evaluation on a fixed set of 1000 graphs.

SATLIB dataset. The SATLIB dataset is a popular benchmark for evaluating SAT algorithms. We
specifically use the synthetic problem instances from the category of random 3-SAT instances with
controlled backbone size (Singer et al., 2000). Next, we describe the procedure for reducing the SAT
instances to MIS instances. To this end, a vertex is added to the graph for each literal of the SAT
instance. Then edges are added for each pair of vertices satisfying the following conditions: (a) that
are in the same clause or (b) they correspond to the same literals with different signs. Consequently,
the MIS in the resulting graph correspond to the truth assignment to the optimal assignments of the
SAT problem (Dasgupta et al., 2008).

PPI dataset. The PPI dataset is the protein-protein-interaction dataset with vertices representing
proteins and edges representing interactions between them.
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REDDIT datasets. The REDDIT (BINARY, MULTI-5K, MULTI-12K) datasets are constructed
from online discussion threads in reddit6 where vertices represent to users and edge exists between
two vertices if at one of them responded to anothers comment.

Autonomous system dataset. The as-Caida dataset is set of autonomous system graphs derived from
a set of RouteViews BGP table snapshots (Leskovec et al., 2005).

Citation dataset. The Cora and the Citeseer are networks constructed by vertices and edges repre-
senting documentation and citation links between them, respectively (Sen et al., 2008).

Amazon dataset. The Computers the Photo graphs are segmented from the Amazon co-purchase
graph (McAuley et al., 2015), where vertices corresponds to goods and edges between pair of vertices
if they are frequently purchased together.

Coauthor dataset. The CS and Physics graphs represents authors and the corresponding co-
authorships by vertices and edges, respectively. It was collected from Microsoft Academic Graph
from the KDD Cup 2016 challenge3 .7

Web network datasets. The web-NotreDame, web-Stanford and web-BerkStan are graphs with
vertices represent web-pages obtained from the University of Notre Dame, Stanford University and
Berkeley & Stanford University domains, respectively (Leskovec & Sosič, 2016). Edge is added for
each pair of web-pages with links between them.

Social network dataset. The soc-Pokec is a graph representing friendships between users from a
social network in Slovakia (Takac & Zabovsky, 2012).

Wikipedia network dataset. The wiki-topcats graph is constructed by collecting connected pages
which belong to top categories containing at least 100 pages, starting from the most connected
component of Wikipedia (Klymko et al., 2014).

We further provide the statistics of the dataset used in experiments corresponding to Table 2 and 4 in
Table 6 and 7, respectively.
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