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ABSTRACT

We propose a meta-learning approach that learns from multiple tasks in a transduc-
tive setting, by leveraging unlabeled information in the query set to learn a more
powerful meta-model. To develop our framework we revisit the empirical Bayes
formulation for multi-task learning. The evidence lower bound of the marginal
log-likelihood of empirical Bayes decomposes as a sum of local KL divergences
between the variational posterior and the true posterior of each task. We derive a
novel amortized variational inference that couples all the variational posteriors into
a meta-model, which consists of a synthetic gradient network and an initialization
network. The combination of local KL divergences and synthetic gradient network
allows for backpropagating information from unlabeled data, thereby enabling
transduction. Our results on the Mini-ImageNet and CIFAR-FS benchmarks for
episodic few-shot classification significantly outperform previous state-of-the-art
methods.

1 INTRODUCTION

While supervised learning of deep neural networks can achieve or even surpass human-level per-
formance (He et al., 2015; Devlin et al., 2018), they can hardly extrapolate the learned knowledge
beyond the domain where the supervision is provided. The problem of solving rapidly a new task
after learning several other similar tasks is called meta-learning (Schmidhuber, 1987; Bengio et al.,
1991; Thrun & Pratt, 1998); typically, the data is presented in a two-level hierarchy such that each
data point at the higher level is itself a dataset associated with a task, and the goal is to learn a
meta-model that generalizes across tasks. In this paper, we focus on few-shot learning (Vinyals
et al., 2016), an instance of meta-learning problems, where a task t, in meta-testing, consists of an
unlabeled set xt := {xt,i}ni=1 and a labeled set (aka support set) dlt := {(xlt,i, ylt,i)}n

l

i=1, and the goal
is to predict the corresponding labels, namely yt = {yt,i}ni=1, for the unlabeled set. In meta-training,
yt is provided as ground truth. The set dt := (xt, yt) is sometimes referred to as query set.

A particular important distinction to make is whether each task is solved in a transductive or inductive
manner. The inductive setting is what was originally proposed by Vinyals et al. (2016): we use dlt to
train a model and test it on xt (one example at a time). Transduction, however, has the advantage of
being able to see all points in xt before making predictions. We argue that the transductive setting is
more relevant to the problem since, as in semi-supervised learning, an inductive learner can always
be built from a transductive one (Chapelle et al., 2006). In fact, Nichol et al. (2018) notice that most
of the existing meta-learning methods follow the transductive setting unintentionally since they use
xt implicitly via the batch normalization (Ioffe & Szegedy, 2015).

Due to the hierarchical structure of the data, it is natural to formulate meta-learning as an instance
of hierarchical Bayes (HB) (Good, 1980; Berger, 1985), or alternatively, empirical Bayes (EB)
(Robbins, 1985; Kucukelbir & Blei, 2014). The difference is that the latter restricts the learning
of meta-parameters to point estimates. In this paper, we focus on the EB model, since it largely
simplifies the training and testing without losing the strength of the HB formulation.

The idea of using HB or EB for meta-learning is not new: Amit & Meir (2018) derive an objective
similar to that of HB using PAC-Bayesian analysis; Grant et al. (2018) show that MAML (Finn et al.,
2017) can be understood as a EB method; Ravi & Beatson (2018) consider a HB extension to MAML
and compute posteriors via amortized variational inference. However, unlike our proposal, these
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(a) Graphical model of EB (b) MAML (c) Our method (SIB)

Figure 1: (a) The generative and inference processes of the empirical Bayes model are depicted in
solid and dashed arrows respectively, where the meta-parameters are denoted by dashed circles due
to the point estimates. A comparison between MAML (7) and our method (SIB) (9) is shown in (b)
and (c). MAML is an inductive method since, for a task t, it first constructs a variational posterior
qθKt as a function of the labeled set dlt, and then test on the unlabeled set xt; while SIB constructs a
better variational posterior as a function of both dlt and xt: it starts from an initialization θ0t (d

l
t), and

then yields θKt by running K synthetic gradient steps on xt.

methods do not take advantage of the unlabeled set. Roughly speaking, they construct the variational
posterior as a function of the labeled set dlt without taking advantage of the unlabeled set xt. The
situation is similar in gradient based meta-learning methods (Finn et al., 2017; Ravi & Larochelle,
2016; Li et al., 2017; Nichol et al., 2018; Flennerhag et al., 2019) and many other meta-learning
methods (Vinyals et al., 2016; Snell et al., 2017; Gidaris & Komodakis, 2018), where the mechanisms
used to generate the task-specific parameters rely on groundtruth labels, thus, there is no place for the
unlabeled set to contribute. We argue that this is a suboptimal choice, which may lead to overfitting
when the labeled set is small and hinder the possibility of zero-shot learning (when the labeled set is
not provided). An exception is Liu et al. (2018). They reuse the label propagation algorithm (Zhu
et al., 2003) for transductive inference within each task and show that transduction is useful for
boosting the performance.

In this paper, we propose to use synthetic gradient (Jaderberg et al., 2017) to enable transductivity,
such that the variational posterior is implemented as a function of the labeled set dlt and the unlabeled
set xt. The synthetic gradient is produced by a neural network and learned to be a surrogate of the
true gradient. The optimization process is similar to the inner gradient descent in MAML, but it
iterates on the unlabeled set xt rather than on labeled set dlt, since it does not rely on yt to compute
the true gradient. The labeled set for an unseen task is now optional, which is only used to generate
the initialization in our case. In summary, our main contributions are the following:

1. In section 2 and section 3, we develop a novel empirical Bayes formulation with transduction
for meta-learning. To perform amortized variational inference, we propose a parameteriza-
tion for the variational posterior based on synthetic gradient descent, which incoporates the
contextual information from all the inputs of the query set.

2. In section 4, we show in theory that a transductive variational posterior yields better general-
ization performance. Besides, we show that the proposed empirical Bayes formulation is
equivalent to the information bottleneck principle considered by Achille & Soatto (2017).
We thus call our method synthetic information bottleneck (SIB).

3. In section 6, we verify our proposal empirically. Our experimental results demonstrate that
our method significantly outperforms the state-of-the-art meta-learning methods on standard
few-shot classification benchmarks.

2 META-LEARNING WITH TRANSDUCTIVE INFERENCE

The goal of meta-learning is to train a meta-model on a collection of tasks, such that it works well on
another disjoint collection of tasks. Suppose that we are given a collection of N tasks for training.
The associated data is denoted by D := {dt = (xt, yt)}Nt=1. In the case of few-shot learning, we
are given in addition a support set dlt for each task. In this section, we revisit the classical empirical
Bayes model for meta-learning. Then, we propose to use a transductive scheme in the variational
inference by constructing the variational posterior as a function of xt.
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2.1 EMPIRICAL BAYES MODEL

Due to the hierarchical structure among data, it is natural to consider a hierarchical Bayes model for
the marginal likelihood

pf (D) =
∫
ψ

p(D|ψ)p(ψ) =
∫
ψ

[ N∏
t=1

∫
wt

pf (dt|wt)p(wt|ψ)
]
p(ψ). (1)

The generative process is illustrated in Figure 1 (left, in solid arrows): first, a meta-parameter ψ is
sampled from the hyper-prior p(ψ); then, for each task, a task-specific parameter wt is sampled from
the prior p(wt|ψ); finally, the dataset is drawn from the likelihood p(dt|wt)1. In particular, since
different tasks may require different losses, we assume the log-likelihood takes a general form:

log pf (dt|wt) = −
1

n

n∑
i=1

`t
(
ŷt,i(f(xt,i), wt), yt,i

)
, (2)

where `t denotes the task-specific loss, e.g., the cross entropy loss. The first argument in `t is the
prediction, denoted by ŷt,i, for the i-th example, which takes as input the feature representation
f(xt,i) and the task-specific weight wt.

Rather than following a fully Bayesian approach, we leave some random variables to be estimated by
a frequentist approach, e.g., f is a part of the likelihood model for which we use a point estimate. As
such, the posterior inference about these variables will be largely simplified. For the same reason,
we derive the empirical Bayes (Robbins, 1985; Kucukelbir & Blei, 2014), which interprets ψ in a
frequentist way:

pψ,f (D) =
N∏
t=1

pψ(dt) =

N∏
t=1

∫
wt

pf (dt|wt)pψ(wt). (3)

The overall model formulation is the same as the ones considered by Amit & Meir (2018); Grant
et al. (2018); Ravi & Beatson (2018).

2.2 AMORTIZED INFERENCE WITH TRANSDUCTION

Focusing on the empirical Bayes model (3), we derive an evidence lower bound (ELBO) on the
log-likelihood by introducing a variational distribution qθt(wt) for each task with parameter θt:

log pψ,f (D) ≥
N∑
t=1

[
Ewt∼qθt

[
log pf (dt|wt)

]
−DKL

(
qθt(wt)‖pψ(wt)

)]
. (4)

Maximizing the ELBO in (4) with respect to θ1, . . . , θN and ψ is equivalent to

min
ψ

min
θ1,...,θN

1

N

N∑
t=1

DKL

(
qθt(wt) ‖ pf (dt|wt)pψ(wt)

)
, (5)

However, the optimization in (5), as N increases, becomes more and more expensive in terms of the
memory footprint and the computational cost. We therefore wish to bypass this heavy optimization
and to take advantage of the fact that individual KL terms indeed share the same structure. To this end,
instead of introducing N different variational distributions, we consider a commonly parameterized
family of distributions, which is defined implicitly by a deep neural network φ taking as input xt.
Note that we do not include yt as an input because it is not available during meta-testing.

Replacing each qθt by qφ(xt), (5) can be written as

min
ψ

min
φ

1

N

N∑
t=1

DKL

(
qφ(xt)(wt) ‖ pf (dt|wt)pψ(wt)

)
, (6)

which is also known as amortized variational inference in the literature (Kingma & Welling, 2013;
Rezende et al., 2014). Note that this inference scheme is transductive since for testing each point

1 Note that log pf (dt|wt) =
∑n
i=1 log pf (yt,i|xt,i, wt) + constant for a supervised setting.
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Algorithm 1 Variational inference with synthetic gradients for empirical Bayes

1: Input: the dataset D; the step size η; the number of inner iterations K; pretrained f .
2: Initialize the meta-models ψ, and φ = (λ, ξ).
3: while not converged do
4: Sample a task t and the associated dataset dt (plus optionally the support set dlt).
5: Compute the initialization θ0t = λ or θ0t = λ(dlt).
6: for k = 1, . . . ,K do
7: Compute θkt via (9).
8: end for
9: Compute wt = wt(θ

K
t , ε) with ε ∼ p(ε).

10: Update ψ ← ψ − η∇ψDKL(qθKt (ψ)‖pψ).
11: Update φ← φ− η∇φDKL(qφ(xt)‖pf · pψ).
12: Optionally, update f ← f + η∇f log pf (dt|wt).
13: end while

in xt we will use the entire xt due to the variational posterior qφ(xt). Alternatively, we can derive
an inductive inference scheme by using the support set dlt to construct a variational posterior qφ(dlt),
since dlt and xt are disjoint. As an example, MAML (Finn et al., 2017) is an inductive method, where
φ(dlt) is realized as θKt , the K-th iterate of the stochastic gradient descent

θk+1
t = θkt + η∇θEwt∼qθkt

[
log p(dlt|wt)

]
with θ0t = φ. (7)

In fact, nothing prevents us to come up with an even better variational posterior qφ(xt,dlt), shown in
dashed arrows in Figure 1 (a), which is again transductive by definition.

In a nutshell, the meta-model includes f, ψ from empirical Bayes and the amortization φ for inference.
To obtain a closed-form KL term in (6), we restrict ourselves to Gaussian models2, such that both
qφ(xt) and pψ are Gaussian distributions with diagonal covariance.

3 VARIATIONAL INFERENCE WITH SYNTHETIC GRADIENTS

It is however non-trivial to design a network architecture to implement the amortization φ(xt) directly
since xt is itself a dataset. The strategy adopted by neural processes (Garnelo et al., 2018) is to
aggregate the information from all individual examples via a permutation invariant function. However,
as pointed out by Kim et al. (2019), such a strategy tends to underfit xt because the aggregation
does not necessarily attain the most relevant information for identifying the task-specific parameter.
We instead design a neural network φ(xt) to parameterize the optimization process of θt. More
specifically, consider a stochastic gradient descent on θt for optimizing (5) with step size η:

θk+1
t = θkt − η∇θtDKL

(
qθkt (w) ‖ pf (dt|w) · pψ(w)

)
. (8)

We would like to parameterize this optimization dynamics up to the K-th step via φ(xt), such that
qθKt is a good approximation of the optimum qθ?t . It consists of parameterizing

(a) the initialization θ0t and (b) the gradient∇θtDKL(qθt ‖ pf · pψ).

By doing so, θKt becomes a function of φ, ψ and xt3, we therefore realize qφ(xt) as qθKt .

For (a), we opt to either let θ0t = λ to be a global data-independent initialization as in MAML
(Finn et al., 2017) or let θ0t = λ(dlt) with a few supervisions from the support set, where λ can be
implemented by a permutation invariant network described in Gidaris & Komodakis (2018). In the
second case, the features of the support set will be first averaged in terms of their labels and then
scaled by a learned vector of the same size.

2 It is possible to consider more powerful parameterization. For example, implementing the prior pψ(wt) by
PixelCNN (Van den Oord et al., 2016) with lossy compression similar to that of VQ-VAE2 (Razavi et al., 2019).
We leave that for future work.

3 θKt is also dependent of f . We deliberately remove this dependency to simplify the update of f .
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For (b), the fundamental reason that we parameterize the gradient is because we do not have access
to yt during the meta-testing phase. Note that we are able to follow (8) in meta-training to obtain
qθ?t (wt) ∝ pf (dt|wt)pψ(wt). To make a consistent parameterization in both meta-training and
meta-testing, we thus discard yt when constructing the variational posterior. Regarding the true
gradient, a key observation is that, under a reparameterization wt = wt(θt, ε) with ε ∼ p(ε),

∇θtDKL

(
qθt‖pf · pψ

)
= Eε

[ 1
n

n∑
i=1

∂`t(ŷt,i, yt,i)

∂ŷt,i

∂ŷt,i
∂wt

∂wt(θt, ε)

∂θt

]
+∇θtDKL

(
qθt‖pψ

)
,

where all the terms can be computed without yt except for ∂`t
∂ŷt,i

, thus, we introduce a deep neural
network ξ(ŷt,i) to synthesize it. The idea of synthetic gradients was originally proposed by Jaderberg
et al. (2017) to parallelize the back-propagation. Here, the purpose of ξ(ŷt,i) is to update θt regardless
of the groundtruth labels, which is slightly different from its original purpose. Besides, we do not
introduce an additional loss to force ξ(ŷt,i) to approximate ∂`t

∂ŷt,i
since ξ(ŷt,i) will be learned to yield

a reasonable θKt even without mimicking the true gradient.

To sum up, we have derived a particular implementation of φ(xt) by parameterizing the ideal mean-
field update, namely (8), on the query set dt, such that the meta-model φ includes an initialization
network λ and a synthetic gradient network ξ. Specifically, we have φ(xt) = θKt , the K-th iterate of
the following update:

θk+1
t = θkt − η

[
Eε
[ 1
n

n∑
i=1

ξ(ŷt,i)
∂ŷt,i
∂wt

∂wt(θ
k
t , ε)

∂θt

]
+∇θtDKL

(
qθkt ‖pψ

)]
. (9)

The overall algorithm is depicted in Algorithm 1. A comparison with MAML is shown in Figure 1.
Rather than viewing (9) as an optimization process, it may be more precise to think of it as a
part of the computation graph created in the forward-propagation. As an extension, if we were
deciding to estimate the feature network f in a Bayesian manner, we would have to compute the
gradient of gradient wrt f in the case of MAML. This is super costly from a computational point of
view and needs technical simplifications (Nichol et al., 2018). By introducing a series of synthetic
gradient networks in a way similar to Jaderberg et al. (2017), the computation will be decoupled into
computations within each layer, and thus becomes more feasible.

4 THEORETICAL ANALYSIS

In this section, we study the generalization ability of the empirical Bayes model.

Empirical Bayes induces a simpler graphical model compared to hierarchical Bayes due to the
conditional independence: wt ⊥⊥ D \ dt | dt (see Appendix A for a full discussion). In this case,
rather than viewing w1, . . . , wN as N different random variables, we may view {(wt, dt)}Nt=1 as
iid samples drawn from q(w, d) = q(d)q(w|d), where q(d) is the underlying data distribution and
q(w|d) = qφ(d)(w), the ideal variational posterior. The data distribution q(d) is in fact a marginal
distribution computed by q(d) =

∫
t
q(t)q(d|t), where t is the random variable representing the task.

To simplify the analysis, we do not distinguish samples (i.e. d) drawn from different tasks. We
may call q(w|d) pseudo posterior since as the family induced by φ becomes larger it would have to
approximate the true posterior. Correspondingly, we have q(d|w) = q(w|d)q(d)

q(w) , the pseudo likelihood,
where q(w) = Eq(d)q(w|d) is sometimes referred to as aggregated posterior (Makhzani et al., 2015;
Tomczak & Welling, 2017).

Before going into details, we first introduce a few notations: the entropy is defined as Hp(x) :=
Ep(x)[− log p(x)]; the mutual information is given by Ip(x; y) := DKL

(
p(x, y)‖p(x)p(y)

)
; the cross

entropy is defined as Hp,q(x) := Ep(x)[− log q(x)].

To quantify the generalization ability of the meta-model is equivalent to quantify the generalization
of the resulting pseudo posterior. To this end, we first identify the empirical risk for a single task as
L(w, d) := 1

n

∑n
i=1 `t(ŷi(f(xi), w), yi). Then, the average empirical risk is the expectation over all

possible samples and weights, which depends on the pseudo posterior and the data distribution:

R̂(q(w|d), q(d)) := Ed∼q(d)Ew∼q(w|d)L(w, d) (10)
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The true risk should be independent of any particular pseudo posterior, where we sample the task-
specific weight from the aggregated posterior:

R(q(w), q(d)) := Ew∼q(w)Et∼q(t)E(xt,i,yt,i)`t(ŷt,i(f(xt,i), w), yt,i)

= Ew∼q(w)Et∼q(t)Ed∼q(d|t)
1

n

n∑
t=1

`t(ŷi(f(xi), w), yi)

= Ew∼q(w)Ed∼q(d)L(w, d). (11)

Finally, the generalization error is defined as

gen(q(w|d), q(d)) := R(q(w), q(d))− R̂(q(w|d), q(d)). (12)

Intuitively, the generalization error measures how much the empirical risk concentrated on the true
risk is. That is, we would like to bound the tail of the distribution over all possible values of the
empirical risk. By taking an expectation of the objective in (6) with respect to the choice of D, we
have ED[ 1N

∑N
t=1DKL(q(wt|dt)‖p(dt|wt)p(wt))] = Ed∼q(d)DKL(q(w|d)‖p(d|w)p(w)). We show

in Proposition 1 that the quantity on the right hand side directly affects the generalization performance.

Theorem 1. Given distributions q(w|d), q(d), p(w) and p(d|w), if `t(ŷ(w), y) is σ-subgaussian for
all w, the following inequalities hold:

Ed∼q(d)DKL

(
q(w|d)‖p(d|w)p(w)

)
≥ Iq(w; d) +Hq,p(d|w) (13)

≥ n

2σ2
gen(q(w|d), q(d))2 + R̂(q(w|d), q(d));

Ed∼q(d)DKL

(
q(w|d)‖p(w|d)

)
≤ DKL

(
q(w, d)‖p(w, d)

)
. (14)

The equality in (13) holds if q(w) = p(w). The equality in (14) holds if q(d) = p(d).

The proof of Theorem 1 can be found in Appendix B. The inequality (13) basically says that (6)
can be seen a regularized empirical risk minimization in which the regularization term is an upper
bound of the mutual information between the weight and the sample. In general, there is a tradeoff
between the generalization error and the empirical risk controlled by the coefficient n

2σ2 . If n is small,
then we are in the overfitting regime. This is the case of many existing gradient-based meta-learning
methods, where they basically implement the pseudo posterior q(w|d) by qφ(dl)(w). Recall that dl is
the support set which is fairly small by the definition of few-shot learning. Consequently, we expect
these methods to have large generalization errors in light of the above analysis. On the other hand, if
we were following the transductive setting, the sample size n would be larger since we implement the
pseudo posterior as qφ(x)(w) or qφ(x,dl)(w).

An obvious message from the inequality (14) is that, if we choose appropriate likelihood, prior and
pseudo posterior such that p(w, d) is aligned with q(w, d), the empirical Bayes model can actually be
pretty good, that is, both the generalization error and the empirical risk are close to zero. If we look at
the message more carefully, it also implies that a good likelihood is the key to represent the data well;
the inference model is less important as long as the aggregated posterior coincides with the prior.

Besides, (13) reveals a connection between empirical Bayes and information bottleneck (Tishby et al.,
2000; Achille & Soatto, 2017). The right hand side of (13) is exactly the IB objective considered by
Achille & Soatto (2017) with a coefficient equal to 1. We find this connection interesting, thus, we
call our method synthetic information bottleneck (SIB).

5 EXPERIMENTS: ZERO-SHOT REGRESSION ON SPINNING LINES

To verify the proposed algorithm, we first look at a toy multi-task problem, where we have the full
control of the data generation. It is called zero-shot since there is no labeled set or support set attached
for each task during meta-testing.

Denote by Dtrain := {dt}Nt=1 the train set, which consists of datasets of size n: d = {(xi, yi)}ni=1.
We construct a dataset d by firstly sampling iid Gaussian random variables as inputs: xi ∼ N (µ, σ2).
Then, we generate the weight for each dataset by calculating the mean of the inputs and shifting
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with a Gaussian random variable εw: w = 1
n

∑
i xi + εw, εw ∼ N (µw, σ

2
w). The output for xi is

yi = w · xi. We decide ahead of time the hyperparameters µ, σ, µw, σw for generating xi and yi.

Recall that a weighted sum of iid Gaussian random variables is still a Gaussian random variable.
Specifically, if w =

∑
i cixi and xi ∼ N (µi, σ

2
i ), then w ∼ N (

∑
i ciµi,

∑
i c

2
iσ

2
i ). Therefore, we

have p(w) = N (µ+µw,
1
nσ

2+σ2
w). On the other hand, if we are given a dataset d of size n, the only

uncertainty about w comes from εw, that is, we should consider xi as a constant given d. Therefore,
the posterior p(w|d) = N ( 1n

∑n
i=1 xi + µw, σ

2
w).

Although the data generation is relatively simple, the problem is difficult from a regression point
of view. Note that, for each x, there are potentially multiple corresponding y’s. In other words,
we are solving a one-to-many mapping, which is not a function by definition. We use a simple
implementation of SIB to solve this problem. For a task t, the loss `t is the mean squared error, and
the variational posterior is realized by

qθKt (w) = N (w; θKt , σw), θ
k+1
t = θkt − 10−3

n∑
i=1

xiξ(θ
k
t xi), and θ0t = λ. (15)

The synthetic gradient network ξ(y) is implemented by a three-layer MLP with hidden size 8. In
addition, we let pψ(w) to be a Gaussian. Thus, we have three sets of parameters in total: (λ, ξ, ψ). As
a comparsion, we implement a Bayesian neural network (BNN) (Blundell et al., 2015) with diagonal
Gaussian variational posterior as the baseline, which has exactly twice the number of weights as ξ
(since it has the mean and the standard deviation).

In the experiment, we sample 240 tasks respectively for both Dtrain and Dtest. We learn SIB and BNN
on Dtrain for 150 epochs using the ADAM optimizer (Kingma & Ba, 2014), with learning rate set
to 10−3 and batch size to 8. Other hyperparameters are set as follows: n = 32,K = 3, µ = 0, σ =
1, µw = 1, σw = 0.1. The results are shown in Figure 2. It is clear that both DKL(qθKt (w)‖p(w|d))
and DKL(pψ(w)‖p(w)) are close to zero indicating the success of the learning. In contrast to SIB,
the MLP baseline tends to predict the mean value for each x. The learned λ = 0.9771 captures the
mean value as well (since initially y = λx), but the dynamics in equation (15) are able to adaptively
refine the weights, overall learned in an end-to-end fashion. It is interesting to see how θkt evolves
gradually towards the ground truth by varying K (Figure 2 middle).
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Figure 2: Left: the mean-square errors on Dtest, DKL(qθKt (w)‖p(w|d)), DKL(pψ(w)‖p(w)) and
the estimate of I(w; d) ≈ EdDKL(qθKt (w)‖pψ(w)). Middle: the predicted y’s by y = θKt x for
K = 0, . . . , 4, which shows how SIB refines θ0t to be closer to the Ground Truth (GT). Right: the
comparsion between the predicted y’s made by SIB and by the baseline respectively.

6 EXPERIMENTS: FEW-SHOT CLASSIFICATION

In this section, we present our experimental results on MiniImageNet (Vinyals et al., 2016) and
CIFAR-FS (Bertinetto et al., 2018)
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6.1 SETUP

Datasets We conduct experiments for few-shot classification on two datasets. Each dataset is
composed of disjoint training, validation and testing categories. MiniImageNet is proposed by
Vinyals et al. (2016), which contains 100 categories, splitted into 64 training classes, 16 validation
classes and 20 testing classes, where each category consists of 600 image-label pairs and each image
is of size 84×84. CIFAR-FS is proposed by Bertinetto et al. (2018), which is created by dividing the
original CIFAR-100 into 64 training classes, 16 validation classes and 20 testing classes; each image
is of size 32×32.

Network architectures Following Gidaris & Komodakis (2018); Qiao et al. (2018); Gidaris et al.
(2019), we implement f by a 4-layer convolutional network (Conv-4-64 or Conv-4-1284) or a
WideResNet (WRN-28-10) (Zagoruyko & Komodakis, 2016). We pretrain the feature network f(·)
on the 64 training categories for a stardard 64-way classification. We reuse the feature averaging
network proposed by Gidaris & Komodakis (2018) as our initialization network λ(·), which basically
averages the feature vectors of all data points from the same category and then scale each feature
dimension differently by a learned coefficient. For the synthetic gradient network ξ(·), we implement
a three-layer MLP with hidden-layer size 8k. Finally, for the predictor ŷij(·, wi), we adopt the
cosine-similarity based classifier advocated by Chen et al. (2019) and Gidaris & Komodakis (2018).

Evaluation metrics In few-shot classification, a task (aka episode) t consists of a query set dt and
a support set dlt. When we say the task t is k-way-nl-shot we mean that dlt is formed by first sampling
k categories from a pool of categories; then, for each sampled category, nl examples are drawn and
a new label taken from {0, . . . , k − 1} is assigned to these examples. By default, each query set
contains 15k examples. The goal of this problem is to predict the labels of the query set, which are
provided as ground truth during training. The evaluation is the average classification accuracy on
the tasks created with testing categories. We sample 2000 testing tasks for both MiniImageNet and
CIFAR-FS.

Training details We use ADAM with batch size 8 for 60 epochs, where the learning rate is 10−3
and we may optionally dropp the learning rate by a factor 0.1 at epoch 3, 10, 25, 50. During training,
we freeze the feature network. To select the best hyper-parameters, for each dataset, we sample 1000
tasks from the validation categories and reuse them at each training epoch. We use these validation
tasks to select the best meta-model and then use it for the final evaluation on the tasks sampled from
testing categories.

6.2 COMPARISON TO STATE-OF-THE-ART META-LEARNING METHODS

In Table 1, we show a comparison between the state-of-the-art approaches and several variants of our
method (varying K or f(·)). First of all, comparing SIB (K = 3) to SIB (K = 0), we observe a clear
improvement, which suggests that, by taking a few synthetic gradient steps, we do obtain a better
variational posterior as promised.

For 1-shot learning, SIB (when K = 3 or K = 5) significantly outperforms previous methods on
both MiniImageNet and CIFAR-FS. For 5-shot learning, the results are are also comparable. It should
be noted that the performance boost is consistently observed with different feature networks, which
suggests that SIB is a general method for few-shot learning.

However, we also observe a potential limitation of SIB: when the support set is relatively large, e.g.,
5-shot, with a good feature network like WRN-28-10, the initialization θ0t can already be close to
a local minima, then if we have relatively large learning rate for the synthetic gradient descent, the
result of θKt may yield no improvement over that of θ0t .

4 Conv-4-64 consists of 4 convolutional blocks each implemented with a 3×3 convolutional layer followed by
BatchNorm + ReLU + 2× 2 max-pooling units. All blocks of Conv-4-64 have 64 feature channels. Conv-4-128
has 64 feature channels in the first two blocks and 128 feature channels in the last two blocks.
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MiniImageNet, 5-way CIFAR-FS, 5-way
Method Backbone 1-shot 5-shot 1-shot 5-shot

Matching Net (Vinyals et al., 2016) Conv-4-64 44.2% 57% – –
MAML (Finn et al., 2017) Conv-4-64 48.7±1.8% 63.1±0.9% 58.9±1.9% 71.5±1.0%
Prototypical Net (Snell et al., 2017) Conv-4-64 49.4±0.8% 68.2±0.7% 55.5±0.7% 72.0±0.6%
Relation Net (Sung et al., 2018) Conv-4-64 50.4±0.8% 65.3±0.7% 55.0±1.0% 69.3±0.8%
GNN (Satorras & Bruna, 2017) Conv-4-64 50.3% 66.4% 61.9% 75.3%
R2-D2 (Bertinetto et al., 2018) Conv-4-64 49.5±0.2% 65.4±0.2% 62.3±0.2% 77.4±0.2%
TPN (Liu et al., 2018) Conv-4-64 55.5% 69.9% – –
Gidaris et al. (2019) Conv-4-64 54.8±0.4% 71.9±0.3% 63.5±0.3% 79.8±0.2%
SIB K=0 (Pre-trained feature) Conv-4-64 50.0±0.4% 67.0±0.4% 59.2±0.5% 75.4±0.4%
SIB η=1e-3, K=3 Conv-4-64 58.0±0.6% 70.7±0.4% 68.7±0.6% 77.1±0.4%

SIB η=1e-3, K=0 Conv-4-128 53.62 ± 0.79% 71.48 ± 0.64% – –
SIB η=1e-3, K=1 Conv-4-128 58.74 ± 0.89% 74.12 ± 0.63% – –
SIB η=1e-3, K=3 Conv-4-128 62.59 ± 1.02% 75.43 ± 0.67% – –
SIB η=1e-3, K=5 Conv-4-128 63.26 ± 1.07% 75.73 ± 0.71% – –

TADAM (Oreshkin et al., 2018) ResNet-12 58.5±0.3% 76.7±0.3% – –
SNAIL (Santoro et al., 2017) ResNet-12 55.7±1.0% 68.9±0.9% – –
MetaOptNet-RR (Lee et al., 2019) ResNet-12 61.4±0.6% 77.9±0.5% 72.6±0.7% 84.3±0.5%
MetaOptNet-SVM (Lee et al., 2019) ResNet-12 62.6±0.6% 78.6±0.5% 72.0±0.7% 84.2±0.5%
CTM (Li et al., 2019) ResNet-18 64.1±0.8% 80.5±0.1% – –
Qiao et al. (2018) WRN-28-10 59.6±0.4% 73.7±0.2% – –
LEO (Rusu et al., 2019) WRN-28-10 61.8±0.1% 77.6±0.1% – –
Gidaris et al. (2019) WRN-28-10 62.9±0.5% 79.9±0.3% 73.6±0.3% 86.1±0.2%
SIB K=0 (Pre-trained feature) WRN-28-10 60.6±0.4% 77.5±0.3% 70.0±0.5% 83.5±0.4%
SIB η=1e-3, K=1 WRN-28-10 67.3±0.5% 78.2±0.3% 76.8±0.5% 84.9±0.4%
SIB η=1e-3, K=3 WRN-28-10 69.6±0.6 % 78.9±0.4% 78.4±0.6% 85.3±0.4%
SIB η=1e-3, K=5 WRN-28-10 70.0±0.6% 78.9±0.4% 80.0±0.6% 85.3±0.4%

Table 1: Average classification accuracies (with 95% confidence intervals) on the test set of MiniIm-
ageNet and CIFAR-FS. For each dataset, we sample 2000 episodes and evaluate for two different
architectures as the feature extractor: Conv-4-64 and WRN-28-10. We report the results with using
learning rate η = 1e− 3 and different number of updates K as well as the performance only using
the pre-trained feature (i.e, K=0 in the table).

7 CONCLUSION

We have presented an empirical Bayesian framework for meta-learning. To enable an efficient varia-
tional inference, we followed the amortized inference paradigm, and proposed to use a transductive
scheme for constructing the variational posterior. To implement the transductive inference, we
make use of two neural networks: a synthetic gradient network and an initialization network, which
together enables a synthetic gradient descent on the unlabeled data to generate the parameters of
the amortized variational posterior dynamically. We have studied the theoretical properties of the
proposed framework and shown that it yields significant performance boost on MiniImageNet and
CIFAR-FS for few-shot classification.
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APPENDIX

A CONDITIONAL INDEPENDENCE IMPLIED BY EB

In the case of the hierarchical Bayes formulation, note that the posterior over the parameter wt for
a given task, namely, p(wt|dt), is different from its global counterpart, namely, p(wt|D). Indeed,
p(wt|D) is coupled by

p(w1, . . . , wN |D) =
∫
θ

∏N
t=1 p(dt|wt)p(wt|θ)p(θ)

p(D)
. (16)

Hence, the global posterior takes a form of

p(wt|D) =
p(dt|wt)

∫
θ

∏
k 6=i p(wk|θ)p(dk|θ)p(θ)
p(D)

. (17)

On the other hand, the local posterior is given by

p(wt|dt) =
∫
θ
p(dt|wt)p(wt|θ)∫

θ

∫
wt
p(dt|wt)p(wt|θ)

, (18)

which is not equal to p(wt|D) apparently.

On the other hand, in the empirical Bayes approach, learning is only coupled via the estimation of ψ
by the type-II likelihood, because for a fixed choice of ψ, we have

pψ(w1, . . . , wN |D) =
∏N
t=1 p(dt|wt)pψ(wt)∫

w1,...,wN

∏N
t=1 p(dt|wt)pψ(wt)

=

∏N
t=1 p(dt|wt)pψ(wt)∏N

t=1

∫
wt
p(dt|wt)pψ(wt)

=

N∏
t=1

pψ(wt|dt),

(19)

which makes the global and local posteriors coincide with each other:

pψ(wt|D) = pψ(wt|dt) =
p(dt|wt)pψ(wt)∫
wt
p(dt|wt)pψ(wt)

. (20)

B PROOF OF THEOREM 1

Before going into details, we first introduce a few notations, definitions, and a technical lemma.

• The entropy is defined as Hp(x) := Ep(x)[− log p(x)];

• The mutual information is given by Ip(x; y) := DKL
(
p(x, y)‖p(x)p(y)

)
.
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• Very often, we decompose the mutual information as Ip(x; y) = Hp(x) − Hp(x|y) with
Hp(x|y) := Ep(x,y)[− log p(x|y)] the conditional entropy.

• The cross entropy is defined as Hp,q(x) := Ep(x)[− log q(x)]. Similarly, we have the cross
conditional entropy Hp,q(x|y) := Ep(x,y)[− log q(x|y)] and the cross mutual information
Ip,q(x; y) = Hp,q(x)−Hp,q(x|y).

Definition 1. A random variable x is subgaussian if there exists a positive number σ such that
E[exp(λ(x− Ex))] ≤ exp(σ2λ2/2) for all λ ∈ R.
Lemma 1 (Xu & Raginsky (2017)). If g(x, y) is σ-subgaussian, then∣∣Ep(x,y)g(x, y)− Ep(x)p(y)g(x, y)

∣∣ ≤√2σ2Ip(x; y).

Now, we are ready to prove Theorem 1.

Proof. The expected KL divergence can be rewritten as follows:

Eq(d)DKL

(
q(w|d)‖p(w|d)

)
= Eq(d)Eq(w|d)

[
log

q(w|d)p(d)q(w)
p(d|w)p(w)q(w)

]
= Eq(d)Eq(w|d)

[
log

q(w|d)
q(w)

]
+ Eq(d)Eq(w|d)

[
− log p(d|w)

]
+ Eq(w)

[
log

q(w)

p(w)

]
+ Eq(d)Eq(w|d)

[
log p(d)

]
= Iq(w; d) +Hq,p(d|w) +DKL

(
q(w)

∥∥p(w))−Hq,p(d) (21)

= Iq(w; d)− Iq,p(d;w) +DKL
(
q(w)

∥∥p(w))
≥ Iq(w; d)− Iq,p(d;w) = Iq(w; d)− Iq,p(w; d). (22)

Note that Iq,p(d;w) = Iq,p(w; d) and DKL
(
q(w)

∥∥p(w)) = 0 iff q(w) = Eq(d)q(w|d) = p(w).
Similarly, we have

Eq(d)DKL

(
q(w|d)‖p(d|w)p(w)

)
≥ Iq(w; d) +Hq,p(d|w). (23)

by removing the term Hq,p(d).

Let us rewrite (21) as

(21) = Iq(w; d) + Eq(w)DKL
(
q(d|w)‖p(d|w)

)
+Hq(d|w) +DKL

(
q(w)

∥∥p(w))−Hq,p(d)

= Hq(d) +DKLEq(w)

(
q(d|w)‖p(d|w)

)
+DKL

(
q(w)

∥∥p(w))−Hq,p(d)

= −DKL
(
q(d)‖p(d)

)
+ Eq(w)DKL

(
q(d|w)‖p(d|w)

)
+DKL

(
q(w)

∥∥p(w))
≤ Eq(w)DKL

(
q(d|w)‖p(d|w)

)
+DKL

(
q(w)

∥∥p(w)) = DKL

(
q(w, d)‖p(w, d)

)
, (24)

which attains the right hand side of the second inequality.

Recall that L(w, d) := 1
n

∑n
i=1 `t(ŷi(f(xi), w), yi). If `t(ŷi(f(xi), w), yi) is σ-subgaussian for all

w, then L(w, d) is σ/
√
n-subgaussian due to the iid assumption on d. Thus, by Lemma 1, we have∣∣gen(q(w|d), q(d))

∣∣ ≤√2σ2

n
Iq(w; d).

On the other hand, Hq,p(d|w) = R̂(q(w|d), q(d)). Combining both, we have
n

2σ2
gen(q(w|d), q(d))2 + R̂(q(w|d), q(d)) ≤ Iq(w; d) +Hq,p(d|w)

as desired.

Recall that information bottleneck (IB) involves an optimization

min
q(w|d)

Iq(w; d)− β Iq,p(w; d) with β > 0. (25)

Thus, we have established a connection between local empirical Bayes and information bottleneck.
The idea of IB is to view w as a compressed representation of d from a rate-distortion perspective:

13



Under review as a conference paper at ICLR 2020

• Iq(w; d) is known as rate, which is a regularization term discouraging memorization;
• −Iq,p(w; d) = Hq,p(d|w)−Hq,p(d) is naturally a measure of distortion since Hq,p(d|w)

is equal to the expected negative log-likelihood and Hq,p(d) is a constant wrt q(w|d).

Thus, solving (6) amounts to minimizing an upper bound of the IB objective if we generalize the
posterior as follows:

pψ(w|d) =
p(d|w)βpψ(w)∫
w
p(d|w)βpψ(w)

with β > 0. (26)

C IMPORTANCE OF SYNTHETIC GRADIENTS

To further verify the effectiveness of the synthetic gradient descent, we implement an inductive
version of SIB inspired by MAML, where the initialization θ0t is generated exactly the same way as
SIB using λ(dlt), but it then follows the iterations in (7) as in MAML rather than follows the iterations
in (9) as in standard SIB.

We conduct an experiment on CIFAR-FS using Conv-4-64 feature network. The results are shown in
Table 2. It can be seen that there is no improvement over SIB (K = 0) suggesting that the inductive
approach is insufficient.

inductive SIB SIB
Training on 1-shot Training on 1-shot Training on 5-shot

Testing on Testing on Testing on
K η 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

0 - 59.7±0.5% 75.5±0.4% 59.2±0.5% 75.4±0.4% 59.2±0.5% 75.4±0.4%
1 1e-1 59.8±0.5% 71.2±0.4% 65.3±0.6% 75.8±0.4% 64.5±0.6% 77.3±0.4%
3 1e-1 59.6±0.5% 75.9±0.4% 65.0±0.6% 75.0±0.4% 64.0±0.6% 77.0±0.4%
5 1e-1 59.9±0.5% 74.9±0.4% 66.0±0.6% 76.3±0.4% 64.0±0.5% 76.8±0.4%
1 1e-2 59.7±0.5% 75.5±0.4% 67.8±0.6% 74.3±0.4% 63.6±0.6% 77.3±0.4%
3 1e-2 59.5±0.5% 75.8±0.4% 68.6±0.6% 77.4±0.4% 67.8±0.6% 78.5±0.4%
5 1e-2 59.8±0.5% 75.7±0.4% 67.4±0.6% 72.6±0.6% 67.7±0.7% 77.7±0.4%
1 1e-3 59.5±0.5% 75.6±0.4% 66.2±0.6% 75.7±0.4% 64.6±0.6% 78.1±0.4%
3 1e-3 59.9±0.5% 75.9±0.4% 68.7±0.6% 77.1±0.4% 66.8±0.6% 78.4±0.4%
5 1e-3 59.4±0.5% 75.7±0.4% 69.1±0.6% 76.7±0.4% 66.7±0.6% 78.5±0.4%
1 1e-4 58.8±0.5% 75.5±0.4% 59.0±0.5% 75.7±0.4% 59.3±0.5% 75.7±0.4%
3 1e-4 59.4±0.5% 75.9±0.4% 58.9±0.5% 75.6±0.4% 59.3±0.5% 75.9±0.4%
5 1e-4 59.3±0.5% 75.3±0.4% 60.1±0.5% 76.0±0.4% 60.5±0.5% 76.4±0.4%

Table 2: Average 5-way classification accuracies (with 95% confidence intervals) with Conv-4-64 on
the test set of CIFAR-FS. For each test, we sample 2000 episodes containing 5 categories (5-way)
and 15 queries in each category. We report the results with using different learning rate η as well
as different number of updates K. Note that K = 0 is the performance only using the pre-trained
feature.
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