
Under review as a conference paper at ICLR 2019

MULTI-STEP DECENTRALIZED DOMAIN ADAPTATION

Anonymous authors
Paper under double-blind review ABSTRACT

Despite the recent breakthroughs in unsupervised domain adaptation (uDA), no
prior work has studied the challenges of applying these methods in practical ma-
chine learning scenarios. In this paper, we highlight two significant bottlenecks
for uDA, namely excessive centralization and poor support for distributed domain
datasets. Our proposed framework, MDDA, is powered by a novel collaborator
selection algorithm and an effective distributed adversarial training method, and
allows for uDA methods to work in a decentralized and privacy-preserving way.

1 Introduction

In practical machine learning systems, test samples are often drawn from a different data distribu-
tion than the training samples, due to variations in data acquisition processes between the training
and test sets – caused by for example, different illumination conditions and cameras in the con-
text of visual tasks. This shift in data distributions, known as domain shift, is a core reason which
hinders the generalizability of predictive models to new domains. As manual labeling of data in
each test domain is prohibitively expensive, unsupervised domain adaptation (uDA) has emerged
as a promising solution to transfer the knowledge from a labeled source domain to unlabeled target
domains (Long et al. (2015; 2017); Ganin et al. (2016); Tzeng et al. (2017); Hoffman et al. (2018);
Shen et al. (2018); Sankaranarayanan et al. (2018); Hoffman et al. (2018)).

While these methods are indeed effective, little attention has been paid on how they would be in-
corporated in real-world machine learning systems. In this paper, we study and propose solutions
for the practical issues that arise while applying uDA techniques in ML systems, namely the chal-
lenges of distributed domain datasets and the overly centralized nature of existing uDA approaches.
As a motivating example, consider a scenario wherein a model is trained for the task of fetal head
detection from labeled ultrasound images collected in a hospital in Finland (source domain Sfin).
Subsequently, this pre-trained model has to be deployed in four target hospitals - two in the US
(Tusa) and two in China (Tcn1 and Tcn). Due to variations in sonogram machines and medical train-
ing of sonographers, a domain shift is likely to occur in the test samples; hence we need to apply
uDA to adapt the source classifier in the target domains.

Existing uDA methods are centralized by design, in that they assume that each target domain would
always adapt from the labeled source domain (Sfin). This raises two issues: firstly, if the machine
hosting the labeled source dataset is unavailable (e.g., it is undergoing maintenance or has connec-
tivity issues), then clearly adaptation is not possible. More importantly, we argue that this choice of
always adapting from a labeled source is not optimal from an adaptation perspective, because the
domain discrepancy between the labeled source and a potential target domain could be high in some
cases. Our work seeks to explore an interesting proposition: in addition to adapting from the labeled
source, can we also perform uDA with other target domains, which themselves may have undergone
domain adaptation in the past.

Further, existing uDA methods do not support distributed domain datasets and assume that source
and target data are available on the same machine. Clearly, this raises severe privacy and legal
concerns since either the source domain (Sfin) or the target domains (Tusa, Tcn1, Tcn2) will have to
send their sensitive data (i.e., sonograms) to each other in order to perform adaptation. In addition,
such transfer of potentially large datasets also incurs severe communication costs.

This paper makes the following contributions:

• We formulate and study a brand-new problem focusing on the challenges of uDA in practical
machine learning systems.

• We propose a multi-step uDA framework, wherein target domains can adapt not only from the la-
beled source, but also from other target domains. Powering this framework is a novel collaborator

1



Under review as a conference paper at ICLR 2019

selector algorithm that chooses the optimal adaptation collaborator for each target domain, before
initiating the adaptation.

• We propose an effective technique for allowing uDA algorithms and adversarial training to work
across distributed datasets.

• Through extensive experiments on five image and speech datasets, we demonstrate the efficacy of
our proposed solution.

2 Problem Formulation and Related Work

Consider a practical scenario of deploying an unlabeled domain adaptation (uDA) method in a real-
world machine learning system. Assume that a data collection exercise yields a labeled dataset upon
which a model is trained using supervised learning. Thereafter, this model needs to be deployed to
a population of users (or targets) whose data is unlabeled and divergent from the original training
dataset. Mathematically, we are presented with a single source domain S = (Rn, pS(x, y)), with
input data XS and labels YS . There are multiple target domains {T j

∣∣j = 1, . . . ,K}, with target
data Xj

T drawn from target distribution pjT (x, y), but no labeled observations are available. Using
supervised learning, we train a representation mapping, MS , and a classifier, CS for the source
domain. However, for target domain T j , due to the absence of labeled observations, supervised
learning is not possible and hence we would like to do adaptation with the source domain. We
assume that target domains are introduced sequentially, one at a time, into the system.

Under this problem formulation, we highlight two unexplored research challenges:

Collaborator Selection. For each target domain that joins the system, how do we select an optimal
collaborator for domain adaptation that will lead to highest post-adaptation accuracy for the target
domain? Existing uDA methods (e.g., Hoffman et al. (2018); Tzeng et al. (2017); Ganin et al.
(2016) always use the labeled source domain S as the adaptation collaborator for each target domain,
however we argue that it is not optimal to always adapt for the labeled source domain for two
reasons: i) if the domain shift between the target domain and the labeled source is too high, we
may not achieve a good adaptation performance (Wulfmeier et al. (2017)); (ii) from a practical
perspective, it makes the entire system centralized and prone to failure if the device hosting the
source dataset is unavailable for adaptation (e.g., due to connectivity issues). Instead, we propose a
multi-step decentralized domain adaptation approach built upon the idea that a new target domain
can adapt not only from the labeled source domain, but also from other target domains in the system
which have already undergone domain adaptation.

More concretely, we define a collaborator set C as the set of domains that are available to collaborate
with a target domain on an adaptation task. At step τ = τ0, only the source domain is present in
the system, hence C0 = {S}. At step τ = τ1, the first target domain T 1 joins the system – at this
moment, only the source domain S has a learned representationMS . Thereafter, T 1 performs uDA
with the source S and learns a representation MT 1 . Subsequently, we have C1 = {S, T 1}, i.e.,
future target domains now have two candidates with whom they can collaborate to perform domain
adaptation. In general, at step τ = τK , CK = {S} ∪

{
T j
∣∣k = 1, . . . ,K

}
.

In § 3.3, we propose an algorithm to select an optimal collaborator c ∈ CK for each target domain,
that is likely to yield the best accuracy post-adaptation. Once the optimal collaborator is chosen
by our algorithm, any existing uDA method could be employed to perform the pairwise adaptation
between the chosen collaborator and the target domain. Our empirical results in § 4 demonstrate the
effectiveness of this multi-step adaptation approach against a number of existing baselines.

Distributed and Private Data. Existing uDA methods assume that the datasets from the source
domain S and a given target domain T j are available on the same compute unit (e.g., on a server).
However, as we explained earlier, this assumption is violated in real-world settings, as the datasets
are often private, and users or companies may not be allowed to share them with other parties
due to legal reasons such as the data privacy law (GDPR) in Europe. In addition to the privacy
issue, exchanging potentially large datasets incur high communication costs, making it undesirable
in practical settings. This raises the question: can we make domain adaptation methods to work
in a distributed and privacy-preserving manner such that the collaborators in the domain adaptation
process can keep their data private and still receive the benefits of adaptation?

2



Under review as a conference paper at ICLR 2019

These challenges about making uDA algorithms work in a decentralized and distributed way are
closely related, and addressing them is critical for widespread usage of uDA methods in practical
ML systems. In what follows, we first describe (in §3.2) how we address the challenge of data
privacy in uDA using a combination of model parallelism and data parallelism. Our key idea is
to exchange knowledge between the adaptation collaborators only using the Discriminator neural
network, which allows for the raw data and encoded features of each domain to remain private.
Next, in §3.3, we build upon the idea of distributed adaptation to propose an algorithm for selecting
an optimal adaptation collaborator.

2.1 Related Work

Bobu et al. (2018) presented the problem of continuous unsupervised adaptation wherein the target
domain is smoothly varying temporally. They proposed an iterative uDA method with a replay
loss to prevent the model from forgetting knowledge from past domains. Although our solution
of multi-step domain adaptation is also iterative, we do not assume any smooth ordering between
target domains, hence warranting the need for collaboration selection. Zhao et al. (2018) proposed
MDAN where a target domain can adapt from multiple labeled source domains. As there is only
one labeled source domain in our setup, this method cannot be directly applied. However, we can
still combine the adversarial losses from multiple domains as proposed in MDAN - as such, we
implement a variant of MDAN as a baseline for our method. Finally, there has been active research
on distributed training of neural networks (Li et al. (2014); Ho et al. (2013); Konečnỳ et al. (2016)),
however to the best of our knowledge, no methods have been proposed to make adversarial domain
adaptation distributed, which is the focus of our work.

3 Our Approach

3.1 Primer on Adversarial Domain Adaptation

Before describing our approach, we provide a primer on adversarial domain adaptation which is a
widely used approach for uDA and serves as the basic foundation of our solution. The core idea here
is to use adversarial learning to align the feature representations of the source and target domains,
thereby allowing a source classifier to be used in the target domain. In relation to our problem
formulation, firstly, a source extractor ES and a source classifier CS is trained using supervised
learning by solving the optimization problem:

min
ES ,CS

Lcls = −E(xs,ys)∼(XS ,YS)

K∑
k=1

1[k=ys][log(CS(ES(xs))]

The goal of the adaptation process is to learn a target extractor ET using adversarial learning. To
this end, the source extractor ES is used as an initialization for the target extractor ET . The weights
of the source model are fixed during adversarial training. As in standard adversarial learning, two
losses are optimized in the training process, a discriminator loss LadvD

and a mapping loss LadvM
.

Different uDA methods compute these two losses in their own way, e.g., ADDA (Tzeng et al. (2017))
uses the following loss formulations:

min
D
LadvD = −Exs∼XS

[log(D(ES(xs))]− Ext∼XT
[log(1−D(ET (xt))] (1)

min
ET

LadvM = −Ext∼XT
[log(D(ET (xt))] (2)

where D represents a domain discriminator which aims to distinguish source domain data and tar-
get domain data. DANN (Ganin et al. (2016)) uses a gradient reversal technique which results in
LadvM

= −LadvD
, Shen et al. (2018) estimates LadvD

using the Wasserstein Distance.

Our work in general applies to any feature-alignment based uDA technique, which allows for source
and target encoders to be trained independently. We note that there are indeed uDA approaches
which optimize the source classification loss and adversarial loss in the same batch during training,
but they are not compatible with our problem formulation wherein a pre-trained source model is to
be deployed on a set of target domains. Further, uDA approaches based on generative modeling
(Hoffman et al. (2018); Hosseini-Asl et al. (2018)) are also out of scope of our work.

3



Under review as a conference paper at ICLR 2019

Algorithm 1: DISTRIBUTED UDA: Lazy-
Synchronized Distributed Domain Adaptation
Result: ET and CT

1 Input: Pre-trained ES and CS ; Randomly
Initialize DS ; Initialize ET = ES , DT =DS ,
and CT = CS ; Sync up step p; number of
total steps N ;

2 for n = 1, 2, ..., N do
3 Source node and target node sample a

batch of data respectively, ξ(n)s and ξ(n)t ;
4 Calculate gradients ∇g(DS , ξ

(n)
s ) on

source node, gradients∇g(ET , ξ
(n)
t ) and

∇g(DT , ξ
(n)
t ) on target node ;

5 if isTargetNode then
6 Apply∇g(ET , ξ

(n)
t ) to ET

7 end
8 Add ∇g(DS , ξ

(n)
s ) to source gradients

buffer GS , add ∇g(DT , ξ
(n)
t ) to target

gradients buffer GT ;
9 if n%p == 0 then

10 Exchange gradients buffer and
calculate averaged gradients
gavg = GS+GT

2p ;
11 Apply gavg to DS and DT ;
12 Clear GS and GT ;
13 end
14 end

Algorithm 2: COLAB SELECT: Wasserstein-
Distance Guided Collaborator Selection

1 Input: Candidate set C = {(p1, E1, C1), (p2,
E2, C2). . . (pN , EN , CN )}, Target Dataset
pT ;

2 for (pi, Ei, Ci) in C do
3 Wi = compute wasserstein distance(pi,

pT );
4 Compute source error εs using a small

labeled test set.;
5 Compute the Lipschitz Constant K for the

source extractor Ei and classifier Ci. ;
6 εitmax

= εs + 2.K.Wi;
7 end
8 Optimal Collaborator O = argmin

i=1...N
(εitmax

);

9 Return EO and CO;

Algorithm 3: MDDA: Multi-step Decentral-
ized Domain Selection

1 Input: Initial Candidate set C = {(ES , CS)},
Ordering of K target domains T =
T1, T2 . . . TK ;

2 for Ti in T do
3 Obtain the optimal collaborator O ∈ C

using COLAB SELECT;
4 Run DISTRIBUTED DA between O and

Ti to obtain ETi
and CTi

;
5 C← C ∪{(ETi

, CTi
)};

6 end

3.2 Distributed Domain Adaptation

Prior adversarial uDA methods assume that source and target data is available on the same compute
unit to perform adversarial learning. However as discussed in §2, data from different domains is
often distributed and private in realistic applications, and sharing it could be legally prohibited. We
present an approach of training an adversarial domain adaptation network with distributed domain
datasets. In this vein, two key questions are: a) how to distribute the adversarial network archi-
tecture across nodes?, b) how to exchange information between the source and target nodes during
adversarial learning?

We propose to split each constituent neural network in the adversarial training framework across the
source and target nodes. Consequently, the extractor, domain discriminator and task classifier have
source components (ES ,DS ,CS) and target components (ET ,DT ,CT ). Source data and target data
can therefore be fed separately into their own model components to prevent any exchange of raw
data or feature representations across nodes. Given this network architecture, we now present our
training strategy (also summarized in Algorithm 1). The first step is pre-training and initialization.
We assume that the encoder and classifier (ES andCS) of the source domain have been trained either
using supervised learning or through prior domain adaptation, and the source discriminator DS is
initialized randomly. Thereafter, the target domain components, ET , CT and DT , are initialized
with the respective source components.

During the adversarial training, for each step, source and target domains sample a training batch
from their own domain data and calculate stochastic gradients for DS on source domain and for
ET , DT on target domain accordingly. The target extractor ET is independent of the source data,
therefore it is updated for each batch. However, as shown in Eq.1, the discriminator needs to be
trained on data from both the source and target domains, therefore a simple strategy would be to
exchange and average the gradients of the two discriminators after each step, and then update DS

4



Under review as a conference paper at ICLR 2019

andDT with the averaged gradients. While this will ensure that the discriminators are synchronized,
it incurs a significant communication cost for each step. Instead, we propose a simple but effective
method, called Lazy Synchronization, to reduce the communication cost of the algorithm.

The basic idea is to synchronize the source and target discriminators every p training steps. We
refer to the training steps at which the synchronization takes place as the sync-up steps while the
other steps during which both nodes are computing the gradients locally are called local steps. For
discriminators DS and DT , their local gradients are accumulated during local steps and during the
sync-up steps, the accumulated gradients on each node will be averaged and applied to DS and DT .
Through this, we can ensure there is no divergence between the discriminators, and at the same time
we are able to decrease the communication cost to 1/p.

Another way of looking at our approach is that we update the target encoderET after every batch, but
the discriminators are updated after every p batches. In §4.2, we empirically show that our method
can obtain comparable accuracies to centralized training algorithms, while preserving private user
data and minimizing the communication costs in the training process.

3.3 Wasserstein distance guided collaborator selection

We now discuss how to select an optimal adaptation collaborator c ∈ CK for each target domain.
Indeed, we should select a collaborator that is likely to yield the lowest target error post adapta-
tion, but can we choose the optimal collaborator even before performing domain adaptation? In a
seminal theoretical work, Ben-David et al. (2010) showed that the target error is bounded by the
sum of source error and the divergence between source and target distributions. Redko et al. (2017)
and Shen et al. (2018) did a similar analysis using the Wasserstein distance, which, together with
Lipschitz functions, forms the basis for our collaborator selection method.

A function f : X → R is θ-Lipschitz if it satisfies the inequality ‖f(x)−f(y)‖ ≤ θ‖x−y‖ for some
θ ∈ R+. The smallest such θ is called the Lipschitz constant Lip(f) of f . Further, the 1-Wasserstein
distance (Villani (2008)) between two distributions p1 and p2 – using the duality formula – is

W1(p1, p2) = sup
f :Lip(f)≤1

Ep1 [f ]− Ep2 [f ] (3)

Shen et al. (2018) computed the following robustness bound
εp2 (h, h

′) ≤ εp1 (h, h
′) + 2θW1 (p1, p2) (4)

for any two θ-Lipschitz hypotheses h and h′, where we denoted
εp(h, h

′) = Ep [‖h− h′‖] . (5)

Our method is motivated by the observation that the above bound for the error
εp2 (h) = εp2

(
h, htrue

)
, (6)

where htrue is the true hypothesis, is a useful approximation of the error as long as the following
conditions are satisfied for a sufficiently small θ:

• the true hypothesis htrue and the learned hypotheses h = E ◦ C are θ-Lipschitz,
• the push-forward measures E∗p are close together in the Wasserstein distance.

These conditions are motivated by the fact that the domains should be well aligned for unsupervised
domain adaptation to be effective. Using a Lipschitz continuous encoder allows us to perform ad-
versarial alignment of higher order features, while maintaining a Lipschitz continuity guarantee on
the true hypothesis as a function of the encoded features E(x), where x ∼ p2.

Now assume we are trying to use domain adaptation to find a model for a domain D = (Rn, p) and
we have a set of candidate domains Dk = (Rn, pk), k = 1, . . . ,K each with a pre-trained model
Mk = (Ek, Ck), obtained by using either supervised learning or prior domain adaptation. We use
the estimate provided by Equation 4 to select the optimal collaborator domain

Dopt = argmin
k=1,...,K

εpk
(Ek ◦ Ck) + 2θW1(pk, p) (7)

and thereafter perform adaptation from Dopt to D. We note that while the Euclidean loss is not the
loss function we are interested in for the purposes solving the classification problem, it serves as a
useful proxy, as we will empirically show in Section 4.2.

5



Under review as a conference paper at ICLR 2019

Enforcing Lipschitz continuity and computing the Wasserstein distance. Training neural net-
works with minimal Lipschitz constants can be done by directly regularizing the spectral norm of
the linear part of each layer by using power iterations Mises & Pollaczek-Geiringer (1929); Gouk
et al. (2018), or a gradient penalty Gulrajani et al. (2017), or indirectly by using L1 or L2 weight
decay. Enforcing a hard constraint on θ can be done by simply rescaling the linear part of the layer,
or indirectly by weight clipping. For the feature extractor and classifier neural networks, we employ
Spectral Norm regularization proposed by Gouk et al. (2018). Further, to compute the Wasserstein
distance W1 between distributions, we train a Wasserstein critic with gradient penalty as proposed
by Gulrajani et al. (2017). Interestingly, training of this critic is also done in a distributed manner
following the lazy synchronization strategy proposed in § 3.2.

3.4 Multi-Step Decentralized Domain Adaptation (MDDA)

Using the two core ideas discussed § 3.2 and § 3.3, we now summarize our multi-step DA algorithm
MDDA (Algorithm 3). Assume we are given a labeled source domain with pre-trained model and
an arbitrary ordering of K unlabeled target domains. For every target domain that joins the system,
we first run collaborator selection with all the candidates available in the system. Upon selecting an
optimal collaborator, we execute the distributed DA algorithm to enable uDA in a privacy-preserving
manner. The adaptation process results in a feature extractor ET and a classifier CT for the target
domain. Finally, the recently adapted target domain is added to the candidate set, and may serve as
a potential collaborator for future domains.

4 Evaluation

4.1 Implementation

Datasets. We conduct experiments on five image and audio datasets: Rotated MNIST, Digits, and
Office-Caltech, DomainNet and Mic2Mic. Rotated MNIST is a variant of MNIST with numbers
rotated from 0°to 330°at increments of 30°. Each rotation is considered a separate domain. The
Digits adaptation task has five domains: MNIST (M), USPS (U), SVHN (S) (Netzer et al. (2011)),
MNIST-M and SynNumbers (SYN) (Ganin & Lempitsky (2014)). Each domain consists of 10 digit
classes ranging from 0-9 in different styles. The Office-Caltech dataset contains object images from
10 classes obtained from Amazon (A), DSLR camera (D), Web camera (W), and Caltech-256 (C).
DomainNet (Peng et al. (2018)) is a new dataset with four labeled image domains containing 345
classes each: Real (R), QuickDraw (Q), Infograph (I), and Sketch (S). Finally, Mic2Mic (Mathur
et al. (2019)) is a speech-based keyword detection dataset wherein the keywords are recorded with
four different microphones: Matrix Creator (C), Matrix Voice (V), ReSpeaker (R) and USB (U).
Each microphone represents a domain.

Baselines. To evaluate our collaborator selection strategy, we compare it against the following:

• Labeled Source. This represents the most commonly used approach in uDA works, wherein every
target domain performs a pairwise adaptation with the labeled source domain S.

• Random Collaborator. Here, we randomly choose a collaborator c ∈ CK from the collaborator
set and perform adaptation with the target domain.

• Multi-Collaborator. This approach is based on MDAN proposed by Zhao et al. (2018), wherein
all available candidate domains are used for adaptation, however the contribution of each domain is
dynamically re-weighted in the adversarial training process. However, note that MDAN assumes
that all the candidate domains are labeled and jointly optimize the classification loss with the
adversarial training. In our scenario, only one candidate domain has labeled data (S) while others
are unlabeled. As such, we implement a modified version of MDAN which only optimizes their
proposed adversarial loss in line with our problem formulation in §3.1.

Further, we compare our proposed distributed adversarial learning architecture against (i) a cen-
tralized uDA baseline wherein the source and target data reside on the same node and adversarial
training takes place in a non-distributed manner, and (ii) D-PSGD proposed by Lian et al. (2017) for
decentralized training of neural networks.

6



Under review as a conference paper at ICLR 2019

RMNIST Mic2Mic Digits Office-Caltech DomainNet

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2

No Adaptation 36.23 36.23 35.80 73.11 73.38 74.7 64.34 73.42 57.80 93.41 87.15 92.32 19.09 19.03
Random 42.89 39.73 43.49 76.9 79.1 78.0 65.11 78.41 59.5 95.45 90.10 95.69 32.21 33.19

Labeled Source 53.62 54.53 46.47 78.07 80.96 79.96 66.02 81.46 65.89 95.45 91.98 95.57 34.28 34.21
Multi-Collaborator 36.08 37.88 37.84 74.34 75.19 75.37 60.63 64.19 62.91 87.64 88.33 92.37 25.3 24.1

MDDA (Ours) 86.08 70.84 79.19 78.07 80.12 79.96 81.87 89.03 64.85 95.82 89.58 96.01 34.21 34.34

Ideal 86.38 71.77 79.52 78.07 80.96 79.96 83.84 89.03 69.32 95.82 92.09 96.01 34.28 34.34

Table 1: Target Domain Accuracy (%) under different techniques of selecting a collaborator using
ADDA. Ideal refers to the best achievable performance if the most optimal collaborator is picked
for each target domain.

Experiment Setup. We follow the same evaluation protocol as earlier uDA works (Hoffman et al.
(2018); Tzeng et al. (2017)) wherein the unlabeled training instances from source and target domains
are used for adversarial training, and the adapted model is evaluated on a held-out test dataset from
target domain. In addition, we use a small subset of the training instances (10% of the total instances)
for doing collaborator selection. Further, as we explained earlier, we assume that target domains
join the system sequentially in an order, one at a time. Therefore, for each dataset, we randomly
select different orderings of source and target domains and present average results across them. Our
system is implemented with Tensorflow 2.0 and trained on Nvidia V100 GPUs. For more details
about neural network architectures and the training hyper-parameters, please see Appendix A.

4.2 Results

We now present our results of applying MDDA on five datasets. Overall, our results show that
MDDA selects the right collaborator for adaptation in 82% of the cases, which result in the highest
mean target domain accuracy when compared to other baselines.

Performance of Collaborator Selection. For each dataset, we choose three random orderings of
source and target domains, e.g., for Office-Caltech, we choose O1=W,A,D,C; O2=D,C,A,W; and
O3=A,D,W,C. Here the first domain in the order (in bold) represents the labeled source domain,
while the others are unlabeled target domains in the order in which they join the system. Please
refer to Appendix A for details about the orderings used for other datasets.

Figure 1 shows the accuracy of our collaborator selection algorithm. For this experiment, we per-
form adaptation between a target domain and each available candidate, and based on the target
accuracy after each pairwise adaptation, we obtain the collaborator that yields the highest accuracy
for each target domain. This serves as the ground truth for our algorithm. Thereafter, we run our
collaborator selection algorithm on each ordering and obtain the optimal collaborator based on Al-
gorithm 2. By comparing the output of our algorithm with the ground truth, we obtain Figure 1
which shows that on average, our algorithm has a selection accuracy of 82%. On further analysis,
we found that our algorithm primarily makes mistakes when two candidates have similar domain
discrepancy (estimated using the W1 distance) with the target domain and we pick the second most
optimal collaborator. In such scenarios, although the top-1 collaborator selection accuracy drops,
it typically does not impact the target error significantly because adapting with the second-most
optimal domain also yields a good adaptation performance.

Table 4 shows, for three different orderings, the mean accuracy across all target domains with
MDDA and other baselines. We observe that in majority of the scenarios, MDDA outperforms
the labeled-source adaptation baseline which is commonly used in uDA methods. This confirms our
key intuition that a labeled source domain is not always optimal for domain adaptation, and demon-
strates the value of a more flexible and decentralized approach like MDDA. Interestingly, we observe
that while the multi-collaborator baseline is less accurate than MDDA in general, its performance is
particularly poor on Rotated MNIST in which the number of collaborators are quite high – while a
detailed investigation of this finding is outside the scope of this paper, we surmise that this technique
does not scale well as the number of collaborator domains increase. MDDA, on the contrary, only
performs pairwise adaptation once an optimal collaborator is selected, as such it scales gracefully as
the number of target domains increase.

The results presented so far used the adversarial loss formulation from Eq. 1 and 2 which was pro-
posed in ADDA. In Table 2, we evaluate the applicability of MDDA to methods that use other forms

7



Under review as a conference paper at ICLR 2019

of adversarial losses. More specifically, we evaluate MDDA a) when a Gradient Reversal Layer
(GRL) is used to compute the mapping loss (LadvM

= −LadvD
), and b) in cases where Wasserstein

Distance is used as a loss metric for domain discriminator. (Shen et al. (2018)). We observe that
while different loss formulations yield different target accuracies, MDDA can work in conjunction
with all of them to improve the overall accuracy over a labeled source-only adaptation.

RM DI M2M OC DN
0

20

40

60

80

100
S

el
ec

tio
n 

A
cc

ur
ac

y 
(in

 %
)

Figure 1: Mean accuracy of collaborator se-
lection across three random orderings for Ro-
tated MNIST (RM), Digits (DI), Mic2Mic
(M2M), OfficeCaltech (OC) and Domain-
Net(DN).

RMNIST (O1) Digits (O2)

ADDA GRL WassDA ADDA GRL WassDA

No Adaptation 36.23 36.23 36.23 73.42 73.42 73.42
Random 42.89 39.33 43.78 78.41 79.22 74.91

Labeled Source 53.62 45.60 37.99 81.46 76.66 77.31
MDDA(Ours) 86.08 63.49 85.6 89.03 85.24 79.48

Ideal 86.38 68.92 86.94 68.92 85.42 79.9

Table 2: Mean target accuracy for a random
order of domains across a range of adaptation
methods.

Performance of Distributed Domain Adaptation. We now present the performance of our Lazy-
synchronized DA algorithm. In Figure 2, we plot the target domain accuracy with the number of
adversarial training steps for three uDA tasks. It can be observed that even with lazy discriminator
synchronization, we can achieve similar target accuracy and convergence rate as centralized and
synchronous training methods. We also note that the distributed training baseline (DPSGD) performs
poorly for adversarial training.

Table 3 expands on this finding to show the target domain accuracy for 10 adaptation tasks under
different training mechanisms. For example, in the D → A task in Office-Caltech, the centralized
training mechanism has a 92.01% target accuracy, while our approach can reach 91.77% accuracy,
while ensuring that domain data remains private.

Figure 2: Comparison of target domain accuracy and training convergence across centralized and
distributed training methods. For Mic2Mic, the PSGD baseline did not improve the accuracy, as
such we omit it from the figure.

RMNIST Office-Caltech Digits DomainNet Mic2Mic

Training 0 → 60 150 → 180 t W → C D → A t M-M → U Syn → U t S → R Q → R t C → R R →C t

Source-Only 32.68 61.51 - 87.81 85.28 - 57.54 79.32 - 34.34 30.75 - 69.65 69.11 -

Centralized 69.61 91.86 8.5s 91.74 92.01 26.5s 82.1 90.1 10.5s 54.91 50.67 40.2s 78.02 77.94 55.48s

Synchronized 69.30 91.21 195.5s 91.02 92.13 28.1s 82.13 89.9 33.2s 54.23 49.95 82.1s 81.5 81.1 134.98s

Lazy Synchronized 68.34 90.16 55.2s 90.56 91.77 27.25s 81.66 89.78 15.5s 53.25 49.02 49.2s 77.48 81.03 75.28s

Table 3: Target Domain Accuracy (%) and Epoch Time for different training strategies with dis-
tributed domain datasets. Note that for Centralized case, the domain data transferring time should
be considered on top of it’s Epoch Time.

5 Conclusion
In this paper, we introduced a novel perspective on uDA research and explored practical chal-
lenges associated with deploying uDA methods in real-world ML systems. Our proposed frame-
work MDDA is the first-ever solution aiming to make uDA methods work in a decentralized and
distributed manner. As uDA is a rapidly evolving field, we did not study every class of uDA algo-
rithms (e.g., those which combine feature-level adaptations with instance-level adaptations) in this

8



Under review as a conference paper at ICLR 2019

paper and we leave it as a future work. We also made an assumption that target domains are intro-
duced sequentially in the system, however there could indeed be other ways in which ML models
would evolve in practice (e.g., multiple target domains join together or in batches). We leave those
scenarios as future work.

References
Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-

man Vaughan. A theory of learning from different domains. Machine learning, 79(1-2), 2010.

Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to continuously shifting
domains. 2018.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495, 2014.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regularisation of neural networks
by enforcing lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in neural information processing systems, pp.
5767–5777, 2017.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons, Garth A
Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In Advances in neural information processing systems, pp. 1223–1231,
2013.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
Conference on Machine Learning, pp. 1994–2003, 2018.

Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, and Richard Socher. A multi-
discriminator cyclegan for unsupervised non-parallel speech domain adaptation. arXiv preprint
arXiv:1804.00522, 2018.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the param-
eter server. In 11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pp. 583–598, 2014.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 5330–5340, 2017.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features
with deep adaptation networks. arXiv preprint arXiv:1502.02791, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint
adaptation networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 2208–2217. JMLR. org, 2017.

Akhil Mathur, Anton Isopoussu, Nadia Berthouze, Nicholas D Lane, and Fahim Kawsar. Unsuper-
vised domain adaptation for robust sensory systems. In Proceedings of the 2019 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019
ACM International Symposium on Wearable Computers, pp. 505–509. ACM, 2019.

9



Under review as a conference paper at ICLR 2019

RV Mises and Hilda Pollaczek-Geiringer. Praktische verfahren der gleichungsauflösung. ZAMM-
Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik, 9(2):152–164, 1929.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. arXiv preprint arXiv:1812.01754, 2018.

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
optimal transport. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 737–753. Springer, 2017.

Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chellappa. Generate to
adapt: Aligning domains using generative adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8503–8512, 2018.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7167–7176, 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Addressing appearance change in outdoor
robotics with adversarial domain adaptation. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1551–1558. IEEE, 2017.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. In Advances in Neural Information
Processing Systems, pp. 8559–8570, 2018.

A Appendix
Here we provide details about our experiment setup and model architectures. We are also in the
process of obtaining necessary clearances to release our source code to the community.

A.1 Domain Orderings.

As we mentioned in the paper, the order of target domains joining the system can effect the decisions
of our collaborator selecting algorithm, and then cause different adaptation results. To measure the
effect of target orders, we reported three different orders for each data set in our experiments. We
specify these order as follows:

O1 O2 O3

RMNIST 0,30,60,90,120,150 0,180,210,240,270,300,330,30,60,90,120,150 30,0,180,210,240
180,210,240,270,300,330 300,330,30,60,90,120,150 330,60,90,270,300,120,150

Mic2Mic C,V,R,U R,U,C,V V,R,U,C

Digits svhn,mnist,mnist modified,synth digits,usps synth digits,usps,mnist,mnist modified,svh mnist modified,mnist,svhn,usps,synth digits

Office-Caltech W-A-D-C D-C-A-W A-D-W-C

DomainNet S,R,I,Q S,Q,I,R R,I,Q,S

Table 4

10



Under review as a conference paper at ICLR 2019

A.2 Model Architectures and Hyperparameters.

We now describe the neural architectures used for each dataset along with the hyperparameters used
in supervised and adversarial learning.

Rotated MNIST: We use the well-known LeNet architecture for this dataset as shown below. The
model was trained for each source domain with a learning rate of 10−4 using the Adam optimizer
and a batch size of 32.

Conv2D(filters = 20, kernel_size = 5, activation=’relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Conv2D(filters = 50, kernel_size = 5, activation=’relu’),
MaxPooling2D(pool_size = 2, strides = 2),
Flatten(),
Dense(500, activation=’relu’),
Dense(10, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−5 for the target extractor and 10−4 for the discriminator.

Office-Caltech: We used Keras Inception-V3 pre-trained on ImageNet as the base model for this
task. We added a bottleneck layer and a final classification layer. The model was trained for each
source domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 32.

InceptionV3(include_top=False, input_shape=(299, 299, 3),avg=’pool’),
Dense(256, activation=’relu’)
Dense(10, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−5 for the target extractor and 1e-4 for the discriminator.

DomainNet: We used Keras ResNet50-v2 pre-trained on ImageNet as the base model for this task.
The model was trained for each source domain with a learning rate of 1e-5 using the Adam optimizer
and a batch size of 64.

ResNet50V2(include_top=False, input_shape=(224, 224,3), avg=’pool’),
Dense(245, activation=’softmax’)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

Mic2Mic: We mainly used three convolutional layers for this task. The model was trained for each
source domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 64.

Conv2D(filters = 64, kernel_size = (8,20), activation=’relu’)
MaxPooling2D(pool_size = (2,2)),
Conv2D(filters = 128, kernel_size = (4,10), activation=’relu’),
MaxPooling2D(pool_size = (1,4)),
Conv2D(filters = 512, kernel_size = (2,2)),
Flatten(),
Dense(256, activation=’relu’),
Dense(31)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

Digits: We constructed a neural network with three convolutional layer and some additional tech-
niques like Dropout, BatchNormalization, for this task. The model was trained for each source
domain with a learning rate of 10−5 using the Adam optimizer and a batch size of 64.

11



Under review as a conference paper at ICLR 2019

inputs = tf.keras.Input(shape=(32,32,3), name=’img’)
x = Conv2D(filters = 64, kernel_size = 5, strides=2)(inputs)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.1)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 128, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.3)(x, training=is_training)
x = ReLU()(x)
x = Conv2D(filters = 256, kernel_size = 5, strides=1)(x)
x = BatchNormalization()(x, training=is_training)
x = Dropout(0.5)(x, training=is_training)
x = ReLU()(x)
x = Flatten()(x)
x = Dense(512)(x)
x = BatchNormalization()(x, training=is_training)
x = ReLU()(x)
x = Dropout(0.5)(x, training=is_training)
outputs = Dense(10)(x)

In order to enforce the Lipschitz continuity, we added spectral norm regularization during the train-
ing process. In the adversarial training process, we used the ADDA losses to perform domain
adaptation with a learning rate of 10−6 for the target extractor and 10−4 for the discriminator.

12


	Introduction
	Problem Formulation and Related Work
	Related Work

	Our Approach
	Primer on Adversarial Domain Adaptation
	Distributed Domain Adaptation
	Wasserstein distance guided collaborator selection
	Multi-Step Decentralized Domain Adaptation (MDDA)

	Evaluation
	Implementation
	Results

	Conclusion
	Appendix
	Domain Orderings.
	Model Architectures and Hyperparameters.


