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ABSTRACT

Data have often to be moved between servers and clients during the inference
phase. This is the case, for instance, when large amounts of data are stored on
a public storage server without the possibility for the users to directly execute
code and, hence, apply machine learning models. Depending on the available
bandwidth, this data transfer can become a major bottleneck. We propose a simple
yet effective framework that allows to select certain parts of the input data needed
for the subsequent application of a given neural network. Both the associated
selection masks as well as the neural network are trained simultaneously such that
a good model performance is achieved while, at the same time, only a minimal
amount of data is selected. During the inference phase, only the parts selected by
the masks have to be transferred between the server and the client. Our experiments
indicate that it is often possible to significantly reduce the amount of data needed
to be transferred without affecting the model performance much.

1 INTRODUCTION

Neural networks have successfully been applied to many domains (Bengio et al., 2013; LeCun et al.,
2015). Two trends have sparked the use of neural networks in recent years. Firstly, the data volumes
have increased dramatically in many domains yielding large amounts of training data. Secondly,
the compute power of today’s systems has significantly increased as well, particularly those of
massively-parallel architectures based on graphics processing units. Those specialized architectures
can be used to reduce the practical runtime needed for training and applying neural networks, which
has led to the development of more and more complex neural network architectures (Krizhevsky
et al., 2012; He et al., 2016; Huang et al., 2017).

Many machine learning applications require data to be exchanged between servers and clients during
the inference phase. This is the case, for example, in remote sensing, where current projects produce
petabytes of satellite data every year (Wulder et al., 2012; Li & Roy, 2017). The application of
a machine learning model in this field to, e.g., monitor changes on a global scale, often requires
the transfer of large amounts of data between the server and the client that executes the model, see
Figure 1. Similarly, data have often to be transferred from clients to servers for further processing.
For instance, data collected from mobile devices are transferred to remote servers to be analyzed by
virtual assistants such as Alexa from Amazon, Siri from Apple, or the Google Assistant. A similar
situation is given when energy-efficient microcontrollers (e.g., the Arduino Uno) are powered by
batteries to collect sensor data from remote locations. Here, the transfer of data is often considered
the most expensive operation due to the high power consumption caused by the transmission.

While the reduction of the training and inference runtimes have received considerable attention
(Coates et al., 2013; Han et al., 2015; Gordon et al., 2018; Nan et al., 2016; Kumar et al., 2017;
Xu et al., 2013), relatively little work has been done regarding the transfer of data induced by such
server/client based scenarios. However, this data transfer between clients and servers can become a
severe bottleneck that can significantly affect the way users leverage available data. In some cases,
the necessary data transfer can be reduced based on prior knowledge (e.g., in case one knows that
only certain input channels are relevant for the task to be conducted). Also, for some learning tasks,
the data transfer can be reduced by extracting a small amount of expressive features from the raw
data. In general, such feature based reductions have to be adapted to the specific tasks and might also
lead to a worse performance compared to purely data-driven approaches.1

1Note that, in case the data resides on a public storage server, it is often not possible for the user to execute
any code on the server side. This renders a manual feature extraction or the application of (parts of) a deep
neural network impossible on the server side.
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Figure 1: Application of a neural network in the context of remote sensing. Here, hundreds of input
feature maps might be available (multi-spectral image data collected at different times). Transferring
data from the server to the client running the model can be extremely time-consuming. Our framework
uses various types of selection masks that can be adapted to the specific transfer capabilities between
the server and the client (e.g., if channel- or pixel-wise data transfers are possible). Also, a different
loss Qi can be assigned to each individual mask to penalize selections made by it. The masks as well
as the given network are optimized simultaneously in an end-to-end fashion to achieve a good model
performance and to select only small amounts of the input data. During the inference phase, only the
selected parts have to be transferred. Similar bandwidth-restricted scenarios can be found in other
data-intensive disciplines as well such as astrophysics or in the context of sensor data analytics.

Contribution: We propose a framework that automatically learns to select the relevant parts of the
input data for a given neural network and its task. In particular, our approach aims to select the
minimal amount of data needed to achieve a model performance that is comparable with one that can
be obtained on all the input data. The individual selection criteria can be adapted to the specific needs
of the task at hand as well as to the transfer capabilities between the server and the client. As shown
in our experiments, our framework can be used to sometimes significantly reduce the amount of data
needed to be transferred during the inference phase without affecting the model performance much.

2 RELATED WORK

Reducing the training time has gained significant attention in recent years. This includes, for instance,
the use of parallel or distributed implementations (Coates et al., 2013; Dean et al., 2012; Li et al.,
2018). Approaches aiming at an efficient inference phase have been proposed as well, including
schemes that aim at reducing the weights of networks or the amount of floating point operations (Han
et al., 2015; Gordon et al., 2018). Similarly, methods that deploy small tree-based models have been
suggested (Kumar et al., 2017; Xu et al., 2013). The transfer of data during the inference phase has
been addressed as well. For instance, Nan et al. (2016) propose a method that prunes features during
the construction of random forests such that only few are needed during the inference phase (thus,
avoiding costs for their computation and their transfer). In some cases, data compression can be used
to reduce the amount of bytes needed to be transferred (e. g., images compressed via JPEG). However,
this usually requires to retrain a network to find a suitable compression level, which is not known
beforehand.2 Deep neural networks have also been used to compress image data (Jiang et al., 2018),
but the resulting compressed versions are independent of the learning task.

We conduct a gradient-driven search to find suitable weight assignments for the selection masks.
An alternative to our approach are greedy schemes that, e. g., incrementally select input channels
or pixels. However, these schemes might yield suboptimal results since only one channel/pixel is
selected in each step. Further, these approaches quickly become computationally infeasible in case
many channels or input pixels are given. Naturally, an exhaustive search for finding optimal mask
assignments is computationally intractable. Our approach can be seen as a trade-off between these
two variants. Finally, our approach is inspired by focused and peripheral vision, where unfocused
objects containing less detail still offer useful information (Strasburger et al., 2011).

2Such compressed versions might also not be available on the server/client side. Our framework can handle
these scenarios as a special case with the optimal compression level automatically being selected during training.
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Figure 2: Different selection masks that can be used to select parts of the input data. For each of the
masks, an individual lossQi can be defined to penalize selections made by that mask. While the final
masks are discrete, differentiable surrogates are used during training.

3 LEARNING SELECTION MASKS

We resort to masks that can be used to select certain parts of the input data. These masks are adapted
during the training process such that (a) the predictive power of the network remains satisfying and (b)
only a minimal amount of the input data is selected. We will focus on image data in this work for the
sake of exposition, but our approach can also be applied to other types of data.

3.1 SELECTION MASKS
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Figure 3: Implementation of masks

The selection masks allow to select parts of the data such
as certain input channels or individual pixels of the dif-
ferent channels, see Figure 2. For each such mask, an
associated cost can be defined, which can be used to adapt
the masks to the specific requirements of the task at hand
(e. g., if selecting pixels from one channel causes less data
transfer in the inference phase than from another channel).
Our optimization approach resorts to the following mask
realizations, see Figure 3:

• channel(any): To select an arbitrary number of k input channels, a joint mask mD ∈
{0, 1}1×1×k×2 is used, which contains, for each of the k channels, two weights. For instance,
a mask mD with mD

[1,1,1,:] = (1, 0) and mD
[1,1,2,:] = (0, 1) corresponds to selecting the first

but not the second channel. Before applying the mask to an image x ∈ Rw×h×k, the first
two axes are broadcasted, which yields a mask mD ∈ {0, 1}w×h×k×2.
• channel(xor): In a similar fashion, one can select exactly one of the k input channels

by resorting to a joint mask of the form mD ∈ {0, 1}1×1×k. Here, exactly one of the k
weights equals one. For instance, a mask mD with mD

[1,1,:] = (0, 0, . . . , 0, 1) corresponds
to only the last channel being selected. As before, the first two axes are broadcasted prior to
the application of the mask, yielding a mask of the form mD ∈ {0, 1}w×h×k.
• pixel(any): To conduct pixel-wise selections, one can directly consider joint masks
mD ∈ {0, 1}w×h×k×2, which permit to select individual pixels per channel. For instance,
a mask mD with mD

[i,i,1,:] = (1, 0) and m[i,i,2,:] = (1, 0) for i = 1, . . . , w corresponds to
selecting all pixels on the diagonal for the first two channels.
• pixel(xor): Similarly, one can only allow one channel to be selected per pixel by

considering a joint mask of the form mD ∈ {0, 1}w×h×k, which contains, for each pixel,
exactly one non-zero element corresponding to the selected channel for that pixel.

Figure 4: block(any)

Note that variants of these four selection schemes can easily be ob-
tained. For instance, shapes can be defined that partition the input
data into, say, nine rectangular cells by considering masks of the form
mD ∈ {0, 1}3×3×k×2, where the first two axes are broadcasted to the
corresponding cells. Such variants would allow to select certain cutouts,
see Figure 4. The particular masks can be chosen according to the spe-
cific transfer capabilities between server and client. Finally, the different
selection masks can also be applied sequentially with individual costs
being assigned to them, see Section 4.
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Algorithm 1: LearnSelectionMasks(f, T )
Input :model f and training set T

1 m← InitAllMasks() // initialize all selection masks
2 λ, τ ← InitLambdaTau() // initialize lambda and tau
3 for i← 1 to nepoch do
4 for j ← 1 to nbatch do
5 x, y ← GetBatch(T ) // get next batch
6 b← j mod 2 = 0 // alternate between exploration/fixation
7 mD,mS ← DiscretizeMasks(m, τ, b) // compute masks
8 x̂← ApplyMasks(x,mD) // apply masks to input
9 ŷ ← f(x̂) // compute prediction

10 L ← Lf (ŷ, y) + λQ(mD) // compute adapted loss
11 f,m← Optimize(f,m,mS ,L) // update weights of masks and model
12 λ, τ ← AdaptLambdaTau(λ, τ) // adapt lambda and tau
13 mD ← DiscretizeMasks(m, τ, false) // extract discretized masks
14 return f,mD

3.2 ALGORITHMIC FRAMEWORK

Let T = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y be a training set consisting of images xi ∈ Rw×h×c

with associated labels yi ∈ R. The goal of the training process is to find suitable weight assignments
both for the selection masks as well as for the neural network f : X → Y that is applied to the data.

3.2.1 OPTIMIZATION APPROACH

Our procedure for learning suitable mask and network weights is given
by LearnSelectionMasks, see Algorithm 1: Both the joint selection mask as well as
the parameters λ and τ are initialized in Line 1 and Line 2, respectively. The parameter λ determines
the trade-off between the task loss Lf and the mask loss Q. Typically, λ is initialized with a small
positive value (e. g., λ = 0.1) and is gradually increased during training. Both the selection mask m
and the network f are trained simultaneously by iterating over a pre-defined number nepoch of epochs,
each being split into nbatch batches (for the sake of exposition, we assume a batch size of 1). For
each batch, a discrete mask mD is computed via the procedure DiscretizeMasks, which is
used to obtain the masked image x̂. The induced prediction ŷ is then used to compute the task
loss Lf (ŷ, y). In addition, the overall mask loss Q(mD) is computed. Note that the discretized
weights mD are used in the forward pass, whereas a mask mS with real-valued weights is used
in the backward pass in Line 11. After each epoch, both λ and τ are adapted. As detailed below,
the procedure DiscretizeMasks alternates between an “exploration” and a “fixation” phase,
specified by the parameter b. The final discrete weights for the joint mask are computed in Line 13.

Learning Discrete Masks: Naturally, exhaustive search schemes that find the optimal discrete
weights by testing out all possible assignments are computationally infeasible. Simple greedy
approaches such as forward/backward selection of channels become computationally very demanding
and are thus ill-suited for pixel-wise selections. Learning such discrete masks is difficult since the
induced objective is not differentiable, which rules out the use of gradient-based optimizers commonly
applied for training neural networks. One way to circumvent this problem is the so-called Gumbel-
Max trick, which has been recently proposed in the context of variational auto-encoders to learn
discrete latent variables (Maddison et al., 2014; Gumbel, 1954; Jang et al., 2017).3 The procedure
DiscretizeMasks uses this trick to discretize the masks m, which contain class probabilities,
in the forward pass of Algorithm 1. For instance, given a mask m ∈ R1×1×k×2 corresponding to
channel(any), the procedure yields a discrete mask mD ∈ {0, 1}1×1×k×2 via

mD
[1,1,j,:] = one_hot

(
argmax
i∈{1,2}

logm[1,1,j,i] + gi

)
(1)

3The Gumbel-Max trick yielded better results compared to other discretization methods such as L2-
regularization along with a truncation of small weights.
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where j ∈ {1, . . . , k} corresponds to the j-th channel and where each gi is either zero or a sample
from the Gumbel distribution, depending on which phase is executed (see below). Equation (1) does
not provide gradient information because argmax cannot be differentiated. For this reason, the
following differentiable surrogate mS ∈ R1×1×k×2 is employed for the backward pass in Line 11:

mS
[1,1,j,:] = softmax

(
logm[1,1,j,1] + g1

τ
,
logm[1,1,j,2] + g2

τ

)
(2)

Thus, the softmax function is used as a surrogate for the discrete argmax operation. The pa-
rameter τ is called temperature. A large τ leads to the resulting weights being close to uniformly
distributed, whereas a small value for τ renders the values outputted by the softmax surrogate
being close to the discrete one-hot encoded vectors. The procedure DiscretizeMasks alternates
between “explore” and “fixate”, specified by the parameter b. If b is true, then gi is a random sample
from the Gumbel distribution gi = − log (− log (u)) with uniform sample u ∼ U(0, 1). If b is false,
gi = 0. In the exploration phase, the optimizer can try out new possible mask assignments, whereas
the network weights are adapted to the new data input in the fixation phase. The amount of changes
made during the exploration phase is also influenced by the temperature parameter τ .

Initialization and Adaptation: The selection goal influences the initialization of the mask m. In
case all input channels for the channel(any) scheme are equally important, the individual masks
are set to m[1,1,j,:] = (1 + ε, 0 + ε) for all j = 1, . . . , k to initially “select” all of the channels,
where ε ∼ N (0, σ) for some small σ > 0. In case the channels should be treated differently, the
initialization can be adapted accordingly. For instance, only the first channel can be selected initially
by setting m[1,1,j,:] = (1 + ε, 0 + ε) for j = 1 and m[1,1,j,:] = (0 + ε, 1 + ε) for j 6= 1.

The procedure InitLambdaTau initializes both λ and τ . The parameter λ, which determines
the trade-off between the task loss Lf and the loss Q associated with all masks, is initialized to a
small value (e.g., λ = 0.1). The temperature parameter τ is initialized to a positive constant τinit
(e. g., τinit = 10). The adaptation of both λ and τ after each epoch are handled by the procedure
AdaptLambdaTau: In the course of the training process, the influence of λ is gradually increased
until nepoch epochs have been processed or some other stopping criterion is met (e. g., as soon as the
desired reduction w.r.t. Q is achieved). Since the range of values for the model loss Lf is generally
not known beforehand, we resort to a scheduler that increases λ in Line 10 of Algorithm 1 in case the
overall error L = Lf + λQ has not decreased for a certain amount of epochs. The scheduler behaves
similarly to standard learning schedulers, but instead of decreasing the learning rate, the value for λ
is increased by a certain factor λfac (e. g., λfac = 1.1). The temperature τ influences the outcome
of the softmax operation in Equation (2): A large value leads to similar weights being mapped
to similar ones via the operation, whereas a small value for τ amplifies small differences such that
the outputted weights mS are close to zero/one. For each new assignment of λ, we resort to some
cool-down sequence, where τ is reset to τ = τinit and gradually decreased by a factor τdecay after
each epoch (e.g., τdecay = 0.9). This cool-down sequence let the process explore different weight
assignments at the beginning, whereas binary decisions are fostered towards the end.

3.3 EXTENSION AND REDUCTION

Figure 5: extend / merge

Different costs can be assigned to the individual masks, which are
jointly taken into account by the overall mask loss Q(mD). For
instance, given k input channels, one can resort to different losses
Q1, . . . ,Qk to favor the selection of certain channels. This turns out
to be useful in case different “versions” for the input channels are
available, whose transfer costs vary (e. g., compressed images or thumbnails of different sizes). Often,
pre-trained networks with a fixed input structure are given. The selection of different versions for
such networks can be handled via simple operators, see Figure 5: The extend operator can be used
to extend a given input feature map (e. g., by generating ten compressed versions of different quality),
whereas the merge operator can combine feature maps in a user-defined way (e. g., by summing up
the input channels). For instance, an extend operation followed by a channel(xor) selection
and a merge operation can be used to gradually select a certain version of each input channel without
significantly changing the input for a given network in each step, thus allowing to learn masks for
pre-trained networks without having to retrain the network weights from scratch, see Section 4.
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Figure 6: channel(any) mask realization results on remote, supernovæ, and cifar10. The
black line is the average value of the runs and individual runs are displayed in different colors.

4 EXPERIMENTS
Table 1: Datasets and Models

Dataset #train #test #class w h c model

remote 24 694 24 694 12 35 35 36 AllConvNet
supernovæ 4 020 4 018 2 50 50 3 AllConvNet
cifar10 50 000 10 000 10 32 32 3 ResNet101
mnist 60 000 10 000 10 28 28 1 LeNet5
svhn 73 257 26 032 10 32 32 3 ResNet101

We implemented our approach in
Python 3.6 using PyTorch (version 1.1).
Except for the trade-off parameter λ,
default parameters were used for all
experiments (nbatch = 128, τinit = 10,
τdecay = 0.5, and τmin = 0.01). The learning rates β for all selection masks were set to
β = 0.01. For the networks, the Adam (Kingma & Ba, 2014) optimizer with AMSGrad (Reddi
et al., 2018) and learning rate 0.0001 was used. The initial assignment λinit as well as the
factor λfac for λ can have a significant impact. For this reason, we considered a small grid
(λinit, λfac) ∈ {0.1, 1.0} × {1.1, 1.25} of possible assignments. The influence of this parameter is
shown in Figure 14; for all other figures, one of the four configurations is presented.

We considered several classification datasets and network architectures, see Table 1. In addition to
the well-known cifar10, mnist, and svhn datasets (Krizhevsky et al., 2009; LeCun et al., 2010;
Netzer et al., 2011), we considered two datasets from remote sensing and astronomy, respectively. For
each instance of remote, one is given an image with 36 channels originating from six multi-spectral
bands available for six different dates (Prishchepov et al., 2012). The learning goal is to predict
the type of change occurring in the central pixel of each image. The astronomical dataset is related
to detecting supernovæ (Scalzo et al., 2017). Each instance is represented by an image with three
channels and the goal is to predict the type of object in the center of the image (a balanced version
of the dataset was used). Both remote and supernovæ depict typical datasets in remote sensing
and astronomy, respectively, with the target objects being located in the centers of the images. For
all experiments, we considered a fixed amount of epochs and monitored the classification accuracy
on the hold-out set. Each experiment was conducted nruns = 10 times and the lines of the figures
represent individual runs (the thicker black line is the aggregated mean over all runs). If not stated
otherwise, we considered pre-trained networks before applying our selection approach.

4.1 CHANNEL SELECTION

Figure 7: Selected channels for remote
The first experiment addressed the task
of selecting a subset of the input chan-
nels. We used remote, supernovæ, and cifar10 as datasets, for which different outcomes
were expected. For each of the c channels, we assigned the same mask loss Qi = 1/c. The overall
mask loss Q was the sum over all channels, which corresponds to the ratio of the data that need to be
transferred. The outcome is shown in Figure 6. As expected, channel-wise selection worked best on
remote due to many channels carrying similar information. Only if less than 20% of the channels
were selected, the accuracy started to drop. In Figure 7, the selection process is sketched, where
each row represents a different epoch (from top to bottom: 0, 50, 100, 150, 200) and where each
columns corresponds to one of the channels. For supernovæ, the removal of a single channel did
not significantly affect the classification accuracy. For some runs, all channels were removed at once,
which indicates that the steps made for λ were too large (thus, a smaller λfac should be considered).
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Figure 9: pixel(any) mask realization results on remote, supernovæ, and cifar10.

On cifar10, only one of the three channels could be dropped with a minimal degradation of
accuracy. Thus, as expected, less channels could be removed for both supernovæ and cifar10
due to the channels being less redundant.

4.2 PIXEL-WISE SELECTION

Figure 8: Pixel-wise selections

Next, pixel-wise selections were addressed (pixel(any)) by
conducting a similar experiment using the same datasets. The
mask loss Q was obtained by summing over the selected pixels,
where a weight of 1/w×h×c was assigned to each individual pixel. Thus,Q corresponds to the ratio of
pixels that need to be transferred. The results are given in Figure 9. It can be seen that all plots for Q
are smoother than for the channel-wise selections, which is due to the fact that the selection decisions
to be made at each step were much more fine-grained (for cifar10 and supernovæ, only three
channels but thousands of subpixels are given). It can be seen that the accuracy drops slightly at the
beginning of the training process. This is because the networks were not trained with missing inputs
before and, hence, had to learn to compensate the missing input at the beginning. This effect could
be lessened by (a) adding dropout layers to the networks or by (b) decreasing both λinit and λfac
to let the approach do less exploration at the beginning. Overall, the achieved reduction w.r.t. the
remained accuracy is higher than for the channel-wise selection, although there are notable spikes in
supernovæ that most likely stem from the removal of subpixels being crucial for the classification
task (the removal of some central pixels seem to have had a significant impact). The development of
the masks w.r.t. nepoch is shown in Figure 8 for supernovæ.

4.3 FEATURE MAP SELECTION

0.75

0.80

0.85

0.90

ac
cu

ra
cy

0 50 100 150 200
nepoch

0.2

0.4

0.6

0.8

1.0

lo
ss
Q

Figure 10: JPEG on cifar10

In many cases, preprocessed data are available on the
server/client side. The next experiment was dedicated to such
scenarios. In particular, we considered ten compressed ver-
sions for the cifar10 images of different JPEG qualities
q ∈ {100, 95, 85, . . . , 25, 15}. The goal was to select one of
these versions via channel(xor). To capture the varying
costs for the transfer of the different versions, we assigned
Qq = q/c·100 to each version with quality level q. This mask loss
is not as directly linked to the transfer costs, as the individual
JPEG levels can have different impacts on each image, which
depends on the JPEG compression algorithm. Also, the masks
were initialized in such a way that only the version with the highest quality was selected initially.

0 50 100 150 200
nepoch

Figure 11: Reduced images

Figure 10 shows the results. It can be seen that the low-
est possible value (0.15) was obtained for Q, for which
an accuracy of about 82% remained. Also, an accuracy
of about 88% could be maintained while reaching a
loss of about Q ≈ 0.5. An illustration of the reduced
input over the epochs is given in Figure 11.
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Figure 13: Results for the combination of selection masks on cifar10, svhn, and mnist, where
JPEG qualities for each channel were used and, at the same time, pixels could be selected.

4.4 COMBINATION OF MASKS

Figure 12: Combination of multiple selection masks.

Next, multiple selection masks and mask
losses were considered. The following op-
erations were applied, see Figure 12: First,
an extend operation was used to generate
different JPEG qualities for each channel. Af-
terwards, a channel(xor) selection oper-
ation was applied, followed by a merge operation (sum). Finally, a pixel(any) selection was
conducted to select subpixels of the merged channels. For this experiment, we used cifar10,
mnist, and svhn. The joint mask loss Q was set to the product q/c·100 · 1/w×h×c of the two
previously defined losses. The results are shown in Figure 13. Note that the models for svhn and
mnist were not pre-trained in this case, which is why the accuracies start with a lower value. Since
mnist is a dataset with many empty border pixels, our approach was able to remove 50% of the
pixels in the first few epochs. Also, the lowest possible JPEG quality was used. Similar effects can be
observed on svhn although it seems that is was harder to remove pixels due to more background
pixels compared to mnist. For cifar10, the results show that the combined masks yielded similar
outcomes as for the individual masks, see again Figure 9 and 10.

4.5 INFLUENCE OF λ
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Figure 14: Influence of λ

The parameter λ can have a big impact on the selection process.
Figure 14 shows the influence of the four different configura-
tions considered for our experiments given the remote dataset.
It can be seen that a large λinit (blue and red line) leads to the
mask lossQ quickly decreasing. For such settings, it seems that
the network was not able to compensate the loss in information,
which is why the accuracy was lower until the network was
able to adapt to the new input. A smaller initial value for λ
leads to the selection process taking less input data away at the
beginning, which avoids an initial drop of accuracy. Similarly,
a large λfac leads to a faster decrease w.r.t. Q, which can be
suboptimal in certain cases.

5 CONCLUSIONS

The transfer of data between servers and clients can become a major bottleneck during the inference
phase of a neural network. We propose a framework that allows to automatically select those parts
of the data needed by the network to perform well, while, at the same time, minimizing the amount
of selected data. Our approach resorts to various types of selection masks that are jointly optimized
together with the corresponding network during the training phase. Our experiments show that it is
often possible to achieve a good accuracy with significantly less input data needed to be transferred.
We expect that such selection masks will play an important role for data-intensive domains such as
remote sensing or astrophysics and for scenarios where the data transfer bandwidth is very limited.
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A APPENDIX

A.1 RATIO OF FIXATION/EXPLORATION
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Figure 15: Influence of the ratio between
exploration and fixation during training.

We introduced the fixation phase to allow the network
to adapt to the mask changes made during the explo-
ration phase. This can be seen as intermediate "post-
training" to ensure that the "optimal" result is obtained
for a given λ (which is increased over time). The al-
ternation between the exploration and fixation phase
worked well in practice. However, other ratios between
these two phases are also possible. This can be achieved
by resorting to a corresponding ratio γ in Line 6 of Al-
gorithm 1. Here, γ = 0.25 corresponds to 1 fixation
and 3 exploration iteration(s) and γ = 0.75 to 3 fixation
and 1 exploration iteration(s).

The influence of the ratio γ between exploration and
fixation is shown in Figure 15 (which depicts an exten-
sion of Figure 9c). The ratio γ does have the expected
effect on the results. In particular, a larger value (more
intermediate "post-training") yields slightly better accu-
racies (top) and slightly larger values for the reduction
loss Q (middle). Hence, the ratio γ can be used to influence speed up/slow down the pruning. We
decided to omit this from the original algorithm to keep it simple since a similar effect can be achieved
by adjusting the trade-off parameter λ and the temperature τ .

A.2 DECREASE IN ACCURACY

One might question if the decrease in accuracy observed in the experiments result from the general-
ization gap, i. e., that the networks are simply overfitting. However, a steady decrease in accuracy is
expected since more and more input data are masked out. Eventually, an accuracy close to the mean
estimator will be obtained, since the mask and network weights are adapted according to the joint
objective Lf + λQ and since λ is increased in the course of the training process. Figure 15 (bottom)
shows the training loss Lf (cross entropy) for the experiment described above. It can be seen that
the training loss Lf increases as the validation accuracy decreases, which is a strong indicator that
overfitting is not responsible for the decrease in accuracy (but the loss of information due to the mask
changes). Note that the slope of the initial drop/increase (first 20 epochs) depends on the assignment
for λinit; here, smaller values for λinit lead to less changes at the beginning (see again Figure 14).
Finally, it is worth mentioning that our approach is very stable w.r.t. the involved parameters (note
that all hyper-parameters except for λ were fixed).

A.3 STOPPING CRITERIA

Instead of using a fixed number nepoch of epochs, other stopping criteria can also be used. For
example, one could stop training the mask and the model as soon as the loss Q for the masks falls
below a particular user-defined threshold or as soon as the accuracy has decreased significantly. Once
the general training procedure has stopped, one could keep on adapting both the mask weights and
the network weights for several epochs without increasing λ any further, i. e., without changing L
anymore. In addition, one could "finalize" the model f by training the model (but not the mask) for
several epochs.
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