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ABSTRACT

We propose RAPP, a new methodology for novelty detection by utilizing hid-
den space activation values obtained from a deep autoencoder. Precisely, RAPP
compares input and its autoencoder reconstruction not only in the input space but
also in the hidden spaces. We show that if we feed a reconstructed input to the
same autoencoder again, its activated values in a hidden space are equivalent to
the corresponding reconstruction in that hidden space given the original input. We
devise two metrics aggregating those hidden activated values to quantify the nov-
elty of the input. Through extensive experiments using diverse datasets, we val-
idate that RAPP improves novelty detection performances of autoencoder-based
approaches. Besides, we show that RAPP outperforms recent novelty detection
methods evaluated on popular benchmarks.

1 INTRODUCTION

How can we characterize novelty when only normality information is given? Novelty detection is
the mechanism to decide whether a data sample is an outlier with respect to the training data. This
mechanism is especially useful in situations where a proportion of detection targets is inherently
small. Examples are fraudulent transaction detection (Pawar et al., 2014; Porwal & Mukund, 2018),
intrusion detection (Lee, 2017; Aoudi et al., 2018), video surveillance (Ravanbakhsh et al., 2017;
Xu et al., 2015b), medical diagnosis (Schlegl et al., 2017; Baur et al., 2018) and equipment failure
detection (Kuzin & Borovicka, 2016; Zhao et al., 2017; Beghi et al., 2014). Recently, deep autoen-
coders and their variants have shown outstanding performances in finding compact representations
from complex data, and the reconstruction error has been chosen as a popular metric for detect-
ing novelty (An & Cho, 2015; Vasilev et al., 2018). However, this approach has a limitation of
measuring reconstruction quality only in an input space, which does not fully utilize hierarchical
representations in hidden spaces identified by the deep autoencoder.

In this paper, we propose RAPP, a new method of detecting novelty samples exploiting hidden ac-
tivation values in addition to the input values and their autoencoder reconstruction values. While
ordinary reconstruction-based methods carry out novelty detection by comparing differences be-
tween input data before the input layer and reconstructed data at the output layer, RAPP extends
these comparisons to hidden spaces. We first collect a set of hidden activation values by feeding
the original input to the autoencoder. Subsequently, we feed the autoencoder reconstructed input to
the autoencoder to calculate another set of activation values in the hidden layers. This procedure
does not need additional training of the autoencoder. In turn, we quantify the novelty of the input by
aggregating these two sets of hidden activation values. To this end, we devise two metrics. The first
metric measures the total amount of reconstruction errors in input and hidden spaces. The second
metric normalizes the reconstruction errors before summing up. Note that RAPP falls back to the
ordinary reconstruction-based method if we only aggregate input values before the input layer and
the reconstructed values at the output layer.

Also, we explain the motivations that facilitated the development of RAPP. We show that activation
values in a hidden space obtained by feeding a reconstructed input to the autoencoder are equivalent
to the corresponding reconstruction in that hidden space for the original input. We refer the latter
quantity as a hidden reconstruction of the input. Note that this is a natural extension of the recon-
struction to the hidden space. Unfortunately, we cannot directly compute the hidden reconstruction
as in the computation of the ordinary reconstruction because the autoencoder does not impose any
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correspondence between encoding-decoding pairs of hidden layers during the training. Neverthe-
less, we show that it can be computed by feeding a reconstructed input to the autoencoder again.
Consequently, RAPP incorporates hidden reconstruction errors as well as the ordinary reconstruc-
tion error in detecting novelty.

With extensive experiments, we demonstrate using diverse datasets that our method effectively im-
proves autoencoder-based novelty detection methods. In addition, we show by evaluating on popular
benchmark datasets that RAPP outperforms competing methods recently developed.

Our contributions are summarized as follows.
• We propose a new novelty detection method by utilizing hidden activation values of an

input and its autoencoder reconstruction, and provide aggregation functions for them to
quantify novelty of the input.

• We provide motivation that RAPP extends the reconstruction concept in the input space
into the hidden spaces. Precisely, we show that hidden activation values of a reconstructed
input are equivalent to the corresponding hidden reconstruction of the original input.

• We demonstrate that RAPP improves autoencoder-based novelty detection methods in di-
verse datasets. Moreover, we validate that RAPP outperforms recent novelty detection
methods on popular benchmark datasets.

2 RELATED WORK

Various novelty detection methods with deep neural networks rely on the reconstruction error (Saku-
rada & Yairi, 2014; Hoffmann, 2007; An & Cho, 2015), because discriminative learning schemes
are not suitable for highly class-imbalanced data which is common in practice. Unsupervised and
semi-supervised learnings handle such imbalance by focusing on the characterization of normality
and detecting samples out of the normality.

Variational Autoencoders (VAE) (Kingma & Welling, 2014) was reported to outperform vanilla
autoencoders for novelty detection based on reconstruction error (An & Cho, 2015). To carry out
the novelty detection outlined in this approach, an autoencoder needs to be trained only with normal
data. The autoencoder encodes the training data, which comprises of only normal data in this case,
into a lower-dimensional space and decodes them to the input space. To test novelty, an input value
is fed to the autoencoder to produce a reconstructed value and calculate the distance between the
input and reconstructed values. This distance is the reconstruction error. A higher reconstruction
error means that the input value cannot be encoded onto the lower-dimensional space that represents
normal data. Therefore, the input value can be marked as a novelty if its reconstruction error exceeds
a certain threshold.

Instead of autoencoders, Generative Adversarial Networks (GAN) have been also suggested to
model a distribution of normal data (Sabokrou et al., 2018; Schlegl et al., 2017). Despite the same
purpose of discovering a simpler, lower-dimensional representation, the training criterion for GAN
is focusing on the quality of data generation rather than the reconstruction quality of training data.
Recently, several pieces of research have combined autoencoders and adversarial learning to meet
both criteria in dimension reduction and data generation (Haloui et al., 2018; Pidhorskyi et al., 2018;
Zenati et al., 2018). One limitation of these methods based on the ordinary reconstruction error is
that they do not exploit all the information available along the projection pathway of deep autoen-
coders. We will explain how to leverage this information for novelty detection in the next section.

From the viewpoint of the diversity and ratio of the normal data in novelty detection, there are two
cases available. The first case is when a small fraction of classes are normal. This case has been
studied in a one-class classification context, and usually evaluated by organizing training data into
a collection of samples belonging to a small number of normal classes (Ruff et al., 2018; Perera &
Patel, 2018; Sabokrou et al., 2018; Golan & El-Yaniv, 2018). The second case is when a majority
of classes are assigned as normal (An & Cho, 2015; Schlegl et al., 2017; Haloui et al., 2018; Zenati
et al., 2018). In this case, normal data is more diverse, and the training data is consist of samples of a
relatively large number of normal classes: e.g., nine digits of MNIST. One setup does not dominate
the other, but depending on applications, either can be more suitable than the other. Different meth-
ods may perform differently in both cases. In this paper, we evaluate RAPP and other competing
methods with experiments in both setups.
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3 PROPOSED METHOD: RAPP

In this section, we describe the proposed novelty detection method RAPP based on an autoencoder.
The main idea is to compare hidden activations of an input and its hidden reconstructions along
the projection pathway of the autoencoder. To be precise, we project the input and its autoencoder
reconstruction onto the hidden spaces to obtain pairs of activation values, and aggregate them to
quantify the novelty of the input. For the aggregation, we present two metrics to measure the total
amount of difference within each pair.

3.1 RECONSTRUCTION BASED NOVELTY DETECTION

An autoencoder A is a neural network consisting of an encoder g and a decoder f , responsible for
dimension reduction and its inverse mapping to the original input space, respectively: i.e. A = f ◦g.
For the purpose, training the autoencoder aims to minimize difference between its input x and output
A(x). The space that the encoder g constitutes is called the latent space, and provides more concise
representation for data than the input space.

Due to this representation learning property, the autoencoder has been widely used for novelty de-
tection. Specifically, training an autoencoder on normal data samples, novelty of a test sample x is
measured by the following reconstruction error ε:

ε = ‖x−A(x)‖2.
The test sample x is more likely to be novel as the error ε(x) becomes larger, because it means that
x is farther from the manifold that the autoencoder describes.

Although this approach has shown a promising result in novelty detection, the reconstruction error
alone does not fully exploit information provided by a trained autoencoder especially when its archi-
tecture is deep. In other words, hierarchical information identified by the deep architecture is being
ignored. This is rather unfortunate because hierarchical representation learning is one of the most
successfully proven capabilities of deep neural networks.

To fully leverage that capability, below we will describe the way to exploit hidden spaces to capture
the difference between normal and novel samples in more details,

3.2 RECONSTRUCTION ERROR IN HIDDEN SPACES

Let A = f ◦ g be a trained autoencoder where g and f are an encoder and a decoder, and ` be the
number of hidden layers of g. Namely, g = g` ◦ · · · ◦ g1. We define partial computation of g as
follows:

g:i = gi ◦ · · · ◦ g1,
for 1 ≤ i ≤ `.
Let x be an input vector, and x̂ be its reconstruction by A: i.e., x̂ = A(x). In addition to comparing
x and x̂ in the input space, as the ordinary approach does, we examine them in hidden spaces along
a projection pathway of A. More precisely, feeding x and x̂ into A, we obtain pairs (hi, ĥi) of their
hidden representations where

hi(x) = g:i(x),

ĥi(x) = g:i(x̂) = g:i(A(x)).

Figure 1 illustrates the procedure of computing hi and ĥi. As a result, novelty of the sample x is
quantified by aggregating H(x) = {(hi(x), ĥi(x)) : 1 ≤ i ≤ `}.
The overall procedure of RAPP is summarized in Algorithm 1. To clearly state the required variables
to construct H , we write the algorithm with the for loop in Lines 3–5, but in practice, all of them
can be computed by feed-forwarding one time each of x and x̂ to g. Note that RAPP is indeed a
generalization of the ordinary reconstruction method with defining g0 as the identity function and
sord as follows.

sord(H(x)) = ‖h0(x)− ĥ0(x)‖22,
where h0(x) = g0(x) = x and ĥ0(x) = g0(x̂) = x̂.
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Figure 1: Computation of h and ĥ. The reconstruction x̂ is fed to the same autoencoder that produced
itself.

Algorithm 1: RAPP to compute a novelty score.
Input : Sample x, trained autoencoder A = f ◦ g, the number of layers `, and aggregation s.
Output: Novelty score S.

1 x̂ = A(x).
2 H = ∅.
3 foreach i in 1 to ` do
4 H = H ∪ {(g:i(x), g:i(x̂))}.
5 end
6 S = s(H).

In this paper, we provide two metrics sSAP and sNAP which more extensively utilize H than sord.
Those are especially suited for the case of zero-knowledge to interpret identified hidden spaces,
which commonly happens when modeling with deep neural networks. Note that, however, more
elaborate metrics can be designed if we have knowledge on or can characterize the spaces.

3.2.1 SIMPLE AGGREGATION ALONG PATHWAY (SAP)

This is the most straightforward metric that one can define on H . For a data sample x, SAP is
defined by summing the square of Euclidean distances for all pairs in H:

sSAP (x) =
∑̀
i=0

‖hi(x)− ĥi(x)‖22 = ‖h(x)− ĥ(x)‖22,

where h(x) and ĥ(x) are the concatenations of [h0(x), · · · , h`(x)] and [ĥ0(x); · · · ; ĥ`(x)], respec-
tively.

3.2.2 NORMALIZED AGGREGATION ALONG PATHWAY (NAP)

Although SAP is intuitive, it does not consider properties of hidden spaces; distance distributions of
pairs in H may be different depending on the individual hidden spaces. For instance, the magnitude
of distances can depend on layers, or there may exist correlated neurons even across layers which
are unintentionally emphasized in SAP. To capture clearer patterns, we propose to normalize the
distances via two steps: orthogonalization and scaling.

Let d(x) = h(x) − ĥ(x); given a training set X , let D be a matrix whose i-th row corresponds
to d(xi) for xi ∈ X , and D̄ be the column-wise centered matrix of D. For the normalization, we
compute D̄ = UΣV T , SVD of D̄, to obtain its singular values Σ and right singular vectors V . For
a given data sample x, we define sNAP as follows:

sNAP (x) = ‖d(x)>V Σ−1‖22,

where d(x) is expressed as a column vector.
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Figure 2: Motivation of RAPP. The quantity that RAPP computes, the hidden activation of the
reconstruction input, is equivalent to the hidden reconstruction of the input. Since f̃ = f , computing
ĥ′2 = ĥ2 does not require explicitly evaluating f̃i but only gi and f = f̃ .

4 MOTIVATION OF RAPP

One natural question in using the ordinary reconstruction method is as follows: why do we in-
vestigate only the input space? Or, why do we not use information in hidden spaces? While the
reconstruction error in the input space is extensively employed, any similar concept does not exist
for hidden spaces. There is no explicit correspondence between hidden layers in g and f , and as
such two spaces defined by a pair of the corresponding hidden layers in g and f cannot be directly
compared. Therefore, we cannot directly compute reconstructions in hidden spaces corresponding
to activations in those hidden spaces.

Nevertheless, we will show that there is an indirect way to compute the hidden reconstructions
without modifying an ordinary autoencoder nor requiring additional components incorporating it.
Precisely, we will show below that ĥi is indeed equivalent to the hidden reconstruction. The overall
mechanism is depicted in Figure 2.

4.1 COMPUTATION OF HIDDEN RECONSTRUCTION

Let A = f ◦ g be an autoencoder, and M0 = {A(x) : x ∈ Rn} be the low dimensional manifold
that A describes (Pidhorskyi et al., 2018): i.e.,

∀x ∈M0, x = A(x).

Defining Mi = {g:i(x) : x ∈M0}, which is the low dimensional image of M0 defined by g:i, g and
f restricted on M0 and M`, respectively, are inverse functions of each other.

Let us assume that there exists a decoder f̃ = f̃1 ◦ · · · ◦ f̃` such that

∀x ∈M`, f̃(x) = f(x), (1)

∀h ∈Mi, h = (gi ◦ f̃i)(h). (2)

The second condition makes f̃`:i+1 a proper decoder corresponding to gi+1:, and then, the i-th
hidden reconstruction ĥ′i(x) is defined by

ĥ′i(x) = (f̃`:i+1 ◦ gi+1:)(hi(x)).

Finally, we can conclude that ĥi(x) is equal to ĥ′i(x) for x ∈M0 as follows.

ĥ′i(x) = (f̃`:i+1 ◦ gi+1:)(hi(x)) = (f̃`:i+1 ◦ g)(x)

= (g:i ◦ f̃ ◦ g)(x) (by equation 2)

= (g:i ◦A)(x) = hi(x̂) = ĥi(x). (by equation 1)

where we do not need f̃i for computation, but only gi and f . Note that for x ∈ M0 already on the
manifold, its i-th hidden reconstruction ĥ′i(x) becomes equal to its hidden activation hi(x) = ĥi(x)
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Table 1: Description of datasets used in our evaluation.

Name # Samples # Features # Class Domain Novelty Target

MI-F 25,286 58 2 CNC milling Machine not completed
MI-V 23,125 58 2 CNC milling Workpiece out-of-spec
EOPT 90,515 20 2 Storage system System failures
NASA 4,687 33 2 Astronomy Hazardous asteroids
RARM 20,221 6 2 Robotics Malfunctions
STL 1,941 27 7 Steel Surface defects
OTTO 61,878 93 9 E-commerce Types of products
SNSR 58,509 48 11 Electric Currents Defective conditions

MNIST 70,000 784 10 Hand written digits Digits
F-MNIST 70,000 784 10 Fashion articles Articles

for every 1 ≤ i ≤ `: i.e. hi(x) = ĥ′i(x) as x = A(x). For x /∈ M0, its hidden reconstruction ĥ′i(x)
will differ from it hidden activation hi(x).

Now, we show the exsitence of f̃ as follows. Since x = A(x) for x ∈M0, gi and fi are one-to-one
functions fromMi−1 andMi, respectively. Let us define f̃i = g−1i forMi and f̃ = f̃1 ◦· · ·◦ f̃`; then
it also holds f̃ = g−1. This implies x = (f̃ ◦ g)(x) for x ∈ M0, and consequently, f̃ = f on M`.
This definition of f̃i satisfies the two conditions above, and as discussed, we can compute hidden
reconstructions of an input, ĥ′i(x) = (f̃`:i+1 ◦ g)(x), through computing the i-th hidden activation
of the reconstructed input x̂ = A(x), ĥi(x).

Implementation of f̃ by Neural Networks Given gi, if the symmetric architecture for f̃i is used,
we may not be able to learn f̃i = g−1i . Neural networks are, however, highly flexible frameworks
in which we can deal with models of arbitrary function forms by adjusting network architecture.
This property enables us to design a layer capable of representing f̃i. For instance, even if f̃i is too
complicated to be represented with a single fully connected layer, we can still approximate f̃i by
stacking multiple layers. Hence, given gi and X , f̃i can be represented by neural networks.

5 EVALUATION

In this section, we evaluate RAPP in comparison to existing methods. To this end, we tested the
methods on several benchmarks and diverse datasets collected from Kaggle and the UCI repository
which are suitable for evaluating novelty detection methods.

5.1 DATASETS AND PROBLEM SETUPS

The datasets from Kaggle and the UCI repository are chosen from problem sets of anomaly detection
and multi-class classification, summarized in Table 1. We note that MI-F and MI-V share the same
feature matrix, but are considered to be different datasets because their labels normal and abnormal
are assigned by different columns: i.e. machine completed and pass visual inspection, respectively.
We use these datasets to compare RAPP with standard autoencoder-based methods described in
Section 5.2.

To compare RAPP with novelty detection methods in recent literatures, we also use popular bench-
mark datasets for evaluating deep learning techniques: MNIST (LeCun & Cortes, 2010) and F-
MNIST (Xiao et al., 2017). For theses datasets, we do not take pre-split training and test sets, but
instead merge them for post-processing. Further setups are described in Section 5.1.

Novelty detection detects novel patterns by focusing on deviations from model-learned normal pat-
terns. Thus, training sets contain only normal samples and test sets contain both normal and anomaly
samples in our evaluation setups. Precisely, if a dataset contains an anomaly label, we assign all sam-
ples with that label to the test set for detection. If a dataset does not have any anomaly labels, we
consider the following two setups.
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• Multimodal Normality: A single class is chosen to be the novelty class and the remaining
classes are assigned as the normal class. This setup is repeated to produce sub-datasets
with all possible novelty assignments. For instance, MNIST results in a set of datasets with
10 different novelty classes.
• Unimodal Normality: In contrast to the multimodal normality setup, we take one class for

normality, and the others for novelty. For instance, MNIST results in a set of datasets with
10 different normal classes.

We applied these two setups to STL, OTTO, SNSR, MNIST, and F-MNIST datasets.

5.2 COMPARISON METHOD

We compare RAPP and the other methods using Area Under Receiver Operating Characteristic
(AUROC). Note that we do not employ thresholding-based metrics such as F1 score because access
to abnormal samples is only allowed in testing time. Hence, we focus on the separability of models
for novelty with AUROC.

For the datasets in Table 1, we compare the effectiveness of the reconstruction error, SAP and
NAP for three models: Autoencoder (AE), Variational Autoencoder (VAE), Adversarial Autoen-
coder (AAE) (Makhzani et al., 2016). For the benchmark datasets, recent approaches including
OCNN (Chalapathy et al., 2018), GPND (Pidhorskyi et al., 2018), DSVDD (Ruff et al., 2018) and
GT (Golan & El-Yaniv, 2018) are available. To obtain the performances of the existing approaches,
we downloaded their codes and applied against our problem setups.

Given novelty classes, we create the test sets by randomly selecting samples while maintaining
novelty ratios to 35% for the multimodal and 50% for the unimodal normality setups, respectively.
Note that the expectation value of AUROC is invariant to the novelty ratio.

5.3 IMPLEMENTATION DETAILS

We use symmetric architecture with fully-connected layers for the three base models, AE, VAE, and
AAE. Each encoder and decoder has 10 layers with different bottleneck size. For the Kaggle and
UCI datasets, we carry out PCA for each dataset first. The minimum number of principal compo-
nents that explain at least 90% of the variance is selected as the bottleneck size of the autoencoders.
We set bottleneck size to 20 for benchmark datasets. Leaky-ReLU (Xu et al., 2015a) activation and
batch normalization (Ioffe & Szegedy, 2015) layers are appended to all layers except the last layer.

We train AE, VAE and AAE with Adam optimizer (Kingma & Ba, 2015), and select the model with
the lowest validation loss as the best model. For training stability of VAE, 10 Monte Carlo samples
were averaged in the reparamterization trick (Kingma & Welling, 2014) to obtain reconstruction
from the decoder. In the calculation of SAP and NAP, we excluded reconstructions in the input
space for MNIST and F-MNIST.

5.4 RESULTS

Each AUROC score is obtained by averaging AUROC scores from five trials to reduce the random
errors in training neural networks.

5.4.1 COMPARISON WITH BASELINES

Table 2 summarizes the result of our performance evaluation where the best score for each model is
in bold. Also, we showed the best score for each dataset with an underline.

Since STL, OTTO, SNSR, MNIST, and F-MNIST do not have anomaly labels, their scores are
averaged over all possible anomaly class assignments. For instance, the AUROC value for OTTO
in the unimodal normality setup is the average of 9 AUROC values with different anomaly class
assignments.

In Table 2, RAPP shows the highest AUROC scores for most of the cases. We also observe that
NAP is more effective with AE and VAE compared to AAE. If we examine the performance for
each dataset, RAPP achieves the best for 13 cases out of 15 (see the underlines).
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Table 2: AUROC of RAPP and the baselines.

AE VAE AAE

Data Recon SAP NAP Recon SAP NAP Recon SAP NAP

Multimodal Normality

STL 0.596 0.603 0.714 0.533 0.537 0.703 0.716 0.696 0.711
OTTO 0.620 0.630 0.662 0.598 0.615 0.620 0.620 0.635 0.668
SNSR 0.601 0.611 0.645 0.601 0.607 0.630 0.616 0.610 0.606

MNIST 0.825 0.881 0.899 0.864 0.907 0.927 0.847 0.911 0.929
F-MNIST 0.712 0.725 0.734 0.710 0.671 0.737 0.721 0.710 0.727

Unimodal Normality

MI-F 0.694 0.755 0.707 0.455 0.392 0.540 0.663 0.759 0.704
MI-V 0.883 0.878 0.913 0.680 0.576 0.799 0.870 0.861 0.882
EOPT 0.650 0.648 0.627 0.604 0.580 0.594 0.594 0.585 0.624
NASA 0.662 0.614 0.665 0.582 0.519 0.676 0.719 0.716 0.724
RARM 0.647 0.630 0.665 0.655 0.635 0.678 0.665 0.667 0.684
STL 0.552 0.629 0.845 0.526 0.595 0.823 0.790 0.761 0.798
OTTO 0.675 0.680 0.749 0.626 0.612 0.741 0.738 0.729 0.752
SNSR 0.791 0.781 0.903 0.714 0.685 0.902 0.863 0.868 0.924
MNIST 0.972 0.980 0.979 0.957 0.954 0.976 0.972 0.966 0.977
F-MNIST 0.924 0.928 0.933 0.905 0.863 0.934 0.922 0.905 0.928

Table 3: AUROC on benchmark datasets.

Dataset OCNN GPND DSVDD GT NAPAE NAPVAE NAPAAE

Multimodal Normality (Novelty Ratio: 35%)

MNIST 0.600 0.501 0.622 0.893 0.899 0.927 0.929
F-MNIST 0.609 0.691 0.610 0.725 0.734 0.737 0.727

Unimodal Normality (Novelty Ratio: 50%)

MNIST 0.927 0.971 0.922 0.974 0.979 0.976 0.977
F-MNIST 0.915 0.917 0.923 0.935 0.933 0.934 0.928

5.4.2 COMPARISON WITH COMPETITORS

Table 3 summarizes the comparison of RAPP to recent novelty detection methods. As in Table 2,
AUROC values are calculated by averaging results from 10 cases with different anomaly class as-
signments for both datasets.

Except for the unimodal F-MNIST setup, NAP outperforms all competing methods regardless of
base model choice. Even in the case where NAP scores did not win, the performance of RAPP is
comparable to the best one, GT, which relies on image-specific data transformations.

6 CONCLUSION

In this paper, we propose a novelty detection method which utilizes hidden reconstructions along a
projection pathway of deep autoencoders. To this end, we extend the concept of reconstruction in
the input space to hidden spaces found by an autoencoder and present a tractable way to compute
the hidden reconstructions, which requires neither modifying nor retraining the autoencoder. Our
experimental results show that the proposed method outperforms other competing methods in terms
of AUROC for diverse datasets including popular benchmarks.
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