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ABSTRACT

In geometric computer vision applications, multi-image feature matching gives
more accurate and robust solutions compared to simple two-image matching. In
this work, we formulate multi-image matching as a graph embedding problem,
then use a Graph Neural Network to learn an appropriate embedding function for
aligning image features. We use cycle consistency to train our network in an unsu-
pervised fashion, since ground truth correspondence can be difficult or expensive
to acquire. Geometric consistency losses are added to aid training, though unlike
optimization based methods no geometric information is necessary at inference
time. To the best of our knowledge, no other works have used graph neural net-
works for multi-image feature matching. Our experiments show that our method
is competitive with other optimization based approaches.

1 INTRODUCTION

Feature matching is an essential part of Structure from Motion and many geometric computer vision
applications. The goal in multi-image feature matching is to take 2D feature positions from three or
more images and find which ones correspond to the same point in the 3D scene. Methods such as
SIFT feature matching (Lowe, 2004) combined with RANSAC (Fischler & Bolles, 1981) have been
the standard for decades. However RANSAC-based approaches are limited to matching pairs of
images, which can lead to global inconsistencies in the matching. Other works, such as Wang et al.
(2017), have shown improvement in performance by optimizing cycle consistency, i.e. enforcing the
pairwise feature matches to be globally consistent.

However, these multi-view consistency algorithms struggle in distributed and noisy settings. Having
image features suited for this task would help improve performance, and deep learning has revolu-
tionized how image features are computed (Yi et al., 2016). In this paper, we want to leverage the
power of deep representations in order to compute feature descriptors that are robust across multiple
views.

Unfortunately, there are obstacles to applying multi-view constraints directly to deep learning.
Multi-view constraints are formulated in terms of sparse features, which traditional convolutional
neural nets are not designed to handle. Thus we will need a new architecture to handle such con-
straints. More fundamentally, deep neural networks need large amounts of labeled data to train. In
the case of multi-image feature matching, one would need hand-labeled point correspondences be-
tween images, which can be difficult and expensive to obtain. Consequently unsupervised training
is a more practical approach. In the absence of direct supervision, the additional signal of geometric
constraints can help disambiguate visually similar features and reject outliers. Thus incorporating
such constraints is important in training a network to solve this task.

In this work, we address these concerns using Graph Neural Networks (GNNs). The proposed
method works directly on the graph of correspondences between the image features, which is ag-
nostic to how the correspondences were computed, thus allowing the algorithm to work in a broad
class of environments. To the best of our knowledge this work is the first to apply deep learning
to the multi-view feature matching problem. We use an unsupervised loss, the cycle consistency
loss, to train the network, thus avoiding the difficulty of expensive hand-labeling. We use geometric
consistency losses to aid training, though no geometric information is used at inference time. Al-
though our network is simple, it shows promising results compared to baselines which optimize for
cycle-consistency without learned embeddings, using a matrix factorization loss (Zhou et al., 2015;
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Figure 1: An illustration of the approach of this work. The Graph Neural Neural Network (GNN)
(Battaglia et al., 2018) takes as input the graph of matches and then outputs a low rank embedding
of the adjacency matrix of the graph. The GNN operates on an embedding over the vertices of the
graph. In the figure, the GNN vertex embeddings are represented by different colors. The final
embedding is used to construct a pairwise similarity matrix, which we train to be a low dimensional
cycle-consistent representation of the graph adjacency matrix, thus pruning the erroneous matches.
We train the network using a reconstruction loss on the similarity matrix with the noisy adjacency
matrix, and thus do not need ground truth matches. In addition, we can use geometric consistency
information, such as epipolar constraints, to assist training the network.

Leonardos et al., 2016). Furthermore, since inference requires only a single forward pass over the
neural network, our approach is faster to achieve comparable accuracy than methods which must
solve an optimization problem every time. We perform experiments on the Rome16K dataset (Li
et al., 2010) to test the effectiveness of our method compared to optimization based methods. Our
contributions in this work are:

• We use a novel architecture to address the multi-image feature matching problem using
GNNs with graph embeddings.

• We introduce an unsupervised multi-view cycle consistency loss that does not require la-
beled correspondences to train.

• We demonstrate the effectiveness of geometric consistency losses in improving training.

2 RELATED WORK

2.1 FEATURE MATCHING

Image feature matching has a rich history of research in computer vision. Much work has be done
using hand-crafted feature descriptors such as SIFT (Lowe, 2004), SURF (Bay et al., 2006), BRIEF
(Calonder et al., 2012), or ORB (Mur-Artal et al., 2015). RANSAC Fischler & Bolles (1981) is the
most widely used robust estimation technique to filter out outliers from the matches. The combi-
nation of RANSAC and hand-crafted feature descriptors has constituted the bulk of the matching
literature for the last 40 years. More recently Suh et al. (2015) and Hu et al. (2016) have shown
graph matching of the features can be added for more robust matches between images.

2.2 MULTI-IMAGE MATCHING

Multi-image matching has traditionally been done using optimization based methods minimizing
a cycle consistency based loss (see Section 3.3). Pachauri et al. (2013) and Arrigoni et al. (2017)
use the eigenvectors of the matching matrix to obtain a low dimensional embedding. However, the
assumption of low Gaussian noise is not realistic. Zhou et al. (2015) and Wang et al. (2017) use
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more sophisticated optimization techniques on the matching matrix and thus produce more robust
solutions. Leonardos et al. (2016) implement a distributed optimization scheme to solve for cycle
consistency. As an alternative to optimization based techniques, Tron et al. (2017) used density
based clustering techniques to compute multi-image correspondence. Moving away from feature
matching, Zach et al. (2010) uses cycle-consistency-like constraints on pose graphs quite effectively.
To the best of our knowledge, we are the first to use graph neural networks for multi-image matching.

2.3 DEEP LEARNING FOR MATCHING

Previous attempts to improve image matching techniques using machine learning have focused on
learning the descriptors given ground truth correspondence from curated datasets such as Zagoruyko
& Komodakis (2015); Yi et al. (2016); and Brachmann et al. (2017). This approach is limited if
one does not have the ability to get the ground truth correspondences. There are other methods to
build correspondences such as Choy et al. (2016), but they only handle two-view constraints and
require dense correspondences. Most similar to our work, Yi et al. (2018) attempts to improve
correspondences by learning match probabilities for two-view RANSAC for greater robustness and
speed. Like us Zhu et al. (2017) use cycle consistency in their loss; however their method is for
image generation and is restricted to pairwise cycle consistency. Our method can be applied to 3 or
more images. Hartmann et al. (2017) learns multi-image matching but requires heavy supervision
from 3D object reconstructions, which can be difficult or expensive to obtain.

2.4 GRAPH NEURAL NETWORKS

Graph neural networks, true to their name, are deep neural networks operating in graph domains.
Multi-image matching is novel application of them, as they are more typically used for applications
such as citation networks or recommendation systems. They have received more attention recently
(Bronstein et al., 2017; Defferrard et al., 2016; Kipf & Welling, 2017; Scarselli et al., 2009; Gama
et al., 2018b;a; Battaglia et al., 2018). The first methods to learn neural networks over graphs were
the so-called Spectral methods. They used the eigenvectors of the graph Laplacian to compute con-
volutions, which can learn graph specific convolution kernels (as in Bruna et al. (2013)), but require
an a-priori known graph structure. Newer non-spectral methods do not require a-priori knowledge,
as seen in Bronstein et al. (2017); Kipf & Welling (2017); Scarselli et al. (2009); and Gama et al.
(2018a). Most of these methods use polynomials of the graph Laplacian to compute neighborhood
averages. Gama et al. (2018b;a) formalize this notion and generalize it beyond the use of the graph
Laplacian. To improve performance, more sophisticated aggregation techniques and global informa-
tion passing can be used as discussed in Battaglia et al. (2018). The closest work on Graph Neural
Networks to ours is Kipf & Welling (2016), which uses GNNs to reconstruct adjacency matrices,
though not in a geometric context.

3 METHOD

Our goal is to learn optimal features that capture multiple image views by filtering out noisy feature
matches. The input to our algorithm is a set of features and noisy correspondences, and the output is
a new set of features where the pairwise similarities of these features correspond to the true matches.
An outline of our approach can be seen in figure 1. We do this by training the new set of feature
embeddings to be cycle consistent. We formulate this problem in terms of the correspondence graph
of the features. Graphs G = (V, E) have a set of vertices V and of directed edges E ⊆ V × V .
For a vertex v ∈ V we use N h(v) to denote the h-hop neighbors of v, with the superscript left out
for 1-hop neighbors. Similarly E(v) is used to denote the edges associated with v. To denote the
vertices connected to an edge e ∈ E we write e(v1, v2).

3.1 CORRESPONDENCE GRAPH

We assume there is an initial set of feature matches represented as a graph G = (V, E), with an
associated adjacency matrix A. The graph is constructed from putative correspondences of image
features across images, typically constructed using feature descriptor distance (e.g. SIFT feature
distance). While there are many interesting methods for computing these putative correspondences
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Figure 2: (a) An illustration of the idea of the universe of features. Each feature in each image
corresponds to a 3D point in the scene. We can construct cycle consistent embeddings of the features
by mapping each one to the one-hot vector of its corresponding 3D point. While there can be many
features, there are fewer 3D points and thus this corresponds to a low rank factorization of the
correspondence matrix. Best viewed in color. (b) Visualization of the learned embeddings. On the
left we have the raw outputs, which are difficult to interpret. In the center, we rotated the features
to best match the ground truth for a more interpretable visualization (see the end of Section 3.3).
On the right, we have the ground truth embeddings, given as indicator vectors for which feature in
the world the points correspond to. For the optimally rotated embedding we can see that the true
embedding structure is recovered (with some noise).

(Suh et al., 2015; Yi et al., 2018), we do not explore them in this work. Typically putative corre-
spondences are matched probabilistically, meaning a feature in one image matches to many features
in another. The ambiguity in the matches could come from repeated structures in the scene, insuffi-
ciently informative low-level feature descriptors, or just an error in the matching algorithm. Filtering
out these noisy matches is our primary learning goal.

Each vertex of the graph v ∈ V is an image feature, corresponding to some ground truth 3D point
p(v). Each edge e = (v1, v2) ∈ E is a potential correspondence. Associated with each vertex v is
an embedding fv ∈ R

m, which can include the visual feature descriptor, position, scale, orientation,
etc. Similarly, each edge e has an associated feature fe ∈ R

p (in this work, initially just the weight
of the feature association). We use these features as the initialization for our learning algorithm.

In the absence of noise or outliers, this graph would have a connected component for each visible
point in the world, all mutually disjoint. Without noise, vertices v would only match with other
vertices v′ that correspond to the same 3D point in the scene. Since features in this case represent
unique locations in the scene, no points in the same image would have edges e between them.
Mathematically, this can be expressed as e = (v1, v2) ∈ E =⇒ P (v1) = P (v2). In the noisy
case we expect this structure to be corrupted, i.e. there are some edges e = (v1, v2) ∈ E such that
P (v1) 6= P (v2). Thus we need to prune the erroneous edges.

However, standard CNNs cannot operate on this general graph structure. Thus we cannot use stan-
dard convolutional nets to learn features for this task. Instead we use graph networks to learn feature
representations on this space, which we describe in the next section.

3.2 GRAPH NEURAL NETWORKS FOR FEATURE MATCHING

As input to our method we are given a graph G = (V, E) with the features described in Section
3.1: fv ∀v ∈ V and fe ∀e ∈ E . As with any neural network, GNNs have layered outputs. We

describe the output of layer k as f
(k)
v ∈ R

mk ∀v ∈ V and f
(k)
e ∈ R

pk ∀e ∈ E , with the initial

embeddings denoted f
(0)
v = fv and f

(0)
e = fe. To aid future analysis, we will represent the features

as matrices, denoting the vertex embedding matrix as F
(k)
V and the edge embedding matrix as F

(k)
E .

If a superscript is not specified then it refers to the final output of the network.
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First we describe older methods of GNNs to give context, then we describe the method we use in
this work. Many older methods assume we have the adjacency matrix A of the graph known a-priori
Bruna et al. (2013), and can encode graph convolutions using the eigenvectors of A (these are known
as spectral methods). However, we do not have this luxury, as the correspondence structure changes
from image set to image set, and thus we use non-spectral Graph Neural Networks. Newer models
use non-spectral methods, which often ultimately amount to transforming each node with learned
weights then averaging each node’s representation with its neighbors, known as a message pass
(Kipf & Welling, 2017; Defferrard et al., 2016; Gama et al., 2018b;a). Some works such as Gama
et al. use pooling operations on the vertices to make the graph smaller and thus aid computation,
but as we need labels on every vertex of the original graph, we cannot use this. Most GNNs used in
these works can be expressed mathematically as:

f̃ (k+1)
v = σ



b(k) +W k
0 f

(k)
v +

H
∑

h=0

∑

v′∈Nh(v)

fe(v,v′)W
k
h f

(k)
v′





The weights/biases W k
h , b(k) are all learned, with no learning done on the edge weights fe(v,v′).

Note that this is just averages over h-hop neighborhoods, where the weights on the edges remain
static through the computation. Given that we are trying to prune edges, we add features over edges
to learn which ones to prune and which to keep such as in Scarselli et al. (2009).

In this work we use the method and implementation described in Battaglia et al. (2018). Battaglia
et al. (2018) uses message passes between node features as well as edge features, which the model
can use to prune unnecessary or erroneous edges. Therefore there is intermediate processing on the
edges before information is passed to the vertices.

Mathematically, this is expressed as:

f̃
(k+1)
e(v1,v2)

= σ
(

a(k) +U
(k)
0 f (k)

e +U
(k)
1 f (k)

v1
+U

(k)
2 f (k)

v2

)

(1)

f̃ (k+1)
v = σ



b(k) +W
(k)
0 f (k)

v +
∑

e∈E(v)

W
(k)
1 f (k+1)

e



 (2)

Here the learned weights are denoted W and U , and the biases a(k) and b(k). In Battaglia et al.
(2018), they allow for more sophisticated aggregation functions, but in this work we simply use the
mean function. Each one of these steps we refer to here as a message pass, and it is analogously
equivalent to an iteration in a distributed graph based optimization method. Between each of the
message passes, we further process the features using MLPs.

3.3 CYCLE CONSISTENCY

Let M be the noiseless set of matches between our features, with Mij being the partial permuta-
tion representing the matches between image i and image j. If the pairwise matches are globally
consistent, then for all i, j, k:

Mij = MikMkj (3)

In other words, the matches between two images stay the same no matter what path is taken to get
there. This constraint is known as cycle consistency, and has been used in a number of works to
optimize for global consistency Zhou et al. (2015); Wang et al. (2017); Leonardos et al. (2016).
Stated in this form, there are O(n3) cycle consistency constraints to check. A more elegant way
to represent cycle consistency is to first create a ‘universe’ of features that all images match to (see
figure 2a). Then, one can match the ith set of features to the universe using a ground-truth matching
matrix Xi. Then the cycle consistency constraint becomes:

Mij = XiX
⊤
j (4)

This reduces the number of our constraints from O(n3) to O(n2). We try to learn vertex embeddings
FV to approximate X - in other words the final embedding should be an encoding of the universe
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(a) Illustrated here is an example of how the geometric loss is com-
puted for one feature. (b)

Figure 3: (a) Errors are computed via absolute distance from the epipolar line, as expressed by
Equation 6 via the epipolar constraint. The epipolar line is the line of projection of the feature in
the first image, projected into to the second. The distance to this line on the second image indicates
how likely that point is to correspond geometrically to the original feature. There can be false
positives along the projected line, as shown by the square feature in the figure, but other points
will be eliminated, such as the hexagonal feature. (b) Training curves with and without Geometric
Training loss, described in 8. The geometric training loss improves testing performance. Note how
training with geometric consistency losses decreases the convergence time of the network. Best
viewed in color.

of features. As we do not have the ground truth matches M , we approximate it using the noisy
adjacency matrix A of our correspondence graph. Thus our loss would be

L(A,FV ) = D(A,FV F
⊤
V ) (5)

Here D could be an L2 loss, L1 loss, or many others. In this work, we use the L1 loss. Note
that because of this formulation, we can determine our embeddings only up to a rotation, as
FV R(FV R)⊤ = FV RR⊤F⊤

V = FV F
⊤
V Thus when visualizing embeddings, we rotate them to

make them more interpretable (see figure 2b).

3.4 GEOMETRIC CONSISTENCY LOSS

In order to use geometric information, more traditional optimization based methods require the
geometric information at inference time, while with learning approaches we can use it to speed up
training while not needing it at inference time. Thus geometric consistency losses are one distinct
advantage of our method over more traditional optimization based approaches. We use the epipolar
constraint, the simplest way to add a geometric consistency loss. The epipolar constraint describes
how the positions of features in different images corresponding to the same point should be related.
An illustration of this is provided in figure 3a, showing how this loss can help reject erroneous
points. Given a relative pose (Rij , Tij) between two cameras i and j (transforms j to i) the epipolar

constraint on corresponding feature locations Xi and Xj : X⊤
i [Tij ]×RijXj = 0. In this work we

use the two pose epipolar constraint (Tron & Daniilidis, 2014):

X⊤
i R⊤

i [Tj − Ti]×RjXj = 0 (6)

The constraint assumes that the Xk are calibrated (i.e. the camera intrinsics are known). Given our
vertex embeddings matrix fv , we can formulate a loss between all cameras i and j (the vertices
associated with camera i denoted V(i)):

Lij,geom(FV ) =
∑

v∈V(i),u∈V(j)

(fv · fu)
∣

∣X⊤
v R⊤

i [Tj − Ti]×RjXu

∣

∣ (7)
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Method Same Point Similarities Different Point Similarities

Ideal 1.00e+0 ± 0.00e+0 0.00e+0 ± 0.00e+0

Initialization Baseline 5.11e-1 ± 1.68e-2 2.56e-1 ± 2.06e-1

5 Views, Noiseless 1.00e+0 ± 4.15e-4 1.22e-1 ± 1.67e-1

6 Views, Added Noise 9.84e-1 ± 3.16e-2 7.46e-2 ± 1.57e-1

3 Views, 5% Outliers 9.29e-1 ± 1.79e-1 1.41e-1 ± 1.48e-1
3 Views, 10% Outliers 9.27e-1 ± 1.79e-1 1.40e-1 ± 1.51e-1

Table 1: Results for unsupervised training on synthetic data under various noise conditions. The
table plots out the weights (mean and standard deviation) of the edges reconstructed by our model,
for true positive matches and true negative ones. This shows under various noise conditions that our
architecture can still recover the original connectivity structure of the matching graph.

For our purposes, since we use low rank embeddings FV , the loss would read (where c(k) is the
appropriate camera for point index k):

Lgeom(FV ) = tr(G⊤FV F
⊤
V ) =

∑

k,l

(FV )k · (FV )l(G)kl (8)

(G)kl =
∣

∣

∣X
⊤
k R⊤

c(k)[Tc(l) − Tc(k)]×Rc(l)Xl

∣

∣

∣

4 EXPERIMENTS

4.1 SYNTHETIC GRAPH DATASET

We first test our method on synthetically generated data as a simple proof of concept. As these were
simpler datasets, we the simpler edge-feature free model of (Kipf & Welling, 2017). To generate the
data, we generate p points, each with its own randomly generated descriptor. To create the graph, we
generate random permutation matrices, with a noise applied to it after it is generated. We initialize
the input descriptors using the synthetically generated ground truth descriptor, plus some added
Gaussian noise. No geometric losses were added during training for these experiments. However,
the method was robust in testing with different noise functions and parameters. The normalized
noisy input descriptors are our baseline - they correlate with the true values but do not preserve
the structure well. However, the GNN recovered the true structure very well, as shown in Table 1,
showing the appropriate edge similarities. With this simple test on synthetic data passed, we now
move to more challenging datasets.

4.2 ROME 16K GRAPH DATASET

We use the Rome16K dataset (Li et al., 2010) to test our algorithm in real world settings. Rome16K
consists of 16 thousand images of various historical sites in Rome extracted from Flickr, along with
the 3D structure of the sites provided by bundle adjustment. While not a standard dataset to test
cycle consistency, most standard datasets have tens or hundreds images, not enough to train a GNN
on. Rome16K is typically used to test bundle adjustment methods. Therefore, to use our method,
we extract 6-tuples and 10-tuples of images with overlap of 80 points or more to test our algorithm,
with the points established as corresponding in the given bundle adjustment output. For the initial
embedding we use the original 128 dimensional SIFT descriptors, normalized to have unit L2 norm,
the calibrated x-y position, the orientation, and log scale of the SIFT feature. To construct the graph,
we take each feature as a vertex and create edges to the 5 nearest SIFT descriptors for the other
images.

For these experiments we train with the L1 norm and geometric consistency losses. We evaluate on
a test set using the ground truth adjacency matrix, which we compute from the bundle adjustment
given by the Rome16K dataset. However, we do not train with the ground truth adjacency matrix,
only with a noisy version of the adjacency matrix. We also add the geometric loss (8) which helps
improve testing performance (see figure 3b). We use the L1 and ROC AUC metrics to measure
performance. For this method to work, we need the dimension of the embedding to be at least
the number of unique points in the scene. Picking the correct number is difficult a-priori, and is a
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Figure 4: Plot of the losses of the baselines at different iteration numbers. The line shows the mean
of the graph while the translucent coloring shows the 25th to 75th percentiles. The ROC AUC curves
remain fairly consistent while the L1 loss goes noticibly down after more iterations. Our method
compares to 35-45 iterations of MatchALS, while only having 8 message passes. PGDDS performs
better than us in L1 but we perform similarly in the ROC AUC metric. These results still hold even
when we change domains to the Graffiti dataset (see 4.2.1).

problem with all cycle consistency based methods. Here we use the ground truth dimension of the
embedding to test both our method and the baselines.

The network was implemented using the code provided by Battaglia et al. (2018) using Tensorflow
1.11 (Abadi et al., 2015). Our network has 16 layers, with 8 message passing operations placed
every other layer. All layers were simple Multi-layer Perceptrons, with no batch norm. The network
was trained with the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−4, with an
exponentially decaying learning rate. We incorporate skip connections between the input, 6th, and
12th layers (all possible pairs).

We compare our method to spectral and optimization based baselines with different maximum iter-
ation cutoffs. Figure 4 illustrates this by plotting the means of various metrics and their 25th and
75th percentiles, with table 2 giving the exact numbers. Our network, though only using 8 message
passes, has comparable accuracy to MatchALS (Zhou et al., 2015) run 35 to 45 iterations, with an
equivalent message passing step at each phase. Although our method does not outperform the Pro-
jected Gradient Descent - Doubly Stochastic (PGDDS) (Leonardos et al., 2016) method, we perform
comparably to them in the ROC AUC metric.

4.2.1 GRAFFITI DATASET

We run our trained model on the more Graffiti Dataset (formatted to be able to be input to our model
properly). The Graffiti Dataset is the most common benchmark used in feature matching algorithms
(e.g. Leonardos et al. (2016); Zhou et al. (2015)). The results are shown in figure 4 in the rightmost
figure. As the graffiti dataset is very small (only 6 views total), we were not able to train on it.
We randomly permute the intra-image order of the features to add some variance - by design the
GNN outputs the same result each time, while the optimization methods have a very small amount
of variance. The transferred results of Graffiti are similar to the test error of Rome16K - smaller
L1 error and comparable ROC error. This shows that the GNNs trained in Rome16K generalize
similarly to the optimization based methods.
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Method (6 Views) L1 L2 Area under ROC Time (sec)

MatchALS 15 Iterations 0.101 ± 0.008 0.022 ± 0.004 0.918 ± 0.073 0.074 ± 0.008

MatchALS 35 Iterations 0.046 ± 0.016 0.010 ± 0.005 0.910 ± 0.072 0.139 ± 0.041

MatchALS 50 Iterations 0.029 ± 0.017 0.008 ± 0.005 0.905 ± 0.068 0.260 ± 0.048

PGDDS0 15 Iterations 0.017 ± 0.002 0.007 ± 0.001 0.918 ± 0.087 0.796 ± 0.147

PGDDS0 25 Iterations 0.016 ± 0.002 0.007 ± 0.002 0.919 ± 0.087 1.670 ± 0.328

PGDDS0 50 Iterations 0.015 ± 0.002 0.006 ± 0.002 0.920 ± 0.087 3.363 ± 0.528

Spectral 0.073 ± 0.006 0.027 ± 0.003 0.921 ± 0.083 0.036 ± 0.005

GNN (ours) 0.044 ± 0.005 0.031 ± 0.005 0.872 ± 0.081 0.765 ± 0.046

Method (10 Views) L1 L2 Area under ROC Time (sec)

MatchALS 15 Iterations 0.114 ± 0.008 0.028 ± 0.004 0.915 ± 0.051 0.142 ± 0.009

MatchALS 35 Iterations 0.065 ± 0.009 0.013 ± 0.003 0.907 ± 0.053 0.355 ± 0.073

MatchALS 50 Iterations 0.045 ± 0.012 0.011 ± 0.004 0.914 ± 0.051 0.455 ± 0.022

PGDDS 15 Iterations 0.017 ± 0.001 0.008 ± 0.001 0.903 ± 0.061 1.225 ± 0.159

PGDDS 25 Iterations 0.016 ± 0.001 0.007 ± 0.001 0.904 ± 0.061 2.637 ± 0.357

PGDDS 50 Iterations 0.016 ± 0.001 0.007 ± 0.001 0.905 ± 0.061 6.116 ± 1.009

Spectral 0.073 ± 0.005 0.029 ± 0.002 0.912 ± 0.057 0.081 ± 0.021

GNN (ours) 0.053 ± 0.006 0.035 ± 0.005 0.872 ± 0.061 2.438 ± 0.070

Table 2: Results on Rome16K Correspondence graphs, showing the mean and standard deviation of
the L1 and L2. Our method was not trained on ground truth correspondences but using unsupervised
methods and geometric side losses. Thus we test against ground truth correspondence graph adja-
cency matrices computed from the bundle adjustment output. Our method performs better than 35
iteration of the MatchALS (Zhou et al., 2015) method, but does not perform as well as 50 iterations.
We perform better than a simple eigenvalue based method (Pachauri et al., 2013). Note that we
perform much better in L1 performance rather than L2, as we optimized the network weights using
an L1 loss.

5 CONCLUSION

We have shown a novel method for training feature matching using GNNs, using an unsupervised
cycle consistency loss and geometric consistency losses. We have demonstrated end-to-end train-
able GNNs have comparable performance the traditional optimization-based baselines. For future
work, we will investigate robust losses for better outlier rejection, and using higher order geometric
constraints, such as the tri-focal tensor, as additional loss terms. With this new architecture, we have
the capability of training multi-image matching pipelines end to end, thus allowing us to train for
image features explicitly for this task. We can extend this to distributed settings where we can train
for matching images from multiple distributed agents.
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A MORE DETAIL ON GNN ARCHITECTURE

All experiments were run with a 12 layer GNN with the ReLU nonlinearity and skip connections.
The feature vector lengths were 32, 64, 128, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, with
skip connections between layers 1 and 6, 6 and 12, and 1 and 12. All were trained with the Adam op-
timizer (Kingma & Ba, 2014) and a learning rate 10−4 The network was implemented in Tensorflow
(Abadi et al., 2015), version 1.11.
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