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ABSTRACT

Few-shot classification is the task of predicting the category of an example from a
set of few labeled examples. The number of labeled examples per category is called
the number of shots (or shot number). Recent works tackle this task through meta-
learning, where a meta-learner extracts information from observed tasks during
meta-training to quickly adapt to new tasks during meta-testing. In this formulation,
the number of shots exploited during meta-training has an impact on the recognition
performance at meta-test time. Generally, the shot number used in meta-training
should match the one used in meta-testing to obtain the best performance. We
introduce a theoretical analysis of the impact of the shot number on Prototypical
Networks, a state-of-the-art few-shot classification method. From our analysis, we
propose a simple method that is robust to the choice of shot number used during
meta-training, which is a crucial hyperparameter. The performance of our model
trained for an arbitrary meta-training shot number shows great performance for
different values of meta-testing shot numbers. We experimentally demonstrate our
approach on different few-shot classification benchmarks.

1 INTRODUCTION

Human cognition has the impressive ability of grasping new concepts from exposure to a handful
of examples (Yger et al., 2015). In comparison, while modern deep learning methods achieve
unprecedented performances with very deep neural-networks (He et al., 2016; Szegedy et al., 2015),
they require extensive amounts of data to train, often ranging in the millions. Recently proposed
methods for few-shot learning aims to bridge the sample-efficiency gap between deep learning and
human learning in fields such as computer vision and reinforcement learning (Santoro et al., 2016;
Ravi & Larochelle, 2017; Finn et al., 2017; Vinyals et al., 2016). These methods fall under the
framework of meta-learning, in which a meta-learner extracts knowledge from many related tasks (in
the meta-training phase) and leverages that knowledge to quickly learn new tasks (in the meta-testing
phase). In this paper we are interested in the few-shot classification problem where each task is
defined as a N -way classification problem with k samples (shots) per class available for training.

Many meta-learning methods use the episodic training setup in which the meta-learner iterate through
episodes in the meta-training phase. In each episode, a task is drawn from some population and
a limited amount of support and query data from that task is made available. The meta-learner
then learns a task-specific classifier on the support data and the classifier predicts on the query data.
Updates to the meta-learner is computed based on the performance of the classifier on the query set.
Evaluation of the meta-learner (during a phase called meta-testing) is also carried out in episodes in a
similar fashion, except that the meta-learner is no longer updated and the performance on query data
across multiple episodes is aggregated.

In the episodic setup, the selection of k during meta-training time can have significant effects on
the learning outcomes of the meta-learner. Intuitively, if support data is expected to be scarce,
the meta-learner need to provide strong inductive bias to the task-specific learner as the danger of
overfitting is high. In contrast, if support data is expected to be abundant, then the meta-learner can
provide generally more relaxed biases to the task-specific learner in order to achieve better fitting to
the task data. Therefore it is plausible that a meta-learner trained with one k value to be sub-optimal
at adapting to tasks with a different k value and thus exhibit meta-overfitting to k. In experiments,
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k is often simply kept fixed between meta-training and meta-testing, but in real-world usage, one
cannot expect to know beforehand the amount of support data from unseen tasks during deployment.

In this paper we will focus on Prototypical networks (Snell et al., 2017), a.k.a. ProtoNet. ProtoNet is
of practical interest because of its flexibility: a single trained instance of ProtoNet can be used on
new tasks with any k and N . However, ProtoNet exhibits performance degradation when the k used
in training does not match the k used in testing.1 First, we will undertake a theoretical investigation
to elicit the connection from k to a lower bound of expected performance, as well as to the intrinsic
dimension of the learned embedding space. Then, we conduct experiments to empirically verify
our theoretical results across various settings. Guided by our new understanding of the effects of
k, we propose an elegant method to tackle performance degradation in mismatched k cases. Our
contributions are threefold:

• We provide performance bounds for ProtoNets given an embedding function. From which, we
argue that k affects learning and performance by scaling the contribution of intra-class variance.

• Through VC-learnability theory, we connect the value of k used in meta-training to the intrinsic
dimension of the embedding space.

• The most important contribution of this paper (introduced in Section 3.3) is a new method that
improves upon vanilla ProtoNets by eliminating the performance degradation in cases where the k is
mismatched between meta-training and meta-testing. Our evaluation protocol more closely adheres
to real-world scenarios where the model is exposed to different numbers of training samples.

2 BACKGROUND

2.1 PROBLEM SETUP

The few-shot classification problem considered in this paper is setup as described below. Consider
a space of classes C with a probability distribution τ , N classes c = {c1, ..., cN} are sampled iid
from τ to form a N -way classification problem. For each class ci, k support data are sampled from
class-conditional distribution Si = {sx1, .., sxk}

iid∼ P (x|Y (x) = ci), where x ∈ RD, D denotes
the dimension of data, and Y (x) denotes the class assignment of x. Note that we assume that Y (x)
is singular (e.g. each x can only have 1 label), and does not depend on N (e.g. a data point with a
label “cat” will always have the label “cat”), in contrast to y defined later on.

Additionally, the set Q = {qx1, ..., qxl} containing l query data is sampled from the joint distribution
1
N

∑N
i=1 P (x|ci).2 For each x, let y ∈ {1, ..., N} denote its label in the context of the few-shot

classification task. Define Ŝi = {(sx1, y = i), ..., (sxk, y = i)} as the augmented set of supports
for class ci, and denote the union of support sets for N classes as S =

⋃N
i=1 Ŝi. The few-shot

classification task is to predict y for each x in Q given S. During meta-training, the ground truth
label for Q is also available to the learner.

2.2 META-LEARNING SETUP

Meta-learning approaches train on a distribution of tasks to obtain information that generalizes to
unseen tasks. For few-shot classification, a task is determined by which classes are involved in the
N -way classification task. During meta-training, the meta-learner observes episodes of few-shot
classification tasks consisting of N classes, k labelled samples per class, and l unlabelled samples, as
previously described. The collection of all classes observed during meta-training forms the meta-
training split Dtr = {trc1, ..., trcR}. Critically, we assume that every unseen class that the learner is
evaluated upon (during meta-testing) is also drawn from the same distribution τ .

1For example, 1-shot accuracy of a 10-shot trained network performs 9% (absolute) worse than the 1-shot
trained network

2We assume equal likelihood of drawing from each class for simplicity
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2.3 PROTOTYPICAL NETWORKS

ProtoNets (Snell et al., 2017) compute E-dimensional embeddings for all samples in S and Q. The
embedding function φ : RD → RE is usually a deep network. Prototype representation for each
class is formed by averaging the embeddings for all supports of said class: φ(Si) = 1

k

∑
x∈Si

φ(x).
Classification of any input x (e.g. x ∈ Q) is performed by computing the softmax over squared
Euclidean distances of the input point’s embedding to the prototypes. Let ŷ denote the prediction of
the classifier for one of the categories j ∈ {1, · · · , N}:

pφ(ŷ = j|x, S) =
e−‖φ(x)−φ(Sj)‖2∑N
i=1 e

−
∥∥∥φ(x)−φ(Si)

2
∥∥∥ , where ‖v‖2 =

E∑
d=1

v2d (1)

The parameters of the embedding functions are learned through meta-training. Negative log-likelihood
J(φ) = − log (p(ŷ = y|x)) of the correct class y is minimized on the query points through SGD.

As explained in (Law et al., 2019), ProtoNets can be seen as a metric learning approach optimized
for the supervised hard clustering task (Law et al., 2016). The model φ is learned so that the
representations of similar examples (i.e. belonging to a same category) are all grouped into the same
cluster in RE . We propose in this paper a subsequent metric learning step which learns a linear
transformation that maximizes inter-to-intra class variance ratio.

3 PROPOSED METHOD

We first present theoretical results explaining the effect of the shot number on ProtoNets, and then
introduce our method for addressing performance degradation in cases of mismatched shots.

3.1 RELATING k TO LOWER BOUND OF EXPECTED ACCURACY

To better understand the role of k on the performance of ProtoNets, we study how it contributes to
the expected accuracy across episodes when using any kind of fixed embedding function (e.g. the
embedding function obtained at the end of the meta-training phase). With I denoting the indicator
function, we define the expected accuracy R as:

R(φ) = EcES,x,yI [pφ(ŷ|x, S) = y] (2)

Definitions: Throughout this section, we will use the following symbols to denote the means and
variances of embeddings under different expectations:

µc , Ex[φ(x)| Y (x) = c] Σc , Ex[(φ(x)− µc)
2| Y (x) = c]

µ , Ec[µc] Σ , Ec[(µc − µ)2]

Remark. µc is the expectation of the embedding conditioned on class c. µ is the (full) expectation
of the embedding, which can be expressed as the expectation of µc over classes. Σ is the variance of
class means in the embedding space - it can be interpreted as the signal of the input to the classifier,
as larger Σ implies larger distances between classes. Σc is the expected intra-class variance - it
represents the noise in the above signal.

Modelling assumptions of ProtoNets: The use of the squared Euclidean distance and softmax
activation in ProtoNets implies that classification with ProtoNets is equivalent to a mixture density
estimation on the support set with spherical Gaussian densities (Snell et al., 2017). Specifically, we
adopt the modelling assumptions that the distribution of φ(x) given any class assignment is normally
distributed (p(φ(x)|Y (x) = c) = N(µc,Σc)), with equal covariance for all classes in the embedding
space (∀(c, c′),Σc = Σc′ )3.

We present the analysis for the special case of episodes with binary classification (i.e. with N = 2)
for ease of presentation, but the conclusion can be generalized to arbitrary N > 2 (see appendix).
Also, as noted in Section 2.1, we assume equal likelihood between the classes. We would like to

3The second assumption is more general than the one used in the original paper as we do not require Σ to be
diagonal
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emphasize that the assignment of labels can be permuted freely and the classifier’s prediction would
not be affected due to symmetry. Hence, we only need to consider one case for the ground truth label
without loss of generality. Let a and b denote any pair of classes sampled from τ . Let x be drawn
from a, and overload a and b to also indicate the ground truth label in the context of that episode,
then equation 2 can be written as:

R(φ) = Ea,b∼τEx,SI [ŷ = a] (3)

Additionally, noting that p(ŷ = a) can be expressed as a sigmoid function:

p(ŷ = a|x) =
e−‖φ(x)−φ(Sa)‖2

e−‖φ(x)−φ(Sb)‖2 + e−‖φ(x)−φ(Sa)‖2
= σ(

∥∥∥φ(x)− φ(Sb)
∥∥∥2 − ∥∥∥φ(x)− φ(Sa)

∥∥∥2)

= σ(α) , where α ,
∥∥∥φ(x)− φ(Sb)

∥∥∥2 − ∥∥∥φ(x)− φ(Sa)
∥∥∥2

We can express equation 3 as a probability:

R(φ) = Pr
a,b,x,S

(α > 0) (4)

We will introduce a few auxiliary results before stating the main result for this section.

Proposition 1. From Chebyshev’s inequality, it immediately follows that:

R(φ) = Pr(α > 0) ≥ E[α]2

Var(α) + E[α]2
(5)

In Lemma 1 and Lemma 2, we derive the expectation and variance of α when conditioned on the
classes sampled in a episode. Then, in theorem 1, we compose them into the RHS of proposition 1
through law of total expectation.

Lemma 1. Consider space of classes C with sampling distribution τ , a, b iid∼ τ . Let S = {Sa, Sb}
Sa = {ax1, ..., axk}, Sb = {bx1, ..., bxk}, k ∈ N is the shot number, and Y (x) = a. Define
φ(Sa) , 1

k

∑
x∈Sa

φ(x) and φ(Sb) , 1
k

∑
x∈Sb

φ(x). Consider Σ as defined earlier. Assume
p(φ(x)|Y (x) = c) = N(µc,Σc) and Σc = Σc′ for any choice of c, c′ ∈ C , then,

Ex,S|a,b[α] = (µa − µb)(µa − µb)
T , and Ea,b,x,S [α] = 2Tr(Σ).

Lemma 2. Under the same notation and assumptions as Lemma 1, additionally invoking definition
for Σc, then,

Ea,b[Var(α|a, b)] ≤ 8(1 +
1

k
)Tr

(
Σc((1 +

1

k
)Σc + 2Σ)

)
. (6)

The proofs of the above lemmas are in the appendix. With the results above, we are ready to state our
main theoretical result in this section.

Theorem 3. Under the conditions where Lemma 1 and 2 hold, we have:

R(φ) ≥ 4Tr(Σ)2

8(1 + 1/k)2Tr(Σ2
c) + 16(1 + 1/k)Tr(ΣΣc) + Ea,b[((µa − µb)(µa − µb)

T )2]
. (7)

Proof. First, we use decompose the Var(α) term in proposition 1 by Law of Total Expectation.

Var(α) = Ea,b,x,S [α2]− Ea,b,x,S [α]2 = Ea,bEx,S [α2|a, b]− Ea,b,x,S [α]2 (8)

= Ea,b[Var(α|a, b) + Ex,S [α|a, b]2]− Ea,b,x,S [α]2. (9)

Hence, proposition 1 can also be expressed as

R(φ) ≥ E[α]2

Ea,b[Var(α|a, b) + Ex,S [α|a, b]2]
. (10)

Finally, we arrive at Theorem 3 by plugging Lemma 1 and 2 into equation 10.
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Several observations can be made from Theorem 3:

1. The shot-number k only appears in first two terms of the denominator. It does not contribute to
the last term of the denominator. This implies diminishing returns in expected accuracy when more
support data is added without altering φ.

2. By observing the degree of terms in equation 7 (and treating the last term of the denominator as a
constant), it is clear that increasing k will decrease the sensitivity (magnitude of partial derivative) of
this lower bound to Σc, and increase its sensitivity to Σ.

3. If one postulates that meta-learning updates on φ is similar to gradient ascent on this accuracy
lower bound, then learning with smaller k emphasizes minimizing noise, while learning with higher
k emphasizes maximizing signal.

In conclusion, these observations give us a plausible reason for the performance degradation observed
in mismatched shots: when an embedding function has been optimized (trained) for ktrain >
ktest, the relatively high Σc is amplified by the now smaller k, resulting in degraded performance.
Conversely, an embedding function trained for ktrain < ktest already has small Σc, such that
increasing k during testing has further diminished effect on performance.

3.2 INTERPRETATION IN TERMS OF VC DIMENSION

In any given episode, a nearest neighbour prediction is performed from the support data (with a fixed
embedding function). Therefore, a PAC learnability interpretation of the relation between the number
of support data and complexity of the classifier can be made. Specifically, for binary classification,
classical PAC learning theory (Vapnik et al., 1994) states that with probability of at-least 1− δ, the
following inequality on the difference between empirical error errtrain (of the support samples) and
true error errtrue holds for any classifier h:

errtrue(h)− errtrain(h) ≤

√
D(ln 4k

D + 1) + ln 4
δ

2k
(11)

Where D is the VC dimension, and k is the number of support samples per class.4 Under this binary
classification setting, the predictions of prototypical network are equal to σ(α) as shown earlier.
Denoting zc = φ(Sc) and zc′ = φ(Sc′), we can manipulate α as follows:

α = ‖φ(x)− zc‖2 − ‖φ(x)− zc′‖2 = 2(zc′ − zc)
Tφ(x) + (zTc zc − zTc′zc′) (12)

From equation 12, the prototypes form a linear classifier with offset in the embedding space. The
VC dimension of this type of classifier is 1 + d where d is the intrinsic dimension of the embedding
space (Vapnik, 1998). In ProtoNets, the intrinsic dimension of the embedding space is not only
influenced by network architecture, but more importantly determined by the parameter themselves,
making it a learned property. For example, if the embedding function can be represented with a linear
transformation φ(x) = Φ · x, then the intrinsic dimension of the embedding space is upper bounded
by the rank of Φ (since all embeddings must lie in the column space of Φ). Thus, the number of
support samples required to learn from an episode is proportional to the intrinsic dimension of the
embedding space. We hypothesize that an embedding function optimal for lower-shot (e.g. one-shot)
classification affords fewer intrinsic dimensions than one that is optimal for higher-shot (e.g. 10-shot)
classification.

3.3 RECONCILING SHOT DISCREPANCY THROUGH EMBEDDING SPACE TRANSFORMATION

Based on the above results, we postulate that when there is discrepancy between meta-training shots
and meta-testing shots5, classification accuracy at meta-test time can be improved by maximizing
R(φ). Intuitively, this can be achieved by minimizing Σc and maximizing Σ through a transformation
that lies in the space of non-dominant eigenvectors of Σc while also being aligned to the dominant
eigenvectors of Σ. Furthermore, section 3.2 suggests that reducing the dimensionality of the em-
bedding space will improve performance in low shot regimes. Hence, we propose a modification

4This considers learning of a single episode through the formation of prototypes
5In deployment, the number of support samples per class is likely random from episode to episode.
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of ProtoNets which we call Embedding Space Transformation (EST). EST works by applying a
transformation

φ(x) 7→ V ∗(φ(x)) (13)

to the outputs of the embedding function during test-time, effectively transforming the embedding
space. Here, V ∗ is a linear transformation computed usingDtr after meta-training has been completed.
To compute V ∗, we first iterate through all classes in Dtr and compute their in-class means and
covariance matrices in the embedding space. We can then find the covariance of means Σµ, and the
mean of covariances Σs across Dtr. Finally, V ∗ is computed by taking the leading eigenvectors of
Σµ−ρΣs - the difference between the covariance matrix of the mean and the mean covariance matrix
with weight parameter ρ. The exact procedure for computing V ∗ is presented in the appendix.

4 EXPERIMENTS AND RESULTS

In this section, our first two experiments aim at supporting our theoretical results in sections 3.1
and 3.2, while our third experiment demonstrates the improvement of EST on benchmark datasets
over vanilla ProtoNets. To illustrate the applicability of our results to different embedding function
architectures, all experiments are performed with both a vanilla 4-layer CNN (as in (Snell et al.,
2017)) and a 7-layer Residual network (He et al., 2016). Detailed description of the architecture can
be found in the appendix. Experiments are performed on three datasets: Omniglot (Lake et al., 2015),
mini-imagenet (Vinyals et al., 2016), and tiered-imagenet (Ren et al., 2018). We followed standard
data processing procedures which are detailed in the appendix.

4.1 TRAINING SHOTS AFFECT VARIANCE CONTRIBUTION

The total variance observed among embeddings of all data points can be seen as a composition
of inter-class and (expected) intra-class variance based on the law of total variance (Var[x] =
E[Var(x|c)] + Var(E[x|c]) = E[Σc] + Σµ). Our analysis predicts that as we increase the shot
number used during training, the ratio of inter-class to intra-class variance will decrease.

To verify this hypothesis, we trained ProtoNets (vanilla and residual) with a range of shots (1 to
10 on mini-imagenet and tiered imagenet, 1 to 5 on omniglot) until convergence with 3 random
initializations per group. Then, we computed the inter-class and intra-class covariance matrices
across all samples in the training-set embedded by each network. To qualify the amplitude of each
matrix, we take the trace of each covariance matrix. The ratio of inter-class to intra-class variance is
presented in figure 3: as we increase k used during training, the inter-class to intra-class variance
ratio decreases. This trend can be observed in both vanilla and residual embeddings, and across all
three datasets, lending strong support to our result in section 3.1. Another observation can be made
that the ratio between inter-class and intra-class variance is significantly higher in the omniglot data
set than the other two datasets. This may indeed be reflective of the relative difficulty of each dataset
and the accuracy of ProtoNet on the data sets.

Figure 1: Inter-class to Intra-class variance ratios of embedding space varies with k used in training.
Left: Omniglot. Right: mini-imagenet and tiered-imagenet.
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4.2 TRAINING SHOTS AFFECT INTRINSIC DIMENSION

We consider the intrinsic dimension (id) of an embedding function with extrinsic dimension E
(operated on a data set) to be defined as the minimum integer d where all embedded points of that
data set lie within a d-dimensional subspace of RE (Bishop, 2006). A simple method for estimating d
is through principal component analysis (PCA) of the embedded data set. By eigen-decomposing the
covariance matrix of embeddings, we obtain the principal components expressed as the significant
eigen-values, and the principal directions expressed as the eigen-vectors corresponding to those
eigen-values. The number of significant eigen-values approximates the intrinsic dimension of the
embedding space. When the subspace is linear, this approximation is exact; otherwise, it serves as an
upper bound to the true intrinsic dimension (Fukunaga & Olsen, 1971).

We determine the number of significant eigenvalues by an explained-variance over total-variance
criterion. The qualifying metric is: rd ,

∑
i∈[1,d] λi/

∑
i∈[1,E] λi. In our experiments, we set

the threshold for rd at 0.9. Similar to the previous experiment, we train ProtoNets with different
shots to convergence. The total covariance matrix is then computed on the training set and eigen-
decomposition is performed. The approximate id is plotted for various values of k in figure 2. We
can see a clear trend that as we increase training shot, the id of the embedding space increases.

Figure 2: Intrinsic dimension approximated by the number of significant eigen-values varies with k
used in training. Left: Omniglot. Right: mini-imagenet and tiered-imagenet

4.3 EXPERIMENTS WITH EST

We evaluate the performance of EST on the three aforementioned data sets. The performance is
compared against our implementation of vanilla ProtoNets as a baseline, as well as a variant of
ProtoNets using principal components obtained from all embedding points (ProtoNet-PCA).

All methods in this section use the same set of trained ProtoNets. As with before, networks are
trained with k ∈ {1, ..., 5} on Omniglot and k ∈ {1, ..., 10} on mini-imagenet and tiered-imagenet.
Additionally, we also trained a mixed-shot network for each data set. This is done by randomly select-
ing a value for k within the specified range for each episode, and then sampling the corresponding
number of support samples. Hyper-parameters for training are described in the appendix.

Each model is evaluated on the test splits of the corresponding data sets (e.g. networks trained on
Omniglot are only evaluated on Omniglot). 5 test runs are performed per network on Omniglot
to evaluate the k-shot performance (k ∈ [1, 5]). Each run consists of 600 episodes formed by 1-5
support samples and 5 query sample per class. The performance is aggregated across runs for the
combined performance. Similarly, on mini-imagenet and tiered-imagenet, 10 test runs are performed
with support per sample k ∈ [1, 10], 600 episodes per run, and 15 query samples in each episode.

Model configuration: Vanilla ProtoNet is used as our baseline. We present the performance of
multiple ProtoNets trained with different shots to illustrate the performance degradation issue.
ProtoNet-PCA uses principal components of the training split embeddings in place of V ∗, with
components other than the d leading ones zeroed-out. We carry out a parameter sweep on mini-
imagenet and set d = 60; the same value is used on the other two datasets. For selecting the training
shot of the embedding network, we found that overall performance to be optimal using k = 5.
ProtoNet-EST contains three parameters that need to be determined: ρ, d, and training-shots of the
embedding network. For our experiments, we set ρ = 0.001 and d = 60 based on performance on
mini-imagenet. For selecting the number of training-shots, we use the same strategy as before by
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Table 1: Classification accuracies of ProtoNet variants. Best performing methods and any
other runs within 95% confidence margin is in bold

(a) Omniglot-20-way, with 4 layer CNN.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 ACCURACY

VANILLA PROTONET 1 95.07 % 98.89 % 97.81 %
VANILLA PROTONET 5 93.42 % 98.78 % 97.25 %
MIXED-k SHOT 1-5 94.84 % 98.92 % 97.74 %
PCA PROTONET 1 94.94 % 98.85 % 97.78 %

EST PROTONET 1 95.11 % 98.84 % 97.83 %

(b) Omniglot-20-way, with 7 layer ResNet.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 ACCURACY

VANILLA PROTONET 1 96.46 % 99.07 % 98.35 %
VANILLA PROTONET 5 94.42 % 98.99 % 97.75 %
MIXED-k PROTONET 1-5 96.53 % 99.15 % 98.43 %
PCA PROTONET 1 96.02 % 98.99 % 98.19 %

EST PROTONET 1 95.55 % 99.02 % 98.19 %

(c) Mini-imagenet-5-way, with 4 layer CNN.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 10 ACCURACY

PROTONET 1 48.89 % 64.70 % 68.90 % 63.15 %
PROTONET 5 44.75 % 67.23 % 72.36 % 65.08 %
PROTONET 10 39.99 % 66.23 % 72.47 % 63.54 %
MIXED-k SHOT 1-10 49.36 % 67.96 % 72.27 % 65.83 %
PCA PROTONET 5 49.36 % 68.63 % 72.82 % 66.12 %

EST PROTONET 5 50.22 % 68.25 % 73.29 % 66.60 %

(d) Mini-imagenet-5-way, with 7 layer ResNet.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 10 ACCURACY

PROTONET 1 52.65 % 68.27 % 72.29 % 66.73 %
PROTONET 5 47.40 % 69.93 % 74.35 % 67.18 %
PROTONET 10 42.20 % 68.23 % 74.54 % 65.75 %
MIXED-k SHOT 1-10 51.74 % 69.09 % 73.63 % 67.41 %
PCA PROTONET 5 50.09 % 69.25 % 74.24 % 67.63 %

EST PROTONET 5 51.93 % 69.98 % 74.80 % 68.19 %

(e) Tiered-imagenet-5-way, with 4 layer CNN.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 10 ACCURACY

PROTONET 1 47.37 % 63.70 % 67.99 % 61.85 %
PROTONET 5 42.33 % 66.51 % 72.05 % 64.05 %
PROTONET 10 35.38 % 64.56 % 71.03 % 61.24 %
MIXED-k SHOT 1-10 47.67 % 66.34 % 70.96 % 64.33 %
PCA PROTONET 5 48.34 % 67.07 % 71.65 % 64.96 %

EST PROTONET 5 48.85 % 67.24 % 72.09 % 65.46 %

(f) Tiered-imagenet-5-way, with 7 layer ResNet.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 5 10 ACCURACY

PROTONET 1 49.78 % 65.17 % 69.88 % 63.98 %
PROTONET 5 47.88 % 69.12 % 73.80 % 66.99 %
PROTONET 10 40.86 % 69.37 % 74.72 % 65.95 %
MIXED-k SHOT 1-10 50.74 % 69.28 % 73.01 % 66.95 %
PCA PROTONET 5 51.21 % 68.88 % 72.17 % 67.14 %

EST PROTONET 5 53.05 % 69.30 % 73.63 % 67.91 %

evaluating ProtoNet-EST with all trained embedding networks and found the same trend to hold.
As an abalation study, FC-ProtoNet adds a fully connected layer to the embedding network such that
the output dimension is also 60. Results of this variant can be found in the appendix.

EST performance results: Table 1 summarizes the performance of the evaluated methods on all
data sets. Due to space constraints, only 1-shot, 5-shot, 10-shot and 1-10 shot average performance
are included. Additional results are in the appendix. The best performing method in each evaluation is
in bold. On Omniglot, there is no significant difference in performance between the best performing
vanilla ProtoNet and any other methods. We attribute this to the already high accuracy of the baseline
model. On mini-imagenet and tiered-imagenet, EST-ProtoNet significantly outperforms baseline
methods and PCA-protonet in terms of average accuracy over test runs with different shots.

We observe that matching the training-shot to the test-shot generally provides the best performance for
vanilla ProtoNets. Also importantly, training with a mixture of different k does not provide optimal
performance when evaluated on the same mixture of k values. Instead, the resulting performance
is mediocre in all test-shots. ProtoNet-EST provide minor improvements over the best-performing
baseline method under most test-shots settings. We hypothesize that this is due to EST aligning
the embedding space to the directions with high inter-class variance and low intra-class variance.
Comparison against the direct PCA approach demonstrates that the performance uplift is not entirely
attributed to reducing the dimensions of the embedding space.

In conclusion, EST improves the performance of ProtoNets in the more challenging data sets when
evaluated with various test-shots. It successfully tackles performance degradation when test shots
and training shots are different. This improvement is vital to the deployment of ProtoNets in real
world scenarios where the number of support samples cannot be determined in advance.

5 CONCLUSION AND FUTURE WORK

We have explored how the number of support samples used during meta-training can influence
the learned embedding function’s performance and intrinsic dimensions. Our proposed method
transforms the embedding space to maximize inter-to-intra class variance ratio while constraining the
dimensions of the space itself. In terms of applications, our method can be combined other works
(Oreshkin et al., 2018; Ye et al., 2018; Rusu et al., 2019; Dong & Xing, 2018; Ren et al., 2018) with
an embedding learning component. We believe our approach is a significant step to reduce the impact
of the shot number in meta-training, which is a crucial hyperparameter for few-shot classification.
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A APPENDIX

A.1 ALGORITHM FOR EST

Below is the exact procedure for computing T for embedding space transformation.

Algorithm 1 Algorithm for computing the transformation T .
Ln is the number of samples belonging to class n; µn and Σn are the mean and covariance of the
embeddings of that class; µT and Σs are the average of mean embeddings and covariances; Σµ is
the covariance of the mean embeddings; V ∗ is the matrix of eigenvectors that correspoinds to the d
largest eigenvalues in Λ.

Input: Training set Dtr = {(x1, y1), ..., (xM , yM}, where yi ∈ {1, ..., N}, Dn denotes the
subset of Dtr where ∀y ∈ Dn, y = n, embedding function φ, weighting parameter ρ, dimension
parameter d.
Output: Transformation T .
Initialize µ = {0}Nn , Σ = {0}Nn ,
for n = 1 to N do
µ[n] = µn = 1

Ln

∑
(xi,yi)∈Dn

φ(xi)

Σ[n] = 1
Ln

∑
(xi,yi)∈Dn

(φ(xi)− µn)(φ(xi)− µn)T

end for
µT = 1

M

∑
(xi,yi)∈Dtr

φ(xi)

Σµ = 1
N

∑
n∈[1,N ](µ[n]− µT )(µ[n]− µT )T

Σs = 1
N

∑
n∈[1,N ] Σ[n]

Find V , Λ such that: Σµ − ρΣs = V ΛV T

V ∗ = [vj ] for j ∈ top d of Λ
T (z) = V ∗(z)

A.2 NETWORK ARCHITECTURE

The vanilla CNN has the exact same architecture as the original ProtoNet (Snell et al., 2017). It
consists of four convolution layers with depth of 64; each convolution layer is followed by Relu
activation, max-pooling, and batch normalization (Ioffe & Szegedy, 2015). Resnet of 7 layers is
constructed with one vanilla convolution layer of depth 64 followed by three residual blocks, all
joined by max-pooling layers; each residual block consists of two sets of conv-batchnorm-Relu layers,
of depth 128-256-256.

A.3 DATASET DESCRIPTION AND PRE-PROCESSING

Experiments are performed on three datasets: Omniglot (Lake et al., 2015), mini-imagenet (Vinyals
et al., 2016), and tiered-imagenet (Ren et al., 2018). For Omniglot experiments, we follow the same
configuration as in the original paper where 1200 classes augmented with rotations (4800 total) are
used for training, and the remaining classes are used for testing.

For mini-imagenet experiments, we use the splits proposed by (Ravi & Larochelle, 2017) where 64
classes are used for training, 16 for validation, and 20 for testing. Mirroring the original paper, we
resize all mini-imagenet images to 84x84. No data augmentation is applied. As most state-of-art
few-shot classification methods achieve saturating accuracies on Omniglot, and mini-imagenet’s
small number of classes make claims about generalization difficult, we also conduct experiments of
tiered-imagenet.

Tiered-imagenet is also a subset of Imagenet1000. Tiered-imagenet groups classes into broader
categories corresponding to higher-level nodes in the ImageNet hierarchy. It includes 34 categories,
with each category containing between 10 and 30 classes. These are split into 20 training, 6 validation
and 8 testing categories. In total, there are 351 classes in training, 97 in validation, and 160 in testing.
Preprocessing of images follow the same steps as used for mini-imagenet.
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A.4 PROTONET TRAINING

Training procedure of ProtoNets largely mirrors the protocol used by Snell et al. (2017). On Omniglot,
we train the network to convergence after 30000 episodes. On mini-imagenet and tiered-imagenet,
we monitor the performance of the network on the validation set and select the best performing
checkpoint after training for 50000 episodes. Adam (Kingma & Ba, 2014) optimizer is used with
α = 0.9, β = 0.999, ε = 10−8, and an initial learning rate of 0.001 that is decayed by half every 2000
episodes. On Omniglot, we train with 60 classes and 5 query points per episode. On mini-imagenet
and tiered-imagenet, we train with 20 classes and 15 query points per episode.

A.5 DERIVATION DETAILS

Proof of Lemma 1:

Proof.

Ex,S|a,b[α] = E[
∥∥∥φ(x)− φ(Sb)

∥∥∥2]︸ ︷︷ ︸
i

−E[
∥∥∥φ(x)− φ(Sa)

∥∥∥2]︸ ︷︷ ︸
ii

i = Ex,S|a,b[
∥∥∥φ(x)− φ(Sb)

∥∥∥2]

= Tr(Σ
φ(x)−φ(Sb)

) + E[φ(x)− φ(Sb)]
TE[φ(x)− φ(Sb)]

Σ
φ(x)−φ(Sb)

= Var[φ(x)− φ(Sb)]

= E[(φ(x)− φ(Sb))(φ(x)− φ(Sb))
T ]− (µa − µb)(µa − µb)

T

= Σc + µaµ
T
a +

1

k
Σc + µbµ

T
b − µaµ

T
b − µbµ

T
a − (µa − µb)(µa − µb)

T

= (1 +
1

k
)Σc (Last terms cancel out)

Ex,S|a,b[φ(x)− φ(Sb)] = µa − µb

i = (1 +
1

k
)Tr(Σc) + (µa − µb)(µa − µb)

T

Similarly for ii:

ii = Ex,S|a,b[
∥∥∥φ(x)− φ(Sa)

∥∥∥2]

= Tr(Σ
φ(x)−φ(Sa)

) + E[φ(x)− φ(Sa)]TE[φ(x)− φ(Sa)]

= (1 +
1

k
)Tr(Σc)

Putting together i and ii:

Ex,S|a,b[α] = (1 +
1

k
)Tr(Σc) + (µa − µb)(µa − µb)

T − (1 +
1

k
)Tr(Σc) = (µa − µb)(µa − µb)

T

Then, since Ea,b,x,S [α] = Ea,b[Ex,S|a,b[α]], we have:

Ea,b,x,S [α] = Ea,b[(µa − µb)(µa − µb)
T ]

= Ea,b[µTa µa + µTb µb − µTa µb − µTb µa]

= Tr(Σ) + µTµ + Tr(Σ) + µTµ− 2µTµ

= 2Tr(Σ)

For proof of Lemma 2, we first re-state the result on quadratic forms of normally distributed random
vectors by Rencher & Schaalje (2008).
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Theorem 4. Consider random vector y ∼ N(µ,Σ) and symmetric matrix of constants A, we have:

Var = 2Tr((AΣ)2) + 4µTAΣAµ.

Proof of Lemma 2:

Proof.

Var(α|a, b) = Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥− ∥∥∥φ(x)− φ(Sb)
∥∥∥)

= Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥) + Var(
∥∥∥φ(x)− φ(Sa)

∥∥∥)− 2Cov(
∥∥∥φ(x)− φ(Sa)

∥∥∥ ,∥∥∥φ(x)− φ(Sb)
∥∥∥)

≤ Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥) + Var(
∥∥∥φ(x)− φ(Sa)

∥∥∥) + 2

√
Var(

∥∥∥φ(x)− φ(Sb)
∥∥∥)Var(

∥∥∥φ(x)− φ(Sa)
∥∥∥)

≤ 2Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥) + 2Var(
∥∥∥φ(x)− φ(Sa)

∥∥∥)

From line 2 to 3, we used Cauchy Schwarz inequality. From line 3 to line 4, note 2ab ≤ a2 + b2 for
all a, b ∈ R+ By applying Theorem 4, we have:

Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥) = 2(1 +
1

k
)2Tr(Σ2

c) + 4(1 +
1

k
)(µa − µb)

TΣc(µa − µb)

Var(
∥∥∥φ(x)− φ(Sa)

∥∥∥) = 2(1 +
1

k
)2Tr(Σ2

c)

Finally,

Ea,b[Var(α|a, b)] ≤ Ea,b[2Var(
∥∥∥φ(x)− φ(Sb)

∥∥∥) + 2Var(
∥∥∥φ(x)− φ(Sa)

∥∥∥)]

= Ea,b[8(1 +
1

k
)2Tr(Σ2

c) + 8(1 +
1

k
)(µa − µb)

TΣc(µa − µb)]

= 8(1 +
1

k
)Ea,b[Tr{(1 +

1

k
)Σ2

c + Σc(µa − µb)(µa − µb)
T }]

= 8(1 +
1

k
)Tr{Σc((1 +

1

k
)Σc + 2Σ)}

Extending to N class: Let x, y denote the query data pair, and the set of N classes be denoted as

c. Let αi =
∥∥∥φ(x)− φ(Si)

∥∥∥2 − ∥∥∥φ(x)− φ(Sy)
∥∥∥2. Then we have a correct prediction ŷ = y if

∀i ∈ [1, N ], i 6= j, αi > 0. Hence: R(φ) = Prc,x,S(
⋃N
i=1
i6=j

αi > 0)

By Frechet’s inequality:

R(φ) ≥
N∑
i=1
i6=j

Pr(αi > 0)− (N − 2)

Noting that Theorem 3 can be applied to each term in the summation:

R(φ) ≥
N∑
i=1
i 6=j

4Tr(Σ)2

8(1 + 1/k)2Tr(Σ2
c) + 16(1 + 1/k)Tr(ΣΣc) + Ei,y[((µy − µi)(µy − µi)

T )2]
−(N−2)

It is then clear that the observations made on the binary case also applies to the multiclass case.

A.6 ADDITIONAL RESULTS

Additionally, we experimented with directly setting the output dimension of the embedding network
to 60 by adding a fully connected layer to the embedding network. This variant of protonet performs
worse than both the base variant and all other methods.
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Table 2: Classification Accuracy on mini-imagenet-5-way, with 4 layer CNN + 1 Fully connected
layer embedding network.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 2 3 4 5 6 7 8 9 10 ACCURACY

PROTONET + FC 5 44.77 % 53.75 % 58.04 % 61.06 % 62.26 % 64.60 % 65.19 % 66.63 % 66.65 % 67.52 % 61.05 ± 0.28 %

Figure 3: Effect of hyperparameters on k-shot testing performance on Mini-Imagenet.

Table 3: Classification Accuracy on mini-imagenet-5-way, with 4 layer CNN embedding network.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 2 3 4 5 6 7 8 9 10 ACCURACY

VANILLA PROTONET 1 48.89 % 56.54 % 60.31 % 63.12 % 64.70 % 66.02 % 66.62 % 67.99 % 68.41 % 68.90 % 63.15 ± 0.21 %
EST PROTONET 1 49.07 % 56.49 % 60.62 % 62.67 % 64.83 % 66.23 % 66.84 % 67.90 % 67.68 % 68.73 % 63.11 ± 0.22 %
PCA PROTONET 1 49.01 % 56.35 % 60.07 % 62.42 % 64.38 % 65.28 % 66.56 % 67.81 % 67.59 % 68.26 % 62.77 ± 0.22 %

VANILLA PROTONET 5 44.75 % 56.61 % 61.52 % 65.32 % 67.23 % 69.04 % 70.66 % 71.47 % 71.84 % 72.36 % 65.08 ± 0.23 %
EST PROTONET 5 50.22 % 59.04 % 64.14 % 66.61 % 68.25 % 69.46 % 70.80 % 71.60 % 72.61 % 73.29 % 66.60 ± 0.23 %
PCA PROTONET 5 48.72 % 58.43 % 63.17 % 66.07 % 68.63 % 69.56 % 70.55 % 71.21 % 72.09 % 72.82 % 66.12 ± 0.24 %

VANILLA PROTONET 10 39.99 % 52.73 % 59.71 % 63.41 % 66.23 % 68.27 % 69.86 % 71.03 % 71.72 % 72.47 % 63.54 ± 0.25 %
EST PROTONET 10 48.98 % 57.83 % 63.13 % 66.39 % 68.12 % 69.82 % 70.63 % 71.85 % 72.79 % 73.22 % 66.28 ± 0.23 %
PCA PROTONET 10 48.04 % 57.05 % 62.46 % 64.63 % 67.61 % 68.98 % 69.71 % 71.78 % 71.75 % 72.42 % 65.44 ± 0.24 %
VANILLA PROTONET 1-10 49.36 % 58.67 % 62.77 % 65.76 % 67.96 % 69.20 % 70.05 % 70.90 % 71.34 % 72.27 % 65.83 ± 0.21 %

Table 4: Classification Accuracy on tiered-imagenet-5-way, with 4 layer CNN embedding network.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 2 3 4 5 6 7 8 9 10 ACCURACY

VANILLA PROTONET 1 47.37 % 55.72 % 59.27 % 61.50 % 63.70 % 64.28 % 65.01 % 66.43 % 67.20 % 67.99 % 61.85 ± 0.29 %
EST PROTONET 1 47.71 % 55.05 % 59.31 % 61.97 % 63.48 % 64.65 % 65.35 % 66.33 % 66.42 % 67.44 % 61.77 ± 0.31%
PCA PROTONET 1 47.72 % 54.60 % 58.69 % 60.73 % 62.78 % 64.92 % 65.88 % 65.88 % 66.11 % 66.87 % 61.42 ± 0.32%

VANILLA PROTONET 5 42.33 % 55.06 % 61.32 % 64.57 % 66.51 % 67.86 % 69.33 % 70.15 % 71.32 % 72.05 % 64.05 ± 0.33 %
EST PROTONET 5 48.85 % 58.38 % 62.75 % 65.16 % 67.24 % 68.39 % 69.89 % 70.99 % 70.87 % 72.09 % 65.46 ± 0.32 %
PCA PROTONET 5 48.34 % 57.44 % 0.79 % 64.96 % 67.07 % 67.93 % 69.08 % 70.40 % 70.38% 71.65 % 64.96 ± 0.31 %

VANILLA PROTONET 10 35.38 % 49.40 % 56.76 % 61.25 % 64.56 % 66.56 % 68.05 % 69.31 % 70.12 % 71.03 % 61.24 ± 0.36 %
EST PROTONET 10 47.33 % 56.75 % 62.80 % 65.78 % 66.84 % 69.07 % 69.98 % 70.82 % 71.99 % 71.20 % 65.26 ± 0.32 %
PCA PROTONET 10 46.55 % 56.61 % 60.81 % 64.01 % 66.53 % 67.70 % 69.18 % 69.83 % 70.62 % 71.22 % 64.31 ± 0.33 %
VANILLA PROTONET 1-10 47.65 % 56.23 % 62.12 % 63.93 % 66.34 % 67.94 % 68.44 % 68.93 % 70.80 % 70.96 % 64.33 ± 0.30 %

Table 5: Classification Accuracy on omniglot-20-way, with 4 layer CNN embedding network.

TESTING SHOTS
MODEL TRAINING SHOTS 1 2 3 4 5 AVERAGE ACCURACY

VANILLA PROTONET 1 95.07 ± 0.17 % 97.89 ± 0.09 % 98.45 ± 0.08 % 98.75 ± 0.06 % 98.89 ± 0.06 % 97.81 ± 0.06 %
VANILLA PROTONET 2 94.59 ± 0.18 % 97.69 ± 0.09 % 98.44 ± 0.07 % 98.69 ± 0.06 % 98.89 ± 0.06 % 97.66 ± 0.07 %
VANILLA PROTONET 3 94.19 ± 0.18 % 97.57 ± 0.09 % 98.30 ± 0.07 % 98.63 ± 0.07 % 98.79 ± 0.06 % 97.50 ± 0.07 %
VANILLA PROTONET 4 93.79 ± 0.18 % 97.41 ± 0.10 % 98.19 ± 0.08 % 98.54 ± 0.07 % 98.75 ± 0.06 % 97.34 ± 0.07 %
VANILLA PROTONET 5 93.42 ± 0.18 % 97.34 ± 0.10 % 98.18 ± 0.07 % 98.53 ± 0.07 % 98.78 ± 0.05 % 97.25 ± 0.07 %
MIXED-k SHOT 1-5 94.84 ± 0.17 % 97.81 ± 0.09 % 98.45 ± 0.07 % 98.70 ± 0.06 % 98.92 ± 0.54 % 97.74 ± 0.06 %
PCA PROTONET 1 94.94 ± 0.16 % 97.81 ± 0.09 % 98.53 ± 0.07 % 98.79 ± 0.06 % 98.85 ± 0.06 % 97.78 ± 0.06 %
EST PROTONET 1 95.11 ± 0.17 % 97.95 ± 0.09 % 98.46 ± 0.07 % 98.77 ± 0.06 % 98.84 ± 0.06 % 97.83 ± 0.06 %
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Table 6: Classification Accuracy on mini-imagenet-5-way, with 7 layer ResNet embedding network.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 2 3 4 5 6 7 8 9 10 ACCURACY

VANILLA PROTONET 1 52.65 % 60.46 % 64.18 % 66.83 % 68.27 % 69.23 % 70.19 % 71.37 % 71.83 % 72.29 % 66.73 ± 0.20 %
EST PROTONET 1 52.56 % 60.63 % 64.50 % 66.53 % 68.33 % 69.36 % 70.04 % 71.21 % 71.37 % 71.60 % 66.61 ± 0.22 %
PCA PROTONET 1 52.78 % 60.35 % 64.05 % 66.24 % 67.51 % 69.64 % 69.85 % 71.13 % 71.88 % 71.79 % 66.52 ± 0.22 %

VANILLA PROTONET 5 47.40 % 58.23 % 64.60 % 67.52 % 69.93 % 71.05 % 72.27 % 72.90 % 73.55 % 74.35 % 67.18 ± 0.23 %
EST PROTONET 5 51.93 % 60.70 % 65.33 % 68.06 % 69.98 % 71.26 % 72.33 % 73.46 % 74.03 % 74.80 % 68.19 ± 0.23 %
PCA PROTONET 5 50.90 % 60.38 % 64.66 % 67.23 % 69.25 % 71.30 % 71.72 % 72.75 % 73.84 % 74.24 % 67.63 ± 0.23 %

VANILLA PROTONET 10 42.20 % 55.98 % 61.67 % 66.08 % 68.23 % 69.95 % 72.20 % 72.56 % 74.04 % 74.54 % 65.75 ± 0.25 %
EST PROTONET 10 51.24 % 60.46 % 65.11 % 67.63 % 70.06 % 71.07 % 72.55 % 73.39 % 73.85 % 74.69 % 68.00 ± 0.23 %
PCA PROTONET 10 50.52 % 59.20 % 64.44 % 66.86 % 69.36 % 71.00 % 71.73 % 73.19 % 73.73 % 73.82 % 67.38 ± 0.23 %
VANILLA PROTONET 1-10 51.74 % 60.10 % 65.13 % 67.12 % 69.09 % 70.53 % 71.57 % 72.22 % 72.99 % 73.63 % 67.41 ± 0.21 %

Table 7: Classification Accuracy on tiered-imagenet-5-way, with 7 layer ResNet embedding network.

TRAINING TESTING SHOTS AVERAGE
MODEL SHOTS 1 2 3 4 5 6 7 8 9 10 ACCURACY

VANILLA PROTONET 1 49.78 % 57.67 % 61.37 % 64.88 % 65.17 % 66.73 % 67.53 % 68.58 % 68.21 % 69.88 % 63.98 ± 0.29 %
EST PROTONET 1 51.19 % 57.61 % 61.85 % 64.43 % 65.48 % 67.64 % 67.69 % 67.76 % 68.51 % 68.20 % 64.04 ± 0.30 %
PCA PROTONET 1 51.38 % 57.89 % 61.68 % 64.32 % 65.96 % 66.15 % 66.83 % 68.00 % 68.58 % 68.77 % 63.95 ± 0.30 %

VANILLA PROTONET 5 47.88 % 58.70 % 63.95 % 66.58 % 69.12 % 71.69 % 71.95 % 73.15 % 73.11 % 73.80 % 66.99 ± 0.31 %
EST PROTONET 5 53.05 % 61.13 % 65.67 % 68.07 % 69.30 % 71.47 % 71.59 % 72.42 % 72.80 % 73.63 % 67.91 ± 0.31 %
PCA PROTONET 5 51.21 % 59.86 % 63.91 % 66.92 % 68.88 % 70.38 % 71.48 % 72.77 % 73.81 % 72.17 % 67.14 ± 0.32 %

VANILLA PROTONET 10 40.84 % 56.24 % 62.10 % 66.28 % 69.37 % 71.43 % 72.09 % 72.91 % 73.56 % 74.72 % 65.95 ± 0.35 %
EST PROTONET 10 50.45 % 60.41 % 65.19 % 68.46 % 69.55 % 70.87 % 72.07 % 72.66 % 73.78 % 74.79 % 67.82 ± 0.32 %
PCA PROTONET 10 50.18 % 59.59 % 64.24 % 67.43 % 69.52 % 70.65 % 71.78 % 72.10 % 72.78 % 73.65 % 67.19 ± 0.31 %
VANILLA PROTONET 1-10 50.74 % 60.03 % 64.17 % 67.26 % 69.28 % 69.56 % 71.07 % 72.41 % 71.99 % 73.01 % 66.95 ± 0.29 %

Table 8: Classification Accuracy on omniglot-20-way, with 7 layer ResNet embedding network.

TESTING SHOTS
MODEL TRAINING SHOTS 1 2 3 4 5 AVERAGE ACCURACY

VANILLA PROTONET 1 96.46 % 98.39 % 98.82 % 99.01 % 99.07 % 98.35 ± 0.05 %
VANILLA PROTONET 2 95.85 % 98.32 % 98.80 % 98.95 % 99.07 % 98.20 ± 0.05 %
VANILLA PROTONET 3 95.35 % 98.15 % 98.73 % 98.91 % 99.03 % 98.03 ± 0.06 %
VANILLA PROTONET 4 95.00 % 98.05 % 98.62 % 98.90 % 98.99 % 97.91 ± 0.06 %
VANILLA PROTONET 5 94.42 % 97.98 % 98.60 % 98.77 % 98.99 % 97.75 ± 0.06 %
VANILLA PROTONET 1-5 96.53 % 98.53 % 98.90 % 99.06 % 99.15 % 98.43 ± 0.05 %
EST PROTONET 1 96.18 % 98.23 % 98.68 % 98.87 % 98.99 % 98.19 ± 0.05 %
PCA PROTONET 1 96.02 % 98.22 % 98.76 % 98.93 % 99.02 % 98.19 ± 0.05 %
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