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ABSTRACT

Recently, neural-network based forward dynamics models have been proposed
that attempt to learn the dynamics of physical systems in a deterministic way.
While near-term motion can be predicted accurately, long-term predictions suf-
fer from accumulating input and prediction errors which can lead to plausible but
different trajectories that diverge from the ground truth. A system that predicts
distributions of the future physical states for long time horizons based on its un-
certainty is thus a promising solution. In this work, we introduce a novel robust
Monte Carlo sampling based graph-convolutional dropout method that allows us
to sample multiple plausible trajectories for an initial state given a neural-network
based forward dynamics predictor. By introducing a new shape preservation loss
and training our dynamics model recurrently, we stabilize long-term predictions.
We show that our model’s long-term forward dynamics prediction errors on com-
plicated physical interactions of rigid and deformable objects of various shapes
are significantly lower than existing strong baselines. Lastly, we demonstrate how
generating multiple trajectories with our Monte Carlo dropout method can be used
to train model-free reinforcement learning agents faster and to better solutions on
simple manipulation tasks.

1 INTRODUCTION

Figure 1: Uncertainty in physics.
Small errors in the input and pre-
diction can lead to significantly
different object trajectories. The
orange ball could either end up on
the left or right side of the wedge.

Learning to predict the physical motion of objects from data
is an open area of research. Yet, recent (hierarchical) relation
network based forward dynamics predictors (Battaglia et al.,
2016; Chang et al., 2016; Mrowca et al., 2018; Li et al., 2019)
seem to be a promising alternative to conventional physics en-
gines that are key components of robot control, computer vi-
sion and reinforcement learning (RL) systems. Physics sim-
ulators, both traditional numerical solvers and learned predic-
tion models, still suffer from insufficient accuracy in challeng-
ing scenarios. Small errors in the input and model can lead to
dramatically different object trajectories. Take the orange ball
that is falling on the blue wedge in Figure 1. Depending on
where the orange ball starts or what bias the model has, the
ball could either end up on the left or right side. Both are valid
outcomes. However, deterministic physics engines will either
predict one trajectory or the other.

While it is important to reduce errors in each prediction, it is
also important to acknowledge that uncertain situations might
not have one but multiple possible outcomes. In machine
learning, uncertainty-aware neural networks avoid deterministic point estimates by predicting distri-
butions or by randomly sampling in the prediction interval. In the context of dynamics predictions,
we propose to use Monte Carlo sampling based dropout on the model weights of a learned forward
dynamics predictor to model uncertainty and sample multiple plausible trajectories for an initial
state. To stabilize each trajectory and reduce error accumulation over long-time horizons, we use
a state-invariant recurrent training mechanism. By feeding back predictions as input over multiple
time steps, the model becomes more robust to its own prediction errors without the need for a hidden
state. Finally, we introduce a new shape loss on the model predictions that constrains the pairwise
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distances between objects and object parts and greatly improves shape preservation and the stability
of trajectories over long-time horizons. Our final fully differentiable forward dynamics model is able
to sample multiple, more accurate and more stable trajectories over long-time horizons compared to
existing baselines.

An accurate forward dynamics predictor that is able to predict a distribution of future states can be
of great importance for robotic control. In model-free reinforcement learning, accomplishing tasks
through random exploration is sample inefficient and hardly generalizable. Model-based methods
promise greater generalization abilities, but suffer from deterministic world models that are hard to
learn and fail in stochastic environments. With our stochastic forward dynamics predictor, we can
move part of the sampling process into the environment, physically grounding the random explo-
ration of model-free agents. As the agent is able to observe multiple trajectories at a given state
without actually executing multiple actions, the sample efficiency is greatly improved while the
stochasticity of each state and action is implicitly learned. We show on several control experiments
that a model-free agent trained in our stochastic forward dynamics environment is not only able to
better explore and learn faster but often also comes to better solutions than agents trained in deter-
ministic environments.

In summary, (1) we propose a stochastic differentiable forward dynamics model that is able to gen-
erate multiple plausible trajectories via Monte Carlo (MC) based graph-convolutional dropout. (2)
We greatly improve the accuracy and stability of long-term predictions by proposing a new fully-
connected shape loss term and training the model recurrently end-to-end in a state-invariant way.
(3) We demonstrate how our stochastic dynamics model can be used to improve the efficiency and
performance of model-free reinforcement learning agents on several physical manipulation tasks.

2 RELATED WORK

Physical dynamics prediction has long been an open research questions (Fragkiadaki et al., 2015;
Agrawal et al., 2016; Li et al., 2016; Finn et al., 2016; Lerer et al., 2016; Mottaghi et al., 2016a;b;
Haber et al., 2018; Tran et al., 2015; 2016; Qi et al., 2017a;b; Byravan & Fox, 2017). Recent
advancements in deep learning allowed for emergence of successful systems that aim at solving
this problem by learning from data. Battaglia et al. (2016) and Chang et al. (2016) proposed a
graph-based approach with object-centric and relation-centric representations, and a neural network
architecture that predicts object dynamics and interaction between objects in complex 2D scenes.
Similarly, Mrowca et al. (2018) and Li et al. (2019) implement a relational network with particle
representation for objects, but extend this approach to 3D scenes introducing hierarchical graph
representations for computational tractability. These works rely however on a single step prediction
during training. We propose a recurrent training scheme on multiple step predictions and show lower
long-term error in our experiments.

Simulating future plausible object states under physical and user constraints is a commonly ad-
dressed challenge in computer graphics. Chenney & Forsyth (2000) analysed uncertainties in their
simulation model for multi-body scenarios and used a Markov chain Monte Carlo algorithm to
predict multiple trajectories. Twigg & James (2007) based their work on psychological findings
about human errors in predicting object dynamics and simulated multiple future environment states
by applying external random impulses to colliding bodies. Trajectories generated by both of the
mentioned methods are visually plausible to human, but can often diverge from the real physical
behavior and require extensive expertise to choose simulation parameters that ensure convergence.
Huberman & Struss (1992) support the psychological theory behind the latter work, further suggest-
ing that human predictions of non-linear dynamic effects such as collisions are far from perfect, and
thus allow for a less advanced perturbation methods. Han et al. (2013) draw a line between physical
and visual plausibility naming further factors improving the visual plausibility of a scenario such
as the number of simultaneous collisions or homogeneity of colliding objects. In physical systems,
situations that are non-intuitive to human can occur due to an unobservable state of the environment,
e.g an object colliding with a fast rotating wheel or an unexpected behavior of a compressed spring.
This opposes the goal of computer graphics were visual plausibility becomes a stronger requirement
(Barzel et al., 1996) and motivates the search for more sophisticated methods for sampling probable
states in physics engines.
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Multiple techniques allow neural networks to incorporate uncertainty in model predictions. Mean-
Variance-Estimation (Nix & Weigend, 1994) is a method that circumvents point estimates in the
output space by directly predicting a normal distribution. Um et al. (2018) used this method along
with a particle-based representation for splash prediction. In this case, assuming independent ve-
locity distributions for each splash particle produced visually pleasing results. In the case of solid
body simulation, this approach lead to incorrect shape predictions due to the lack of space-time
consistency between object particles, that are present in real objects. Stochastic regularization as a
way of capturing model uncertainty is an active field of research with scarce theoretical foundations.
Nonetheless, we see a growing number of practical applications of this group of algorithms in numer-
ous research areas (Gal et al., 2017; Bhattacharyya et al., 2017; Kendall et al., 2015; Kampffmeyer
et al., 2016). Gal & Ghahramani (2016) proposed applying dropout during training and inference
as a Bayesian inference approximation with prediction variance as the measure of the epistemic un-
certainty. A clear advantage of this method is the ability to visualize the results of each predicted
trajectory. On the other hand the computational cost grows linearly with the number of samples.

Prior work has shown that injecting noise into neural networks is successful not only as a regulariza-
tion method (Noh et al., 2017; Kang et al., 2016) but also in the training of RL agents. In model-free
RL, temporal credit assignment, sparse reward, and exploration-exploitation trade-offs present sig-
nificant challenges. Long episodes amplify both problems of credit assignment and reward sparsity,
where naive exploration causes exponentially growing sample inefficiency (Osband et al., 2016).
Reward shaping is one counter measure that improves credit assignment, and consequently sample
efficiency, in model-free RL (Grześ, 2017; Zou et al., 2019). Designing shaping functions usually
requires expert knowledge and hand-engineering, while also imposing constraints on how the agent
solves the task. Such constraints may prevent the agent from solving the task optimally. Predicting
a set of trajectories can be framed here as a reward relaxation method with the clear advantage of
depending on a single parameter - dropout rate. Fortunato et al. (2017) introduced parametric noise
learned with gradient descent into action prediction network, which led to significantly better explo-
ration and higher rewards without creating large computational overhead. This method shows clear
potential for stochastic methods to improve training efficiency in reinforcement learning.

3 APPROACH

Force Module

Collision Module

History Module

Hierachical Effect
Propagation Module

Next State
Prediction ModuleG1,2 G3

HRN
Figure 2: Hierarchical Relation Network (HRN) architecture. Force, collision and past effects
on particles are computed and the propagated through each object hierarchy. The propagated effects
are used to predict the next particle positions. Gray blocks represent graph convolutional effect
propagation modules.

Our stochastic forward dynamics model is based on the deterministic hierarchical relation network
(HRN) as proposed by Mrowca et al. (2018) and depicted in Figure 2.

The HRN takes hierarchical physics graphs G as input which consist of hierarchical object graphs.
Nodes at each hierarchical level represent the state (position, mass, velocity) of an object, an ob-
ject part, an object subpart and so forth down to object particles. Edges within each object graph
describe material and shape properties. Edges across object graphs describe physical relations be-
tween objects such as contact forces or magnetic forces. Hierarchical physics graphs form a natural
description of the full physical scene modelling both within-object and across-object properties.

Given a sequence of the past two hierarchical physics graphs G1,2, the HRN first computes pairwise
across-object(-part) effects (force, collision and history effects) using graph-convolutional mod-
ules. The compounded effects are then propagated through each object hierarchy by the graph-
convolutional hierarchical effect propagation module. Using the propagated effects and the current
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object (part) states, the HRN finally outputs the object (part) states at the next time step. To generate
multi-step trajectory predictions, the next time step prediction is fed back recurrently as input to the
model during inference time until the desired prediction length is reached.

In order to make the HRN stochastic and sample multiple plausible trajectories for a given initial
state, we introduce a Monte Carlo based dropout on the activations of the graph convolutional colli-
sion and force modules. We greatly improve model predictions by introducing a new fully-connected
shape loss term and a state-invariant recurrent training procedure. Our final model creates realistic
trajectories that are suited to train a model-free agent for manipulation tasks.

3.1 STABLE LONG PREDICTIONS VIA RECURRENT TRAINING AND SHAPE CONSTRAINTS

Stable realistic long-term predictions are crucial for planning tasks. While HRN predictions are ac-
curate for a large number of complex physical scenarios, we identify that objects fall apart relatively
quickly along boundaries of object parts for two reasons.

First, the HRN’s loss function is designed to minimize the error between predicted and ground truth
states while imposing a group shape constraint. As shown in the left panel of Figure 3, this group
shape loss optimizes the pairwise distances between object nodes within a group to be the same as
the ground truth pairwise distances. It does not impose that the pairwise distances across groups
are the same as the ground truth distances, which leads to unrealistic deformations between groups
as depicted in Figure 5. We therefore introduce a stronger fully-connected shape constraint (Figure
Figure 3, right) that imposes pairwise distances to be the same as ground truth pairwise distances
across all possible node combinations, which improves shape preservation significantly.

Second, the HRN’s prediction errors accumulate exponentially as predictions are fed back in recur-
rently during inference to generate multi-step trajectory predictions. However, during training the
HRN is only supervised with the next ground truth state and thus never gets its own perturbed pre-
dictions as input. To make the HRN robust against prediction errors, we therefore propose to train
the model recurrently in a state-invariant way, i.e. without using a hidden state as physical dynamics
is state-free (Figure 4). The overall loss is the sum of losses from each time step. Learning recur-
rently on long sequences, the network optimizes its weights taking into account its own prediction
errors during training. This significantly reduces error accumulation during inference time.

Group Shape Loss Fully-Connected Shape Loss

Shape constraint with 
respect to red particle 1

Shape constraint with 
respect to red particle 2

...

Shape constraints within 
each same colored group

Figure 3: Shape loss. The HRN shape loss only constraints
particle distances within object particle groups (left). Our new
fully-connected shape loss constraints distances between all
particles pairs within each objects (right).

HRN

G4

G4gt

Loss

...
HRN

G1,2

G3

G3gt

Loss

HRN

Gn

Gngt

Loss

...

Figure 4: Recurrent training.
Model predictions are fed back
recurrently as input to stabilize
long-term predictions.

3.2 SAMPLING REALISTIC TRAJECTORIES WITH MONTE CARLO DROPOUT

For sampling physically plausible object trajectories, we introduce a novel Monte Carlo sampling
based graph-convolutional dropout method. Dropout as proposed by Srivastava et al. (2014) re-
moves a certain number of randomly chosen nodes in a neural network to prevent overfitting with a
probability commonly referred to as dropout rate. In each iteration, a new set of nodes is sampled
and only the edge weights attached to the active nodes are updated via backpropagation. In our
novel approach, we use randomly sample dropout masks on graph-convolution kernels to sample
physically plausible trajectories. To keep the kernel fixed independent of its position in the graph,
we only sample once per prediction step. To infer a set of plausible trajectories, we randomly sam-
ple a dropout mask for each generated trajectory during test time, similarly how Gal & Ghahramani
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(2016) uses dropout to generate multiple predictions. The modular architecture of the HRN allows
us to apply dropout at different locations in a very interpretable way (Figure 2. Dropout on the col-
lision module makes sampled trajectories diverge at collision points. Dropout on the force module
leads to diverging trajectories during force applications. Dropout on other HRN modules lead to
convergence problems and unrealistic predictions. In the following experiments, we thus only apply
dropout to the HRN’s force and collision modules. Applying our dropout based sampling method
on our dynamics model results in physically plausible long-term predictions with consistent shapes.

3.3 MODEL-FREE REINFORCEMENT LEARNING ON STOCHASTIC ENVIRONMENTS

The ability to sample a distribution of physically plausible trajectories can be used to improve the
efficiency of exploration of model-free reinforcement learning agents. We thus train a model-free
policy on our stochastic physics predictor to achieve physical manipulation tasks as follows. At each
episode during training, we input the agent’s action and current state into our stochastic forward
dynamics predictor and sample a set of 5 future states with our dropout method. For accelerated
training, we introduce a reward relaxation method which consists of rewarding an agent as soon
as one of the trajectories from the sampled set leads to the goal, naturally exposing the agent to
rewards much quicker. If none of the trajectories hits the goal, one future state is chosen at random
and the sampling process is repeated for the next future state. The level of reward relaxation is
controlled by the dropout rate. The higher the dropout rate, the wider the set of trajectories and the
easier it is for the agent to be rewarded. This directs the agent much quicker towards the reward in
early training stages. In scenarios requiring high levels of accuracy and repeatability, we find that
a gradual reduction of the dropout rate during policy training helps convergence and leads to more
efficient policies compared to a fixed dropout rate, which we show in the following experiments.

4 EXPERIMENTS

In our experiments, we first show that our recurrent training and new fully-connected shape loss
significantly improve the prediction quality for single long-term trajectories on complex physical
scenarios over baselines. We then demonstrate how our proposed Monte Carlo sampling based
dropout method generates multiple high-quality trajectories by visualizing stochastic model roll-
outs. Lastly, we use our stochastic forward dynamics model’s ability to generate multiple trajectories
to train a model-free policy on two physical manipulation tasks more efficiently and to higher reward.

4.1 FORWARD DYNAMICS PREDICTION PERFORMANCE

4.1.1 EXPERIMENTAL SETUP

We evaluate our models forward dynamics prediction performance against the HRN baseline
(Mrowca et al., 2018) on two complex scenarios. The first scenario showcases the ability of our
model to predict complex deformations: A deformable soft cube is first lifted off the ground by an
upward impulse and then falls toward the ground while rotating and deforming on impact (Figure
5 left). In the second scenario, we evaluate our models performance on complex collisions. Col-
lisions can greatly magnify object position and pose errors leading to large discrepancies between
predictions and ground truth. For our collision experiment, two rigid cubes are placed at a random
distance from each other and then repeatedly accelerated by an impulse on each cube into another to
generate collisions (Figure 5 right). We train our model on a multitude of examples of both scenarios
and evaluate on held out examples. We compare the mean squared error on positions, velocities and
shape preservation and show qualitative long-term predictions of our model and the HRN baseline.

4.1.2 RESULTS

In Table 1, we present our quantitative results on the deformation and collision task. Our fully-
connected shape loss and recurrent training procedure significantly lower long-term prediction er-
rors in both scenarios. On the collision task, initial position and velocity error increase slightly
compared to the baseline but accumulate to far lower errors in the long run. Empirically, we found
that our recurrent training procedure works best with sequence lengths between 4 and 6 time steps.
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Longer sequence lengths prevent the model from converging during training. We found that gradu-
ally increasing the sequence length during training is an effective countermeasure.

The improvements of our model over the HRN baseline are obvious in visualizations of predicted
trajectories (Figure 5). Whereas HRN predictions fall apart along object boundaries and sometimes
penetrate objects, our method preserves shapes and resolves collisions much better and predicts
positions much closer to the ground truth, leaving us with an adequate basis for generating multiple
plausible trajectories with our sampling method.

Table 1: Quantitative dynamics prediction evaluation. We compare the mean squared error on
positions, velocities and shape preservation for our model with the baseline HRN model. Our model
outperforms the baseline on deformation predictions and long-term collision predictions.

Position MSE Velocity MSE Shape MSE
t+5 t+15 t+5 t+15 t+5 t+15

Deformations HRN 0.00064 0.017 0.00019 0.0013 0.037 0.092
Ours 0.00039 0.011 0.00003 0.00043 0.0051 0.019

Collisions HRN 0.028 0.84 0.0045 0.032 0.018 0.054
Ours 0.029 0.63 0.0061 0.019 0.0020 0.0039

Ground 
Truth

t t+5 t+10 t+25 t+35 t+50

HRN

Ours

t t+3 t+6 t+9 t+12 t+15

a) b)

Figure 5: Dynamics prediction comparisons. Our method is compared to the HRN baseline and
ground truth. a) A soft cube bounces of the ground. b) Two rigid cubes collide. Our method
preserves the geometry of objects better over long time horizons.

4.2 SAMPLING MULTIPLE PLAUSIBLE TRAJECTORIES

4.2.1 EXPERIMENTAL SETUP

In this section, we demonstrate that our Monte Carlo sampling based dropout method can sample
multiple physically plausible trajectories from our forward dynamics predictor under the same initial
state. In two complex scenarios we study our model’s uncertainty during force applications and
collisions. In the first scenario, an external force lifts a soft body, which subsequently drops toward
the floor rotating slightly. By applying dropout to the force module (Figure 2), we generate multiple
trajectories that arise due to our model’s uncertainty during force applications. We use a dropout
rate of 0.1 during training and 0.3 during testing. In the second scenario, we show that our proposed
method produces realistic sets of trajectories in collision scenarios. Forces are applied to two rigid
cubes pushing them towards each other causing collision. Dropout is applied to both force and
collision module with a rate of 0.05 both during training and testing.

4.2.2 RESULTS

The visualizations of multi trajectory roll-outs in Figure 6 show that the sets of predicted trajectories
are physically and visually plausible. Due to the modularity of the HRN model, targeted stochas-
ticity can be applied within each submodule via dropout, introducing uncertainty in the output of
force and collision predictions. Our proposed sampling method is able to capture trajectory dis-
tributions ranging from single mode low variance to complex, multi-modal distributions. Dropout
rates between 0.05 and 0.3 allow for fast convergence during training and a wide variety of visually
plausible sample trajectories during inference. We notice that inference dropout rates that differ sig-
nificantly from the training rates can cause biased predictions leading to, e.g. objects slowly drifting
away in one direction. Additional results studying the effect of the dropout rate on the width of the
state distributions can be found in supplement Figure 10.
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Deformations

t t+5 t+23 t+25 t+28 t+33 t+35 t+40 t+45 t+50

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9

Collisions

Figure 6: Example sampled multi trajectories. We use dropout on the force and collision module
to sample multiple trajectories given the same initial input. Dark blue and green depict the ground
truth trajectory. Light blue and green depict imagined sampled trajectories. a) A soft cube bounces
off the ground. b) Two rigid cubes collide. Our method is able to sample multiple physically
plausible trajectory in each scenario.

4.3 MODEL-FREE REINFORCEMENT LEARNING

4.3.1 EXPERIMENTAL SETUP

We show that stochastic physical environments are useful for intelligent systems by training rein-
forcement learning agents in two different scenarios involving various physical interaction types and
materials. We use Proximal Policy Optimization (Schulman et al., 2017) as a model-free reinforce-
ment learning method in all scenarios. Similarly to Plappert et al. (2017), we add a further baseline
in which we use the deterministic environment and add Gaussian noise in the action space.

Cube moving task: In this scenario, the agent learns to apply a sequence of forces to rigid cubes
such that at least one of the cubes is pushed towards the goal region. The maximum length of the
episode is 10. Here, the two cubes are transparent to each other and cannot collide. The stochasticity
originates entirely from the uncertainty in the force application. We use a constant dropout rate of
0.1 in the force module of our physics predictor throughout the whole training.

Ball hitting tower task: Tasks that require inducing collisions pose a significantly more difficult
challenge to the RL agent. In this scenario, there is a stack of three rigid cubes and a ball to which
the agent can apply force. The agent gets a reward for pushing the middle cube out of the tower.
To achieve the goal, the agent needs to hit the tower with the ball to which it applies forces. The
maximum episode length is 15 steps.
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Figure 7: Average episode length in the
”cube moving task”. We compare a de-
terministic environment against action space
noise and 2 randomly seeded stochastic envi-
ronments. The agent learns faster in stochas-
tic environments through better initial explo-
ration and converges to a shorter policy.
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Figure 8: Average episode length in the ”ball-
hits-tower task”. We compare a determinis-
tic environment against action space noise, a
stochastic environment where the dropout rate is
fixed and 3 randomly seeded stochastic environ-
ments where the dropout rate is annealed. The
agent finds shorter policies earlier in the train-
ing indicating more efficient exploration in the
stochastic environments.
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t-1 t t+1 t+2 t+3 t+4
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Stochastic
environment

Determinstic
environment

Target achieved
two frames earlier!

a) b) t-1 t
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Figure 9: Policy comparisons. a) Cube moving task. Top: Policy learned in a deterministic
environment (longer, 4 time steps). Bottom: Policy learned in a stochastic environment (shorter,
2 time steps). The first two frames are model inputs. The red cubes indicate the target position to
which the green cubes have to be moved. b) Ball hitting tower task. Agents in deterministic and
stochastic environments converge to similar 4 step policies. The figure depicts one 4 step policy
example.

4.3.2 RESULTS

Cube moving task: In this example, introducing the action space noise leads to faster learning
compared to learning in the deterministic environment. Training in stochastic physical environments
outperforms both baselines, allows for better exploration and finding of shorter policies. In Figure
9, we visualize the two learned policies, in stochastic and deterministic environments.

Ball hitting tower task: In this scenario, the agent finds more efficient policies through the applica-
tion of stronger forces during training, which results in gradually shorter policies as shown in Figure
8. The most effective learning method is learning in a stochastic environment with the dropout rate
annealing. We lower the dropout rate linearly from 0.1 at the start to 0 after 1200 training updates.
This method allows for initial fast exploration, but does not introduce too high stochasticity when
precision is needed as the agent begins applying strong forces later in the training. Without an-
nealing, the randomness is too high and agents learn longer policies in a noisy training process, as
indicated by the red curve in Figure 8. Furthermore, action space noise improves the pace at which
the agent learns compared to the entirely deterministic environment. The policies learned by the
presented methods do not significantly differ. An exemplary policy is visualized in Figure 9.

5 CONCLUSION

Qualitatively our stochastic HRN predicts plausible future trajectories; an experiment in which hu-
man subjects were asked to discriminate between ground-truth and predicted trajectories could be
used to evaluate its performance quantitatively. Even though this method does not require exten-
sive expert knowledge, a few design decisions have to be made e.g dropout rates for training and
inference. During inference, too high of a dropout rate can lead to visually unrealistic dynamics and
object interactions. Dropout rate scheduling during training should be investigated to improve con-
vergence of the dynamics model during training, which may improve its performance as an environ-
ment for the reinforcement learning tasks. Possible optimizations include more complex, potentially
non-linear, annealing schedules during inference, delaying the dropout rate annealing, and finding
appropriate starting values. Finding a universal schedule that can be applied to any environment
and task has large potential for accelerating reinforcement learning. Further improvements for the
physics predictor are key for its use as a physical environment. These can include improvements
for: scenarios with multiple materials in one scene, penetrations during collisions that can lead to
insufficient position prediction, and generalization to new scenes.

Our results show that the proposed sampling method produces physically plausible trajectories in
single- and multi-object scenarios as well as across a range of materials. The quality of roll-outs,
e.g. shape prediction is not compromised by the introduced noise. Furthermore, our model-free rein-
forcement learning experiments indicate that agents learning in physically stochastic environments
are able to explore better and learn quicker, which confirms the quality of the sampled trajectories. In
difficult reinforcement learning scenarios, where a high level of precision is needed to get a reward,
we demonstrated that dropout rate annealing is an effective method to avoid too high randomness at
the same time not reducing the benefits of stochasticity for exploration in early stages of the training.
In this regard, stochastic neural physics engines offer a clear advantage over conventional physics
engines.
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6 APPENDIX

6.1 EFFECT OF DROPOUT RATE ON THE WIDTH OF THE TRAJECTORY DISTRIBUTIONS

In Figure 10, we present the effect of the dropout rate on the width of the predicted distribution of
trajectories. In this example, dropout is activated in the force module. We compare distributions
generated with dropout rates 0.5, 0.3 and 0.1. In Figure 11, we present the stochastic predictions
in ”ball hitting tower” scenario. The dropout is active in the force and collision modules. The
prediction variance corresponds to the dropout rate strength in both scenarios. In the ”ball hitting
tower” scenario, we observe highly complex behavior, where the time at which the cubes fall off the
tower at different rates

Figure 10: Effect of the dropout rate on the distribution width of the sampled trajectories. 0.5 - top,
0.3 - middle, 0.1 - bottom. Dropout applied in the force module.

Figure 11: Effect of the dropout rate on the distribution width of the sampled trajectories. 0.3 - top,
0.1 - bottom. Dropout applied in the force and collision modules.
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