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ABSTRACT

In recent years, deep learning models remain black boxes, where the decision-
making process is still opaque to humans. In this work, we try to explore the prob-
abilities of understanding how machine thinks when doing question-answering
tasks. In general, words are represented by continuous latent representations in
the neural-based QA models. Here we train the QA models with discrete latent
representations, so each word in the context is also a token in the model. In this
way, we can know what a word sequence in the context looks like through the
lens of the QA models. We analyze the QA models trained on QuAC (Question
Answering in Context) and CoQA (A Conversational Question Answering Chal-
lenge) and organize several rules the models obey when dealing with this kind of
QA task. We also find that the models maintain much of the original performance
after some hidden layers are quantized.

1 INTRODUCTION

Over the past few years, more and more people have been enchanted at the power of deep neural
networks; they try to apply various networks on different fields such as reading comprehension,
computer vision, image recognition, speech recognition, etc. Nowadays, there are many outstand-
ing deep learning-based models capable of yielding human-comparable results on some benchmark
corpora. For instance, those leading models on SQuAD (Rajpurkar et al., 2018) and CoQA (Reddy
et al., 2019) have already passed the baseline of human performance; however, their mechanisms
remain black boxes for us since nobody knows how they make a decision. When models make the
wrong prediction, we can merely do some fine-tuning or use more training data. Most of the time,
we do not know what modifications to make for better performance.

In general, the latent representation in a deep neural network can be regarded as what a machine
thinks when solving tasks. People have already begun to elaborate on the meaning of latent rep-
resentation (Doshi-Velez & Kim, 2017; Montavon et al., 2018); however, only those deep learning
researchers are able to understand and utilize the results. In this work, we seek the possibility for
not only further realizing how the machine thinks but making deep neural networks much more
comprehensible for all people.

In recent years, conversational question answering is found to be pretty challenging for existing deep
neural networks. Given one context and a series of questions, machines sometimes should output
two different answers to the same question because, in these datasets, output answers according to
not only the context and question but also those questions that are asked in the previous time steps.
Besides, a model should handle the co-reference issue when trying to obtain correct answers. For
instance, it should know the relation between those pronouns and people, food, location, etc. In
order to do so, a model has to store these kinds of information in its latent representations. We focus
on analyzing the neural QA models trained on this kind of task.

In this work, we demonstrate how to visualize the original latent vectors as more meaningful rep-
resentations, which can be easily understood by humans. Originally, latent representations lie in a
continuous high dimensional space, and it is pretty hard for humans to know what they mean. There-
fore, to simplify it, we propose a vector quantized method, which can quantize latent representations
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into discrete vectors. Although, in general, vector quantization is usually applied to computer vision
or speech recognition rather than natural language processing, we believe that this architecture is
quite suitable for visualizing the latent representations. After converting the hidden representations
into discrete vectors, humans can read the articles through the lens of deep neural networks. Gen-
erally, humans are more comfortable with these discrete tokens since words and sentences in all
languages are in this form.

One of the reasoning results is shown in Figure 1. Each color represents a codeword. The rare
codewords are with the red tone, while the common ones are with the blue tone. Within the same
context, a machine uses different colors to represent the same word. This is because even for the
same word, it should contain different meanings at different time steps. For instance, ”Richie” is
colored as orange in Figure 1(a) and as blue in Figure 1(b). By contrast, different words can use the
same color, such as those dark blue tokens in Figure 1. Note that the spans inside green boxes are
the ground truth, while the ones with underline are model outputs.

After coloring all tokens, we organize several rules which machine follows based on the experiment
result. First of all, we have found that for these deep neural networks, they do not need that a
massive size of codebook to achieve good performance. On average, a neural network can use
only 20 or so vectors to cover almost all information. This striking fact is based on very little
performance degradation. In the second place, we have found the meaning of some codewords,
some of which are nonsense, whereas some of which preserve a lot of information. However, even
for those nonsense words at the current time step, it may be very meaningful at other time steps,
depending on the question machine is asked. Apart from this, we successfully identify those tokens
that are responsible for marking the boundary of answer spans, which is supposed to be the key
element of most QA models.

2 RELATED WORK

Deep learning for reading comprehension has attracted much attention (Bordes et al., 2015; Kumar
et al., 2015; Xiong et al., 2016; Hermann et al., 2015; Shih et al., 2015). Generally, conventional
reading comprehension systems are designed as a cascade of some components (syntactic parser,
semantic parser, etc.), while in the case of end-to-end reading comprehension model, a neural net-
work which takes a story and some questions as input and an answer as output is directly learned
from training data, making it feasible to jointly learn components of conventional QA system.

In addition, the mechanisms such as hopping and attention are widely used in reading comprehen-
sion models so as to model the deduction process (Weston et al., 2014). In a dynamic memory
network (DMN) (Kumar et al., 2015), questions trigger an iterative attention process which allows
the model to condition its attention on the inputs and the result of previous iterations. After reason-
ing over multiple supporting facts, Neural Reasoner (Peng et al., 2015) is able to find an answer to
a given question. The Recurrent Entity Network (EntNet) (Henaff et al., 2017) is the first method to
solve all the tasks in the 10k training examples setting of bAbI (Weston et al., 2015). The Query-
Reduction Network (QRN) (Seo et al., 2016b) effectively handles both short-term and long-term
sequential dependencies in order to reason over multiple facts. To achieve complex relational rea-
soning, new models are proposed (Bansal et al., 2017; Santoro et al., 2017; Palm et al., 2018; Pavez
et al., 2018). Recent attention mechanisms and network architectures have been shown to be quite
helpful for SQuAD (Xiong et al., 2017; Seo et al., 2016a; Wang et al., 2017; Hu et al., 2017; Huang
et al., 2017). Also, on the SQuAD leaderboard1, deep learning-based models are competitive with
human performance and even surpass it (Yang et al., 2019; Liu et al., 2019; Devlin et al., 2018).
In addition to exploiting only plain context-sensitive features such as character or word embed-
ding, Zhang et al. (2019a) proposes to incorporate explicit contextual semantics in order to promote
natural language understanding. SG-Net (Zhang et al., 2019b) is proposed to guide machines by
incorporating syntactic constraints into their attention mechanisms.

Interpretation of neural networks sometimes serve as preliminary works to some tasks such as model
compression (Voita et al., 2019) or Machine Translation (Voita et al., 2018). Among all interpreta-
tion methodologies, visualization has been the most intuitive and widely accepted in a plethora of
such works. Most of them relate components of a neural network such as activations (Kádár et al.,

1https://rajpurkar.github.io/SQuAD-explorer/
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(a) The 1st question turn (What shows did she appear on?)

(b) The 2nd question turn (What was the show about?)

(c) The 9th question turn (Is there anything else interesting?)

Figure 1: Vector quantized latent representations for different question turns.

2016; Liu et al., 2018), weights of neurons (Ding et al., 2017) or attention heads (Bahdanau et al.,
2015) to their corresponding positions in the inputs or outputs. Saliency based on some importance
measure is quite common as well. Voita et al. (2018) calculated the importance of each attention
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head and related them to the syntactic role each head is assumed to take by experiment. Feng et al.
(2018) assigned each word in an input context an importance calculated from gradient change by
removing the word. Nevertheless, most of these interpretation measures yield continuous values and
thus are hard to analyze and visualize directly, leaving the reasoning process of deep neural network
still remain unexploited.

3 METHODOLOGY

In this kind of task, inputs should contain a context C and some related questions Q, both of which
are in natural language. Here is an example in Figure 1. For the same context, models will be asked
several different yet related questions, such as the first question in Figure 1(a) and the second one
in Figure 1(b). Models should know what show is in the second question after answering the first
question. For the purpose of understanding the reasoning process, we replace one of any layers that
should be analyzed with a vector quantized (VQ) layer. In fact, for any methods that can quantize
latent space into discrete one should work. Here we simply choose the one used in VQ-VAE (van den
Oord et al., 2017). The idea of our model structure is shown in Figure 2. VQ layer should have the
exact same shape with the layer that we need to analyze, then with an extra codebook, we are able
to replace all latent vectors with quantized ones. In addition, replacing different layers with VQ
ones will have different influences on performance; we will discuss this phenomenon based on the
experiments on SDNet in section 5.1.

As for the gradient issue of VQ layer, we simply copy the gradients from the next layer’s input to the
previous layer’s output. Then, the final loss for this model structure should include 3 terms: QA loss,
VQ (Vector Quantization) loss, and commitment loss. While VQ loss helps the embedding vector
move toward the previous layer’s output, commitment loss makes sure the previous layer commits
to an embedding.

Figure 2: Vector quantized model.

4 QUESTION-ANSWERING MODEL

In this paper, we use FlowQA (Huang et al., 2018) and SDNet (Zhu et al., 2018) as the example of
QA models to be studied. We modify both of them then train and evaluate on QuAC (Choi et al.,
2018) and CoQA (Reddy et al., 2019) separately. These two datasets are quite similar, both are
conversational question answering datasets. Given one context and a series of questions, models are
asked to answer them chronologically; they have to answer them based on the previous questions
being asked. One example is shown in Figure 1.

We train a bunch of FlowQA models with the same architecture for the purpose of organizing some
general reasoning rules. On the other hand, we implement two different versions of SDNet. We
put the VQ layer in different positions (SDNet(v1) and SDNet(v2) ) so as to observe the reasoning
process respectively. We will elaborate on the differences between these two versions in section 5.1.

4



Under review as a conference paper at ICLR 2020

The network architecture and all details of FlowQA are in Appendix A.1 and the two different
network architectures of SDNet are shown in Appendix A.2 respectively.

5 EXPERIMENTS

5.1 DENSITY OF CODEBOOKS

The final performance of two models with different codebook size, K, is listed in Table 1. Note
that we will not use the latent vectors of those models with gray color or do the further discussion
and experiment in the following analysis. And, we also try to boost the performance of VQ models.
Firstly, we randomly sample 1M vectors from the reproduced model, then we apply the K-means
algorithm to it. Then, we use these 16 vectors to initialize our codebook and find that it does help
boost the performance. Nonetheless, after comparing all the hidden representations with the original
K = 16 model, we can hardly find any differences between them. Consequently, most of our
experiments are based on the vanilla VQ model without K-means vector initialization. Moreover,
for the sake of analyzing easily, we try to choose K as small as possible.

It is obvious that even for a very small K such as 4, both QA models can still maintain good
performance. In the past, most applications of VQ-VAE are about image, audio, and video, few
people have ever imagined that it can be applied to QA models, even for such small K. It is worth
noting that the performance of SDNet(v2) is still very good when K = 1. K = 1 implies that
each context word uses the same codeword, so the only way for the model to achieve such good
performance is mainly because of the residual layers designed in vanilla SDNet. In SDNet(v2),
the VQ layers are residual layers, whose outputs are combined with their inputs, including word
embedding and BERT embedding, leading to information propagating to the next layers.

Table 1: Performance of two vector quantized models. The light cyan row stands for the vanilla
model without vector quantization, while those cells with gray color means that they are under the
90% performance of vanilla model. The pink row is the model with K-means initialization.

F1 Score
K FlowQA on QuAC SDNet(v1) on CoQA SDNet(v2) on CoQA

Reproduce 63.641 76.439 76.439
512 59.232 72.426 74.575
128 59.419 72.797 74.318
64 59.352 69.789 74.182
32 59.350 70.456 73.671
16 59.268 71.128 73.320
8 59.082 70.999 72.409
4 57.267 71.752 71.692
2 54.974 53.546 71.684
1 35.095 16.119 68.759

16(K-means) 62.566 - -

We have found that even for a large K, models do not actually need that many codewords. In
average, for these two kinds of QA reasoning tasks, models only need a small capacity to reach a
quite good performance. When we say that only 24 codewords are used, it means that to evaluate
the whole validation data, the model only utilizes 24 codewords in its codebook. For example, for
the K = 512 FlowQA model, it actually utilize 24 codewords when predicting.

For Model 1, Model 2, and Model 3 of FlowQA, it means that we use the same model structure yet
train three individual models. Besides, in SDNet(v1) we put one VQ layer at the rear part of the
model, while in SDNet(v2) we put two VQ layers in the middle part of the model. As for Layer 1
and Layer 2 of SDNet(v2), it means that we replace two hidden layers in one model with two VQ
layers yet sharing the same codebook.

Other implementation details can be found in Appendix A.2.
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Table 2: Actually used codewords. The gray cells mean that models use all codewords in their
codebooks.

FlowQA SDNet SDNet(v2)
K Model 1 Model 2 Model 3 Model 1 Model 1

Layer Layer1 Layer2
512 24 30 28 23 169 346
128 25 24 32 23 36 94
64 23 30 30 18 20 53
32 23 32 32 17 10 24
16 15 16 15 16 10 16
8 8 - - 8 6 8

5.2 MEANING OF NONSENSE WORDS

We try to visualize the reasoning process of machines by coloring its latent representation (code-
word) and organize some rules. One of the examples with different time steps is shown in Fig-
ure 1(a), Figure 1(b), and Figure 1(c). In the figures, different colors represent different codewords.
As for other time steps and yet another example, we put them in Appendix B.5.

After observing tons of the colored figures and the statistical analysis, we define the first two high
frequency, which cover 65% for all codewords, as nonsense words (Dark Blue and Sky Blue). These
two codewords account for a huge portion in all size codebooks; therefore, we assume that it should
be more meaningless than other rare codewords.

Also, we can easily notice that the most colorful part is usually the model output span, and this
colorful segment is slowly shifted forward over time; the beginning of the context turns into dark
blue and sky blue in the last question turns. This is because, for these two datasets we use, the
positions of answers have a pretty strong relation with question turns. For instance, the answer to
the first question should appear at the beginning of context, whereas the answer to the last question
should appear at the end part of the context. We will discuss this phenomenon in the section 5.3.

In Table 3, ”Overall” column represents the percentage of these two codewords, ”Model Output”
means that the percentage of these two codewords appear within model output spans, and ”Subject
of Model Output” is the percentage of these nonsense words appearing within the subjects of model
output spans. We put the other three tables of SDNet in Appendix B.2. The most interesting thing of
these tables is that although model output spans usually do not contain those two nonsense words,
their subjects actually do contain numerous nonsense words. We conclude that it is because, at the
layer we quantize, subjects do not really matter to models. For FlowQA here, we set the quantized
layer at the rear part, and at this layer, the model should have already known the exact answer span.
Thus, other grammatical information such as object, location, adjective,...etc, may be more crucial
than subject. Most questions in these 2 datasets are about co-reference between different subjects.
As long as models know the correct answer position, subjects do not play a part anymore.

Table 3: Nonsense Words in FlowQA.

FlowQA
K Overall Model Output Subject of Model Output

512 0.4312 0.2396 0.4893
128 0.3960 0.2336 0.4454
64 0.4003 0.2271 0.4622
32 0.4084 0.2405 0.4812
16 0.4893 0.2898 0.5448
8 0.5763 0.4156 0.6261

Average 0.4503 0.2744 0.5082
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5.3 POSITION AND PORTION OF NONSENSE WORDS

In the previous section, we have mentioned that we consider the most two frequent codewords as
nonsense words. In this part, we use another viewpoint to analyze it. In general, the higher a
codeword’s percentage, the less meaning it preserves. In addition, in section 5.2 we have mentioned
that the colorful segments which might contain answers will gradually shift forward as time goes
on. In Figure 3, code 0 always stands for the rarest codeword whereas the largest code number is
the most common one. We can see that those crucial codewords certainly shift forward as time goes
by; on the contrary, nonsense words shift backward. Note that the y-axis is the normalized position
of context. For each word in a context, the normalized position stands for the position of that word
divided by the length of the context. For example, normalized position= 0, 0.5, 1, means that the
word is the first, middle, and the last word of the context. For other K we put them in Appendix B.1.

Figure 3: Average position of different codewords in FlowQA (K=8, 16).

5.4 PART-OF-SPEECH

We find that codewords may contain some syntactic and positional information. Such phenomenon
is observed in Figure 5 (for the other K, see Appendix B.4). In the case of QuAC, whose answers
tend to be sentences, input words with POS tags such as VERB, NOUN, and PROPN (proper noun),
are critical for answering questions. For words with such POS tags, if they are unrelated to the
current question, the model will assign them nonsense codewords (say, some of the most frequent)
for masking, so as not to mislead the later hidden layers. That is why the critical words’ tags, VERB,
NOUN, and PROPN, dominate almost all columns including nonsense words, code 0, code 1, and
code 2.

Moreover, the most important in Figure 4 and Figure 5 is that there are usually one or two codewords
possibly representing the start position and the end position for the answer, which may be due to
both models’ nature as pointer networks. For the example in Figure 4, code 9 and code 7 take
responsibility for this task. In order to extract answers, models always output the probability of
start and end positions. Now we may hypothesize that at least in the quantized layer, the model has
already tried to mark the boundary of answers.

Figure 4: Codewords distribution on start/end punctuation of FlowQA (K=16).
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Figure 5: The frequency of POS tags in each codeword of FlowQA (K=16). Note that for all heat
maps in this work, the codewords are ordered by their frequecy in the latent representation, from the
most frequent to the rarest. For each codeword in hidden layer, we can find the corresponding word
token in input layer. Then we use that word to generate POS tags.

6 CONCLUSION

In this paper, we propose vector quantized layer (VQ layer) on QA models, a novel network archi-
tecture for the QA task. Based on this idea, we are able to understand how machine thinks essentially
without losing much performance. For the VQ layer we use in this work, it can be put on any layers
of any QA models as long as we need to analyze it. After coloring those quantized vectors, it is
pretty easy for people to observe the action of different models. Besides, based on the experiments,
we have found some interesting phenomena. For the pointer networks we utilize in this paper, we
successfully find that models themselves indeed use some codewords to mark the boundary of an-
swer spans. Also, for some keywords such as VERB, NOUN, and PROPN, the models will use some
nonsense tokens to mask them so as not to mislead the latter layers. Finally yet importantly, QA
models actually do not need that huge capacity to reach high performance. That is, it can merely use
20 or so codewords in a layer to propagate all information.
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A IMPLEMENTATION DETAILS

A.1 FLOWQA

Our modified FlowQA is shown in Figure 6. In this task, each context and a series of questions
are first encoded with GloVe2 and Elmo (Peters et al., 2018). Then, we keep both the bidirectional
GRU (Chung et al., 2014) layers, which are used to encode context, and unidirectional GRU layers,
which are used to propagate information between different questions, intact. Then, we add an extra
codebook with size K and use it to quantize the output of the last flow layer. With the help of this
quantization mechanism, we are able to know the reasoning process of this model more easily.

Thus, the output shape of the previous layer is [LC , NQ, H], where LC stands for the max length
of context, NQ is the number of question turns, and H represents the hidden dimension. Then for
each H-dimensional vector, we can always find one vector in the codebook, which is composed of
K H-dimensional codewords, to replace it, letting it be the input of the next layer.

Finally, as for the value of β in VQ-VAE, we assign 1.0 on it instead of the default setting 0.25.

Figure 6: FlowQA with vector quantized layer.

A.2 SDNET

Our modified 2 versions of SDNet are shown in Figure 7(a) and Figure 7(b) respectively. In this
task, each context and a series of questions are encoded with Glove and BERT (Devlin et al., 2018).
Instead of using another dimensional flow to propagating information between different questions,
SDNet here utilizes the power of attention. We keep all layers intact except for the Context Fi-
nal Representation layer. Then a size K codebook is also added here. Note that for the original
model (Zhu et al., 2018), the author sets the number of the question turns as batch size for each
training iteration and we simply follow this setting.

2https://github.com/stanfordnlp/GloVe
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As a result, the output shape of the previous RNN layer should be [LC , NQ, H], where LC stands
for the max length of context, NQ stands for the number of question turns, and H represents the
hidden dimension.

Afterward, merely do the same operations as we did for FlowQA: finding one vector in the codebook
to replace the original one, feeding them into the next layer, then dealing with the gradient issue.
Lastly, we also use QA loss, VQ loss, and commitment loss to train this vector quantized SDNet.
Note that the value of β is set to 1.0 here as well.

(a) Version 1

(b) Version 2

Figure 7: SDNet with vector quantized layer.
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B EXTRA EXPERIMENT RESULTS

B.1 AVERAGE POSITION OF DIFFERENT CODEWORDS IN FLOWQA

Figure 8: Average position of different codewords in FlowQA.

B.2 NONSENSE WORDS IN SDNET(V1) AND SDNET(V2)

Table 4: Nonsense words in SDNet(v1).

SDNet(v1)
K Overall Model Output Subject of Model Output

512 0.6996 0.5947 0.9654
128 0.5661 0.5139 0.5776
64 0.7849 0.5321 0.7633
32 0.6623 0.4490 0.6930
16 0.6578 0.5139 0.7456
8 0.8905 0.5367 0.8458
4 0.9626 0.5947 0.9654

Average 0.7463 0.5189 0.7538

B.3 ANSWERABILITY

In QuAC, models are asked to whether the question is answerable or not, just like those in SQuAD
2.0 (Rajpurkar et al., 2018). We found that typically, rare codewords’ percentages when the question
is not answerable is lower than the percentages when the question is answerable. We use Figure 9
to show. The lines represent answerable questions while dotted lines are for not answerable ones.
As for the meaning of the threshold on the horizontal axis, it means that the percentage we define
codewords as a meaningful codeword . For instance,1.0 means that all codewords are meaningful.
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Table 5: Nonsense words in SDNet(v2) layer 1.

SDNet(v2) layer 1
K Overall Model Output Subject of Model Output

512 0.0518 0.0536 0.2183
128 0.1316 0.1656 0.4106
64 0.1984 0.2115 0.4731
32 0.4373 0.3807 0.5752
16 0.5208 0.5707 0.5255
8 0.9998 1.0 1.0
4 0.9999 0.9999 0.9994

Average 0.4771 0.4831 0.6003

Table 6: Nonsense words in SDNet(v2) layer 2.

SDNet(v2) layer 2
K Overall Model Output Subject of Model Output

512 0.0405 0.0347 0.1404
128 0.0988 0.0951 0.1589
64 0.1989 0.1535 0.2857
32 0.3071 0.2298 0.3397
16 0.6608 0.3514 0.6287
8 0.7080 0.5498 0.7998
4 0.8090 0.8019 0.7966

Average 0.4033 0.3166 0.4450

(a) Smaller codebook size (b) Bigger codebook size

Figure 9: Influence of important words on answerability.
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B.4 PART-OF-SPEECH

(a) POS-codeword heat map (K=32)

(b) Codewords distribution (K=32)
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(c) POS-codeword heat map (K=64)

(d) Codewords distribution (K=64)
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(e) POS-codeword heat map (K=128)

(f) Codewords distribution (K=128)
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(g) POS heat map

(h) K=512

Figure 10: Codebooks distribution on start/end punctuation in FlowQA (K=32, 64, 128, 512).
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B.5 VISUALIZATION EXAMPLES OF VECTOR QUANTIZED LATENT REPRESENTATIONS

(a) The 1st question turn (What shows did she appear on?)

(b) The 2nd question turn (What was the show about?)

(c) The 3rd question turn (Was it popular?)
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(d) The 4th question turn (How many seasons did it have?)

(e) The 5th question turn (Did she have any other shows?)

(f) The 6th question turn (Was she a main role?)
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(g) The 7th question turn (What other shows did she play?)

(h) The 8th question turn (Is she still acting?)

(i) The 9th question turn (Is there anything else interesting?)

Figure 11: Example 1 of FlowQA.
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(a) The 1st question turn (What was he doing in his later life?)

(b) The 2nd question turn (What did he do as president of the association?)

(c) The 3rd question turn (What other things was he doing?)
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(d) The 4th question turn (Was he the first to do anything else?)

(e) The 5th question turn (Did he have other firsts?)

(f) The 6th question turn (What other things were going on in his later life?)
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(g) The 7th question turn (Was he married for many years?)

(h) The 8th question turn (Did he re-marry?)

(i) The 9th question turn (Did he continue working?)

Figure 12: Example 2 of FlowQA.
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