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ABSTRACT 
In real-world underwater environment, exploration of seabed resources, underwater 
archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most 
important one due to its high information content, non-intrusive, and passive nature. 
However, wavelength-dependent light attenuation and back-scattering result in color 
distortion and haze effect, which degrade the visibility of images. To address this problem, 
firstly, we proposed an unsupervised generative adversarial network (GAN) for generating 
realistic underwater images (color distortion and haze effect simulation) from in-air image 
and depth map pairs. Secondly, U-Net, which is trained efficiently using synthetic 
underwater dataset, is adopted for color restoration and de-hazing. Our model directly 
reconstructs underwater clear images using end-to-end autoencoder networks, while 
maintaining scene content structural similarity. The results obtained by our method were 
compared with existing methods qualitatively and quantitatively. Experimental results on 
open real-world underwater datasets demonstrate that the presented method performs well 
on different actual underwater scenes, and the processing speed can reach up to 125FPS on 
images running on one NVIDIA 1060 GPU. 

1 INTRODUCTION 
In recent years, underwater vision plays an important role in a lot of different applications, such as 
autonomous underwater vehicles (AUVs), underwater fishing, underwater archaeology, intelligent 
underwater weapons, etc. Therefore, underwater image processing has received extensive attention and 
research due to the poor underwater imaging environment and image quality. The main reason is the 
scattering and attenuation of light, the forward scatter leads to low contrast of the image, and the 
backscattering results in haze effect. Besides, the underwater image usually has a blue or green hue due to 
different attenuation levels of light with different wavelengths. 

So far many image enhancement algorithms have been proposed, such as white balance algorithm (Liu Y C, 
1995), gray world algorithm (Rizzi A,  2002), histogram equalization (Pizer S M, 1987) and fusion 
algorithm (Ancuti C, 2012), however, these methods are not based on the physical model of underwater 
imaging, so it is challenging and ineffective to apply these algorithms to different underwater scenes directly. 

A simplified underwater optical imaging model illustrated in Figure 1 is used to describe an underwater 
scene. 𝐼𝐼 (𝑥𝑥) is the observed intensity at pixel 𝑥𝑥, which consists of the scene radiance 𝐽𝐽(𝑥𝑥) blended with 
the global Ambient light (𝐵𝐵) according to the transmission map 𝑇𝑇(𝑥𝑥). 𝑇𝑇(𝑥𝑥) describes the percentage of the 
scene radiance captured by the camera and the radiance which is not scattered or absorbed, which means that 
a closer scene point has a larger value of 𝑇𝑇(𝑥𝑥). 

Many underwater image enhancement algorithms based on above imaging models have been proposed. For 
instance, He et al (He K, 2010) proposed a dark channel prior (Dark channel prior, DCP) dehazing algorithm 
based on many experiments. Chiang et al (Chiang J Y, 2011) apply DCP model on underwater image 
dehazing problem. These traditional methods have to derive the transmission map according to the imaging 
model and complex formulas, then the restored image is obtained according to the inverse imaging 
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model and complex formulas, then the restored image is obtained according to the inverse imaging model. 
These traditional methods are not intelligent, it is very time-consuming to calculate the characteristics of the 
image. 

In these years, the deep learning network developed rapidly, especially the convolutional neural network 
(CNN), which is used in image classification (Krizhevsky A, 2012), object detection (Redmon J, 2016), 
and motion recognition (Kuehne H, 2011), the performance is much better than traditional methods. 
However, the current research on underwater image enhancement using CNN is limited due to lack of 
underwater datasets. It is difficult to obtain the image without water in real-world underwater scene at the 
same position using same imaging parameters. In order to solve this problem, some model based on 
generative adversarial network (GAN (Goodfellow I, 2014)) are used to generating realistic underwater 
images. For instance, CycleGAN (Zhu J Y, 2017) generates realistic underwater images through style 
transfer. WaterGAN (Li J , 2017) takes the in-air image, depth map and noise vector as input, and then a 
camera model is applied to generate underwater style images. Based on our experimental results, the image 
generated by WaterGAN has color noise due to noise vector as well as no haze effect, and the camera model 
is not suitable for real underwater scenes. 

Therefore, we proposed an improved unsupervised GAN to generate realistic underwater images from clear 
in-air images based on underwater imaging model, which can simulate underwater image formation process. 
Then, U-Net (Ronneberger O, 2015) is trained to learn the mapping function between underwater images 
and clear images through synthetic datasets. Finally, the performance of the proposed algorithm is validated 
on the real underwater datasets. The experimental results show that the proposed method can recover the 
underwater image while maintaining structural similarities. Apart from this, the effects of different loss 
functions in U-net are compared, the most suitable loss function for underwater image restoration is suggested 
based on the comparison (This part can be found in APPENDIX), which provides a new idea for underwater 
image enhancement. 
 

 
Figure 1: The simplified underwater optical imaging model. The reflected light of the scene (J) propagates 
the distance of scene range to the camera (I) in water, and the scattered light generated by the suspended 
particles in the water reaches the camera (I). The irradiance perceived by the camera is suffered from two 
factors: light attenuation and light scattering. 

2 OUR PROPOSED METHOD 
To generate the realistic underwater images (color casts, low contrast and haze-like effects), we proposed an 
improved underwater generative adversarial network (UWGAN), which takes in-air RGB-D images and a 
sample set of underwater images of a specific survey site as input to train a generative network adversarially. 
These synthetic underwater images, which were used to train a restoration network based on U-Net 
(Ronneberger O, 2015) that can compensate for water property effects in a specific location in real-time.  
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2.1 DATASET 

The in-air datasets we used are images of indoor scenes that has been labeled in the NYU Depth dataset V1 
(Silberman N, 2011) and V2 (Silberman N, 2012), which contain a total of 3733 RGB images and 
corresponding depth maps. The underwater dataset contains real-world underwater images collected from 
marine organisms’ farms (including scallops, sea cucumbers, sea urchins, etc.), which can be roughly divided 
into two categories, one contains near-field green hued images (RealA), and the other contains blue-green 
hued images of far-field scenes (RealB). We also use underwater open datasets (Li C, 2019) (RealC) as 
testing sets, where RealA contains 2069 underwater images, RealB contains 2173 underwater images, and 
RealC contains 890 underwater images. Several typical images of the datasets are shown in Figure 2. 
 

 
Figure 2: Typical images of datasets. (a)-(b) are color images and depth maps of NYU-Depth datasets, (c) are 
sample images of RealA dataset, (d) are sample images of RealB dataset, (e) are sample images of RealC 
dataset. 

2.2 NETWORK ARCHITECTURE 

Firstly, underwater style images are generated based on underwater imaging model, whose parameters are 
estimated through adversarial learning using GAN, as shown in Figure 3. Based on the underwater imaging 
model, underwater images can be viewed as consisting of two parts, one is the direct attenuation image and 
the other is the back-scattering image. Real-world underwater images of different water types are input into 
the model, then synthetic underwater images of the corresponding style are obtained as output. Secondly, U-
Net is used as a restoration network to enhance underwater images. 

2.2.1   UWGAN FOR GENERATING REALISTIC UNDERWATER IMAGES 

The underwater optical imaging process can be mathematically described using the underwater imaging 
model (Jerlov N G, 1976), which is widely accepted by recent underwater image enhancement approaches. 

𝐼𝐼(𝑥𝑥) = 𝐷𝐷(𝑥𝑥) + 𝐵𝐵(𝑥𝑥) 
where, 𝐼𝐼(𝑥𝑥) is the light intensity of each pixel 𝑥𝑥. 𝐷𝐷(𝑥𝑥) and 𝐵𝐵(𝑥𝑥) respectively represent the intensity of 
each pixel 𝑥𝑥 in the direct attenuation image and the back-scattering image. Based on this model, a standard 
GAN including a generator G and a discriminator D is trained to generated realistic underwater style images. 
The first item of underwater imaging model accounts for range-dependent attenuation of light, whose 
mathematical form is as follows: 

𝐷𝐷(𝑥𝑥) = 𝐽𝐽(𝑥𝑥)𝑇𝑇(𝑥𝑥) 

𝑇𝑇(𝑥𝑥) = 𝑒𝑒−𝛽𝛽(𝜆𝜆)𝑑𝑑(𝑥𝑥) 
where, 𝐽𝐽(𝑥𝑥) is the input in-air image, or the initial irradiance that not propagating through the water, 𝑇𝑇(𝑥𝑥) 
is the transmission map of the scene, and 𝐷𝐷(𝑥𝑥) is the light reached camera sensor subjected to attenuation 
in the water. 𝛽𝛽  is attenuation coefficient estimated by the network based on the wavelength of light, 𝜆𝜆 
represents three color channels of RGB image, and 𝑑𝑑(𝑥𝑥) is the range between the scene and the camera. 
The attenuation coefficient depends on water type and depth. We limit 𝛽𝛽 to greater than 0, all depth maps 
and images are resized to 256x256 before feed into the network. 
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The direct attenuation image appears similar color style compared to real-world underwater images, but 
without haze effect. As shown in Figure 2, obvious haze effect can be observed on real underwater images. 
The deeper the scene, the more obvious the haze effect. Back scattering creates a characteristic haze effect in 
underwater images and is modeled by: 

𝐵𝐵(𝑥𝑥) = 𝐴𝐴∞[1 − 𝑇𝑇′(𝑥𝑥)] 
𝐴𝐴∞ = 𝐴𝐴𝑇𝑇(𝑥𝑥) 

where, 𝐴𝐴∞ is a constant parameter dependent on wavelength of light, 𝐴𝐴 is the atmospheric ambient light 
estimated by the network, and 𝐵𝐵(𝑥𝑥) represents the light scattered into the camera sensor, which creates haze 
effect in underwater image. In order to distinguish from direct attenuation item, the transmission map here is 
𝑇𝑇′(𝑥𝑥). For each image, the transmission map is estimated based on equation above using the depth 𝑑𝑑 and 
the medium attenuation coefficient 𝛽𝛽 . 𝛽𝛽  is set by default to 1, which corresponds to moderate and 
homogenous haze. To make the back-scattering image appear similar hue of real-world underwater images, 
we multiply 𝐴𝐴 by the 𝑇𝑇(𝑥𝑥). Moreover, we initialize the atmospheric ambient light 𝐴𝐴 to a certain gray value 
[220, 220, 220], so that we obtain back-scattering image of RGB channels respectively, each of the three 
outputs are concatenated together, and finally generate a back-scattered image with dimensions of 256x256x3. 
Finally, we add this image, 𝐵𝐵(𝑥𝑥), to 𝐷𝐷(𝑥𝑥) to get the final output 𝐼𝐼(𝑥𝑥). 
 

 
Figure 3: UnderwaterGAN architecture. UWGAN takes color image and its depth map as input, then it 
synthesizes underwater realistic images based on underwater optical imaging model by learning parameters 
through generative adversarial training. 

2.2.2   UNDERWATER IMAGE RESTORATION BASED ON U-NET 

 
Figure 4: Proposed U-net Architecture for underwater image restoration and enhancement. 
 
U-Net is used for color restoration and haze removal of underwater images. A detailed description of U-Net 
architecture proposed in the paper is shown in Figure 4. Firstly, a degraded underwater RGB image is resized 
to 256x256 and then fed into the encoder part of U-net. In the encoder, the image is finally downsampled into 
a 32x32x256-dimensional latent vector through a series of convolution and max-pooling operations. In each  



 
Under review as a conference paper at ICLR 2020 

5 
 

 

downsampling stage, 3x3 convolution with a stride of 1 followed by a rectified linear unit (ReLU) activation 
function are conducted twice, then a 2x2 max pooling with a stride of 2 is used. The number of feature maps 
are doubled at each stage. In the decoder part, upsampling is done from the latent high dimensional vector 
back to the original input size sequentially. After each upsampling operation, output tensor is concatenated 
to the corresponding symmetric layer in the encoder side, then followed by two consecutive convolution 
layers and a rectified linear activation layer. The number of feature maps is gradually reduced to three 
channels.  

3 EXPERIMENTAL SETUP 
The training settings of our proposed method are presented in details in this section. Our models are trained 
in the computer with the following configurations: Intel i7 HQ 8700 processor, 16GB RAM，NVIDIA TITAN 
X 12GB graphics card. 

Firstly, UWGAN is trained to synthesize underwater-style images using the NYU-Depth Dataset, RealA and 
RealB datasets. Our model was trained for 30 epochs, using Adam optimizer with a learning rate of 0.0001, 
and the momentum term was set to 0.5. The batch size was set to 64, the input image size 480x640, and we 
resize the output image size to 256x256, which is to facilitate the following U-net restoration network training. 
Secondly, U-net is trained as an image restoration network using image pairs synthesized above. The batch 
size was set to 32 and the output image size is 256x256. The learning rate is set to 0.0001 according to Adam 
optimizer, our model is trained for 200 epochs. 

4 RESULT AND DISCUSSION 
In this section, we quantitatively and qualitatively compare our proposed method with several representative 
underwater image enhancement algorithms, including Unsupervised Color Correction Method (UCM) (Iqbal  
K, 2010), Histogram equalization (HE) (Hummel R, 1975), Multi-Scale Retinex with Color Restoration 
(MSRCR) (Rahman Z, 1996), Fusion (Ancuti C, 2012), Underwater Dark Channel Prior (UDCP) (Drews 
P, 2013), Image Blurriness and Light Absorption (IBLA) (Peng Y T, 2017), Underwater Color Correction 
using GAN (UGAN) (Fabbri C, 2018), WaterGAN-color-correction (WaterGAN) (Li J, 2017). 

We employ a non-reference metric, UIQM (Panetta K, 2015), for the quantitative assessment of underwater 
image quality on RealA, RealB, and RealC datasets as no ground truth scenes are available as the reference 
for real-world underwater images. Besides, we employ three full-reference metrics, namely MSE, PSNR 
(Hore A, 2010), SSIM, for assessment image quality on synthetic datasets. To reasonably assess the time 
spent on various algorithms, we resize all images to 256x256, which provides a stable output for 
enhancements in later experiments. 

Firstly, we compare the capabilities of different methods to improve the image visibility on the RealA, RealB, 
and RealC datasets. The qualitative comparison is shown in Figure 5 and 6. Most methods can improve the 
quality of the image with a slight haze effect to some extent. UCM, HE, and Fusion can enhance the 
brightness and contrast of the image, but are less uniform for color restoration and seem to be over-enhanced 
in some areas of the image. The results of MSRCR appear to have a suitable hue but lack sufficient saturation 
and contrast. UDCP and IBLA do not recover well for green-toned images, they make the image darker but 
enhance the contrast of the image. UGAN, WaterGAN can enhance the contrast of the image but share the 
problem of uneven color restoration as well as introduce some artifacts, which destroys the structural 
information of the image. The proposed method can restore the color of the image as well as a proper 
brightness and contrast. 

Table 1 and Table 2 quantitively show the scores of sample images in Figure 5 and Figure 6 respectively. 
It can be seen that our proposed method has achieved a higher score. In addition, the average quantized scores 
evaluated on RealA, RealB, and RealC datasets are shown in Table 3. It can be seen that our proposed method 
achieves the best score in terms of color restoration. On all datasets, we can achieve higher scores on other 
metrics. 
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Figure 5: Qualitative comparisons for samples from the real-world underwater image dataset RealC. (a)-(j) 
represent the samples selected from RealC. 
 
Table 1: Quantitative UIQM values of samples in Figure 5. The greater the UIQM values, the better the 
enhanced results, with blue representing the maximum and green representing the minimum. 
 
Assessments Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

UIQM 

Input 5.475 4.995 4.171 3.523 4.554 4.842 4.868 4.459 4.195 4.619 
UCM 5.253 5.320 5.200 4.447 4.870 5.219 5.181 5.130 4.672 5.158 
HE 5.080 5.369 4.814 4.779 4.907 4.925 5.174 5.215 4.493 5.247 

MSRCR 4.047 4.636 5.229 4.135 4.516 4.528 4.465 4.259 4.022 4.684 
Fusion 5.329 5.460 5.095 4.546 4.970 5.181 5.295 5.220 4.544 5.145 
UDCP 4.820 4.704 4.727 4.836 5.255 4.440 4.435 3.830 3.757 5.385 
IBLA 5.468 5.302 3.867 3.559 20.606 4.861 4.941 3.537 3.659 4.999 

UGAN 5.326 5.287 5.325 4.204 4.846 5.022 5.126 4.947 4.353 5.122 
WaterGAN 5.024 4.934 4.833 2.763 4.594 4.414 4.547 4.879 3.953 4.700 

Ours 5.602 5.387 5.379 4.219 4.820 5.327 4.868 5.110 3.922 5.018 
 
UIQM is the non-reference assessment metric whose quantitative results depend largely on the value of scale 
factors. Context and structural information of the image is not considered in these kinds of non-reference 
evaluation metrics. Although some enhanced images can get higher score, the visual quality is poor, the 
reason is that the metric is calculated from the pixels. Therefore, we also employ three full-reference 
assessment metrics MSE, PSNR, and SSIM to evaluate the performance of different methods on synthetic 
datasets without training. The comparison results in Table 4 demonstrate that our proposed method achieves 
the best results in terms of MSE, PSNR, and SSIM. 

For the processing speed performance of algorithms, the average testing time of different methods are 
compared on the computer with the same configuration: Intel i7-8750H CPU, 16GB RAM, and GTX1060  
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6G GPU, and the results are shown in Table 5. The method we proposed has the fastest processing speed 
compared to other methods. Moreover, the method proposed in this paper has the fewest parameters 
compared to other deep-learning-based methods. UGAN employs many convolution layers with 512 kernels, 
which causes that there are too many network parameters. WaterGAN employs multiple networks, resulting 
in slow processing speed. 
 

 
Figure 6: Qualitative comparisons for samples from real-world underwater image dataset RealA and RealB. 
(a)-(j) represents the samples selected from RealA and RealB. 
 
Table 2: Quantitative UIQM values of samples in Figure 6. The greater the UIQM values, the better the 
enhanced results, with blue representing the maximum and green representing the minimum. 
 
Assessments Methods (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

UIQM 

Input 4.865 4.316 4.923 4.516 3.854 4.837 3.740 4.320 4.819 3.468 
UCM 5.127 5.093 4.999 5.165 4.558 5.056 4.028 4.925 4.773 4.634 
HE 4.942 5.189 5.320 5.016 4.809 5.153 4.608 4.910 4.892 4.618 

MSRCR 4.747 4.700 4.096 4.908 4.426 4.039 3.906 4.067 3.606 4.318 
Fusion 5.280 5.131 5.063 5.184 4.485 5.030 4.023 4.811 4.961 4.557 
UDCP 5.389 5.256 4.932 4.868 4.731 5.406 4.722 5.180 4.962 5.131 
IBLA 5.158 4.796 4.560 4.626 3.978 4.858 3.873 4.494 3.965 4.139 

UGAN 5.249 5.185 5.040 4.800 4.832 5.026 4.561 5.601 4.934 4.675 
WaterGAN 5.003 4.537 4.756 4.636 4.212 4.524 3.801 4.323 4.846 4.223 

Ours 5.391 5.058 4.979 4.891 4.834 5.015 4.034 4.936 5.140 4.377 
 
Table 5: Testing time and parameters of generator of different enhancement methods 

 
 UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 

Testing time (s) 1.284 0.009 0.076 0.118 2.051 4.561 0.022 10.347 0.008 
Params (M) - - - - - - 54.41 28.62 1.93 
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According to above analysis, among all competitive methods we tested, our proposed method performs a 
better appearance across all assessments, demonstrating its effectiveness and robustness. We also found that 
testing results on real-world datasets are not as good as on the synthetic datasets, which can be improved by 
adding more training data. 
 
Table 3: Average quantitative UICM, UISM, UIConM and UIQM values on real-world underwater image 
datasets RealA, RealB and RealC. The greater the values, the better the enhanced results, with blue 
representing the maximum 
 
Datasets Assessments Input UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 

RealA 
UICM -0.332 -0.059 0.003 -0.006 -0.127 -0.300 -0.233 -0.074 -0.079 0.006 
UISM 7.151 7.092 7.194 6.934 7.000 7.073 7.148 7.045 6.820 7.096 

UIConM 0.593 0.694 0.812 0.537 0.716 0.739 0.679 0.770 0.634 0.675 
UIQM 4.22 4.574 5.027 3.967 4.622 4.721 4.533 4.832 4.280 4.508 

RealB 
UICM -0.273 0.029 0.016 -0.006 -0.0350 -0.051 -0.193 -0.120 -0.151 0.091 
UISM 7.169 7.053 7.120 6.944 6.910 7.080 7.049 6.957 6.821 6.992 

UIConM 0.506 0.730 0.772 0.654 0.737 0.837 0.703 0.804 0.643 0.708 
UIQM 3.920 4.695 4.864 4.387 4.675 5.080 4.590 4.927 4.309 4.598 

RealC 
UICM -0.223 -0.023 -0.010 0.006 -0.110 -0.085 -0.136 -0.089 -0.121 0.044 
UISM 7.310 7.309 7.312 7.348 7.318 7.428 7.305 7.117 6.895 7.282 

UIConM 0.674 0.740 0.743 0.493 0.764 0.964 1.207 0.810 0.824 0.780 
UIQM 4.561 4.803 4.816 3.932 4.891 5.636 6.469 4.996 4.979 4.942 

 
Table 4: Quantitative results evaluation on synthetic dataset by full-reference metrics: MSE, PSNR, SSIM 
values. The smaller the MSE values, the greater the PSNR and SSIM values, the better the enhanced results, 
with blue representing the best results 
 
Datasets Assessments Input UCM HE MSRCR Fusion UDCP IBLA UGAN WaterGAN Ours 

Synthesis 
MSE 0.042 0.029 0.045 0.059 0.027 0.072 0.058 0.026 0.014 0.002 
PSNR 20.68 23.46 18.315 13.25 23.13 17.37 19.10 20.63 20.25 30.31 
SSIM 0.869 0.944 0.845 0.580 0.933 0.847 0.832 0.779 0.842 0.966 

5 CONCLUSION 
Based on the underwater optical imaging formation model, a generative adversarial network for synthesizing 
realistic underwater-style images using NYU-Depth dataset is presented in this paper. Then, U-net with a 
plurality of combined loss function is used for underwater image restoration and enhancement. The method 
we proposed can correct color effectively and produce visually pleasing enhanced results, which demonstrate 
its effectiveness and robustness. An ablation study is conducted to demonstrate the effect of different loss 
functions on underwater image restoration and enhancement, which is helpful for future research on 
underwater image restoration based on deep learning algorithms.  
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A LOSS FUNCTIONS 
The most common loss function for image restoration is L2 error. However, which loss function is suitable 
for underwater image enhancement has not been studied. Inspired by a related article, the effect of different 
loss functions in U-net is studied in this paper. Table 6 shows the loss functions we used. 

In mathematical formula, 𝑥𝑥 is an index of pixels in region 𝑋𝑋, 𝑔𝑔(𝑥𝑥) is pixel value in region 𝑋𝑋 of the image 
reconstructed by U-net and 𝑟𝑟(𝑥𝑥) is the pixel value of corresponding ground truth. 𝑥𝑥 is the central pixel 
value of region 𝑋𝑋 . ∇𝑔𝑔(𝑥𝑥) , ∇𝑟𝑟(𝑥𝑥)  respectively represent the gradient of reconstructed images and clear 
images. After several experiments and observations of the best reconstruction results, we set 𝛼𝛼 to 0.8 in this 
paper. 
 

Table 6: Different loss functions for underwater image restoration. Including some basic loss functions 
and their combinations. 
 

Name Mathematical formula 

The 𝐿𝐿1 loss error ℒ𝑙𝑙1(𝑋𝑋) =
1
𝑁𝑁
� |𝑔𝑔(𝑥𝑥) − 𝑟𝑟(𝑥𝑥)|
𝑥𝑥∈𝑋𝑋

 

The 𝐿𝐿2 loss error ℒ𝑙𝑙2(𝑋𝑋) =
1
𝑁𝑁
��𝑔𝑔(𝑥𝑥) − 𝑟𝑟(𝑥𝑥)�2

𝑥𝑥∈𝑋𝑋

 

The 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss error ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) =
1
𝑁𝑁
� 1 − 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝑥𝑥)
𝑥𝑥∈𝑋𝑋

 

The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss error ℒ𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 1 −𝑆𝑆𝑆𝑆_𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆(𝑥𝑥) 

The 𝐺𝐺𝐷𝐷𝐿𝐿 error ℒ𝑔𝑔𝑑𝑑𝑙𝑙(𝑋𝑋) =
1
𝑁𝑁
� |∇𝑔𝑔(𝑥𝑥) − ∇𝑟𝑟(𝑥𝑥)|
𝑥𝑥∈𝑋𝑋

 

𝐿𝐿1 + 𝐿𝐿2 ℒ𝑙𝑙1_𝑙𝑙2(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑙𝑙2 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 
𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 ℒ𝑙𝑙1_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 

𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 ℒ𝑙𝑙1_𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 
𝐿𝐿1 + 𝐺𝐺𝐷𝐷𝐿𝐿 ℒ𝑙𝑙1_𝑔𝑔𝑑𝑑𝑙𝑙(𝑋𝑋) = 𝛼𝛼 ⋅ ℒ𝑔𝑔𝑑𝑑𝑙𝑙 + (1 − 𝛼𝛼) ⋅ ℒ𝑙𝑙1 

B ABLATION STUDY 
Ablation study is mainly to reveal the effects of different loss functions. We use different loss functions to 
train the network and test it on RealC, and synthetic datasets. 
 

 
Figure 7: The visual quality of the sample image in RealC dataset with different loss functions. From (a) to 
(i) are respectively enhanced results of the loss function 𝐿𝐿1, 𝐿𝐿2, 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝐺𝐺𝐷𝐷𝐿𝐿, 𝐿𝐿1 + 𝐿𝐿2, 𝐿𝐿1 +
𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, 𝐿𝐿1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆, and 𝐿𝐿1 + 𝐺𝐺𝐷𝐷𝐿𝐿. 
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The sample image is selected from the RealC dataset, as shown in Figure 7, the enhanced results range from 
(a)~(i) are obtained with different loss functions, and images in the second row show the details in the red 
box area of the image. As can be seen from the results in the second row, (a), (b), (f) appear striped artifacts. 
(c), (d), (g) cause color unevenness. The details of (e) are natural but it lacks sufficient saturation. (h), (i) 
show proper enhanced results, the color in (h) is more vivid but with slightly striped artifacts. 

The enhanced result using the 𝐿𝐿1  or 𝐿𝐿2  loss function appears stripe-like artifacts while the 𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆  or 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐼𝐼𝑆𝑆 loss function causes color unevenness. The enhanced result of the 𝐺𝐺𝐷𝐷𝐿𝐿 loss function is natural 
but lacks sufficient saturation. We calculated the MSE, PSNR, and SSIM metrics on the synthetic dataset. 
The quantitative scores in Table 7 demonstrate that a combination of multiple loss functions can achieve 
better enhancement results. 
 
Table 7: Quantitative results of different loss functions evaluation on synthetic dataset by full-reference 
metrics: MSE, PSNR, SSIM values. 
 
Datasets Assessments Input L1 L2 SSIM MSSSIM GDL L1+L2 L1+SSIM Ll+MSSSIM L1+GDL 

Synthesis 
MSE 0.0417 0.002 0.002 0.002 0.002 0.009 0.001 0.001 0.002 0.002 
PSNR 20.68 29.91 28.72 29.99 28.27 25.21 32.97 32.82 30.31 30.81 
SSIM 0.867 0.962 0.959 0.974 0.960 0.944 0.971 0.979 0.966 0.968 
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