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ABSTRACT

Deep neural networks (DNNs) have been shown to over-fit a dataset when be-
ing trained with noisy labels for a long enough time. To overcome this problem,
we present a simple and effective method self-ensemble label filtering (SELF) to
progressively filter out the wrong labels during training. Our method improves
the task performance by gradually allowing supervision only from the potentially
non-noisy (clean) labels and stops learning on the filtered noisy labels. For the
filtering, we form running averages of predictions over the entire training dataset
using the network output at different training epochs. We show that these en-
semble estimates yield more accurate identification of inconsistent predictions
throughout training than the single estimates of the network at the most recent
training epoch. While filtered samples are removed entirely from the supervised
training loss, we dynamically leverage them via semi-supervised learning in the
unsupervised loss. We demonstrate the positive effect of such an approach on var-
ious image classification tasks under both symmetric and asymmetric label noise
and at different noise ratios. It substantially outperforms all previous works on
noise-aware learning across different datasets and can be applied to a broad set of
network architectures.

1 INTRODUCTION

The acquisition of large quantities of a high-quality human annotation is a frequent bottleneck in
applying DNNs. There are two cheap but imperfect alternatives to collect annotation at large scale:
crowdsourcing from non-experts and web annotations, particularly for image data where the tags and
online query keywords are treated as valid labels. Both these alternatives typically introduce noisy
(wrong) labels. While Rolnick et al. (2017) empirically demonstrated that DNNs can be surprisingly
robust to label noise under certain conditions, Zhang et al. (2017) has shown that DNNs have the
capacity to memorize the data and will do so eventually when being confronted with too many noisy
labels. Consequently, training DNNs with traditional learning procedures on noisy data strongly
deteriorates their ability to generalize – a severe problem. Hence, limiting the influence of label
noise is of great practical importance.

A common approach to mitigate the negative influence of noisy labels is to eliminate them from the
training data and train deep learning models just with the clean labels (Frénay & Verleysen, 2013).
Employing semi-supervised learning can even counteract the noisy labels (Laine & Aila, 2016; Luo
et al., 2018). However, the decision which labels are noisy and which are not is decisive for learning
robust models. Otherwise, unfiltered noisy labels still influence the (supervised) loss and affect the
task performance as in these previous works. They use the entire label set to compute the loss and
severely lack a mechanism to identify and filter out the erroneous labels from the labels set.

In this paper, we propose a self-ensemble label filtering (SELF) framework that identifies potentially
noisy labels during training and keeps the network from receiving supervision from the filtered
noisy labels. This allows DNNs to gradually focus on learning from undoubtedly correct samples
even with an extreme level of noise in the labels (e.g., 80% noise ratio) and leads to improved
performance as the supervision become less noisy. The key idea of our work is to leverage the
knowledge provided in the network’s output over different training iterations to form a consensus of
predictions (self-ensemble predictions) to progressively identify and filter out the noisy labels from
the labeled data; hence we call our approach self-ensemble label filtering (SELF). Our approach
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(a) Evaluation on CIFAR-10 (b) Evaluation on CIFAR-100

Figure 1: Comparing the performance of SELF with previous works for learning under different
(symmetric) label noise ratios on the (a) CIFAR-10 & (b) CIFAR-100 datasets. SELF retains higher
robust classification accuracy at all noise levels.

allows computation of supervised loss on cleaner subsets rather than the entire noisy labeled data as
in previous works.

Our motivation stems from the observation that DNNs start to learn from easy samples in initial
phases and gradually adapt to hard ones during training. When trained on wrongly labeled data,
DNNs learn from clean labels at ease and receive inconsistent error signals from the noisy labels
before over-fitting to the dataset. The network’s prediction is likely to be consistent on clean samples
and inconsistent or oscillates strongly on wrongly labeled samples over different training iterations.
Based on this observation, we record the outputs of a single network made on different training
epochs and treat them as an ensemble of predictions obtained from different individual networks. We
call these ensembles that are evolved from a single network self-ensemble predictions. Subsequently,
we identify the correctly labeled samples via the agreement between the provided label set and our
running average of self-ensemble predictions. The samples of ensemble predictions that agree with
the provided labels are likely to be consistent and treated as clean samples.

Our training framework leverages the entire dataset, including the filtered out erroneous samples
in the unsupervised loss. When learning under label noise, the model receives noisy updates and
hence fluctuates strongly. To stabilize the model, we maintain the running average model, such as
proposed by Tarvainen & Valpola (2017), a.k.a. the Mean-Teacher model. This model ensemble
learning provides a more stable supervisory signal than the noisy model snapshots.

In summary, our SELF framework stabilizes the training process and improves the generalization
ability of DNNs. We evaluate the proposed technique on image classification tasks using CIFAR10,
CIFAR100 & ImageNet. We demonstrate that our method consistently outperforms the existing
approaches on asymmetric and symmetric noise at all noise levels, as shown in Fig. 1. Besides,
SELF remains robust towards the choice of the network architecture. Our work is transferable to
other tasks without the need to modify the architecture or the primary learning objective. SELF
can also be seen as transforming the problem of learning from noisy labels into a semi-supervised
learning task by successfully segregating the clean labels (labeled data) and noisy labels (unlabeled
data).

2 SELF-ENSEMBLE LABEL FILTERING

2.1 OVERVIEW

Fig. 2 shows an overview of our proposed approach. In the beginning, we assume that the labels
of the training set are noisy. The model attempts to identify correct labels progressively using self-
forming ensembles of models and predictions. Since wrong labels cause strong fluctuations in the
model’s predictions, using ensembles is a natural way to counteract noisy labels.

Concretely, in each iteration, the model learns from a detected set of potentially correct labels and
maintains a running average of model snapshots (realized by the Mean Teacher model Tarvainen &
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Figure 2: Overview of the self-ensemble label filtering (SELF) framework. The model starts in
iteration 0 with training from the noisy label set. During training, the model maintains a self-
ensemble, a running average of itself (Tarvainen & Valpola, 2017) to provide a stable learning signal.
Also, the model collects a self-ensemble prediction (moving-average) for the subsequent filtering.
Once the best model is found, these predictions identify and filter out noisy labels using the original
label set L0. The model performs this progressive filtering until there is no more better model. For
details see Algorithm 1.

Valpola (2017)). This ensemble model is evaluated on the entire dataset and provides an additional
learning signal for training the single models. Additionally, our framework maintains the running-
average of the model’s predictions for the filtering process. The model is trained until we find the
best model w.r.t. the performance on the validation set (e.g., by early-stopping). The set of correct
labels is detected based on the strategy defined in Sec. 2.2. In the next iteration, we again use all data
and the new filtered label set as input for the model training. The iterative training procedure stops
when no better model can be found. In the following, we give more details about the combination
of this training and filtering procedure.

2.2 PROGRESSIVE LABEL FILTERING

Progressive detection of correctly labeled samples Our framework Self-Ensemble Label Filter-
ing (Algorithm 1) focuses on the detection of certainly correct labels from the provided label set L0.
In each iteration i, the model is trained using the label set of potentially correct labels Li. At the end
of each iteration, the model determines the next correct label set Li+1 using the filtering strategy
described in 2.2 The model stops learning when no improvement was achieved after training on the
refined label set Li+1.

In other words, in each iteration, the model attempts to learn from the easy, in some sense, obviously
correct labels. However, learning from easy samples also affects similar but harder samples from the
same classes. Therefore, by learning from these easy samples, the network can gradually distinguish
between hard and wrongly-labeled samples.

Our framework does not focus on repairing all noisy labels. Although the detection of wrong labels is
sometimes easy, finding their correct hidden label might be extremely challenging in case of having
many classes. If the noise is sufficiently random, the set of correct labels will be representative to
achieve high model performance. Further, in our framework, the label filtering is performed on the
original label set L0 from iteration 0. Clean labels erroneously removed in an earlier iteration (e.g.,
labels of hard to classify samples) can be reconsidered for model training again in later iterations.

Filtering strategy The model can determine the set of potentially correct labelsLi based on agree-
ment between the label y and its maximal likelihood prediction ŷ|x with Li = {(y, x) | ŷx =
y;∀(y, x) ∈ L0}. L0 is the label set provided in the beginning, (y, x) are the samples and their
respective noisy labels in the iteration i. In other words, the labels are only used for supervised
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Algorithm 1 SELF: Self-Ensemble Label Filtering pseudocode
Require: Dtrain = noisy labeled training set
Require: Dval = noisy labeled validation set
Require: (x, y) = training stimuli and label
Require: α = ensembling momentum, 0 ≤ α ≤ 1
i← 0 . counter to track iterations
Mi ← train(Dtrain, Dval) . initial Mean-Teacher ensemble model training
Mbest ←Mi . set initial model as best model
zi ← 0 . initialize ensemble predictions of all samples

(ignored sample index for simplicity)
while acc(Mi,Dval) ≥ acc(Mbest, Dval) do . iterate until no best model is found on Dval

Mbest ←Mi . save the best model
Dfilter ← Dtrain . set filtered dataset as initial label set
i← i+ 1
for (x, y) in Dfilter do
ẑi ←Mbest(x) . evaluate model output ẑi
zi ← αzi−1 + (1− α)ẑi . accumulate ensemble predictions zi
if y 6= argmax(zi) then . verify agreement of ensemble predictions & label
y ← ∅ in Dfilter . identify it as noisy label & remove from label set

end if
end for
Mi ← train(Dfilter, Dval) . train Mean-Teacher model on filtered label set

end while
return Mbest

training if in the current epoch, the model predicts the respective label to be the correct class with
the highest likelihood. In practice, our framework does not use ŷ(x) of model snapshots for filtering
but a moving-average of the ensemble models and predictions to improve the filtering decision.

2.3 SELF-ENSEMBLE LEARNING

The model’s predictions for noisy samples tend to fluctuate. For example, take a cat wrongly labeled
as a tiger. Other cat samples would encourage the model to predict the given cat image as a cat.
Contrary, the wrong label tiger regularly pulls the model back to predict the cat as a tiger. Hence,
using the model’s predictions gathered in one single training epoch for filtering is sub-optimal.
Therefore, in our framework SELF, our model relies on ensembles of models and predictions.

(a) Model ensemble (Mean teacher) (b) Predictions ensemble

Figure 3: Maintaining the (a) model and (b) predictions ensembles is very effective against noisy
model updates. These ensembles are self-forming during the training process as a moving-average
of (a) model snapshots or (b) class predictions from previous training steps.
Model ensemble with Mean Teacher A natural way to form a model ensemble is by using an
exponential running average of model snapshots (Fig. 3a). This idea was proposed in Tarvainen
& Valpola (2017) for semi-supervised learning and is known as the Mean Teacher model. In our
framework, both the mean teacher model and the normal model are evaluated on all data to preserve
the consistency between both models. The consistency loss between student and teacher output
distribution can be realized with Mean-Square-Error loss or Kullback-Leibler-divergence. More
details for training with the model ensemble can be found in Appendix A.1

Prediction ensemble Additionally, we propose to collect the sample predictions over multiple
training epochs: zj = αzj−1 + (1 − α)ẑj , whereby zj depicts the moving-average prediction
of sample k at epoch j, α is a momentum, ẑj is the model prediction for sample k in epoch j.
This scheme is displayed in Fig. 3b. For each sample, we store the moving-average predictions,
accumulated over the past iterations. Besides having a more stable basis for the filtering step, our
proposed procedure also leads to negligible memory and computation overhead.
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Further, due to continuous training of the best model from the previous model, computation time can
be significantly reduced, compared to re-training the model from scratch. On the new filtered dataset,
the model must only slowly adapt to the new noise ratio contained in the training set. Depending on
the computation budget, a maximal number of iterations for filtering can be set to save time.

3 RELATED WORKS

Reed et al. (2014); Azadi et al. (2015) performed early works on learning robustly under label
noise for deep neural networks. Recently, Rolnick et al. (2017) have shown for classification that
deep neural networks come with natural robustness to label noise following a particular random
distribution. No modification of the network or the training procedure is required to achieve this
robustness. Following this insight, our framework SELF relies on this natural robustness to kickstart
the self-ensemble filtering process to extend the robust behavior to more challenging scenarios.

Laine & Aila (2016); Luo et al. (2018) proposed to apply semi-supervised techniques on the data to
counteract noise. These and other semi-supervised learning techniques learn from a static, initial set
of noisy labels and have no mechanisms to repair labels. Therefore, the supervised losses in their
learning objective are typically high until the model strongly overfits to the label noise. Compared
to these works, our framework performs a variant of self-supervised label corrections. The network
learns from a dynamic, variable set of labels, which is determined by the network itself. Progressive
filtering allows the network to (1) focus on a label set with a significantly lower noise ratio and (2)
repair wrong decisions made by itself in an earlier iteration.

Other works assign weights to potentially wrong labels to reduce the learning signal (Jiang et al.,
2017; Ren et al., 2018; Jenni & Favaro, 2018). These approaches tend to assign less extreme weights
or hyperparameters that are hard to set. Since the typical classification loss is highly non-linear, a
lower weight might still lead to learning from wrong labels. Compared to these works, the samples
in SELF only receive extreme weights: either they are zero or one. Further, SELF focuses only on
self-detecting the correct samples, instead of repairing the wrong labels. Typically, the set of correct
samples are much easier to detect and are sufficiently representative to achieve high performance.

Han et al. (2018b); Jiang et al. (2017) employ two collaborating and simultaneously learning net-
works to determine which samples to learn from and which not. However, the second network is
free in its predictions and hence hard to tune. Compared to these works, we use ensemble learning as
a principled approach to counteract model fluctuations. In SELF, the second network is extremely
restricted and is only composed of running averages of the first network. To realize the second
network, we use the mean-teacher model (Tarvainen & Valpola, 2017) as a backbone. Compared
to their work, our self-ensemble label filtering gradually detects the correct labels and learns from
them, so the label set is variable. Further, we do use not only model ensembles but also an ensemble
of predictions to detect correct labels.

Other works modify the primary loss function of the classification tasks. Patrini et al. (2017) es-
timates the noise transition matrix to correct the loss, Han et al. (2018a) uses human-in-the-loop,
Zhang & Sabuncu (2018); Thulasidasan et al. (2019) propose other forms of cross-entropy losses.
The loss modification impedes the transfer of these ideas to other tasks than classification. Compared
to these works, our framework SELF does not modify the primary loss. The progressive filtering
procedure and self-ensemble learning are applicable in other tasks to counteract noise.

4 EVALUATION

4.1 EXPERIMENTS DESCRIPTIONS

4.1.1 STRUCTURE OF THE ANALYSIS

We evaluate our approach on CIFAR-10, CIFAR-100, an ImageNet-ILSVRC on different noise sce-
narios. For CIFAR-10, CIFAR-100, and ImageNet, we consider the typical situation with symmetric
and asymmetric label noise. In the case of the symmetric noise, a label is randomly flipped to another
class with probability p. Following previous works, we also consider label flips of semantically sim-
ilar classes on CIFAR-10, and pair-wise label flips on CIFAR-100. Finally, we perform studies on
the choice of the network architecture and the ablation of the components in our framework. More
experiments and results can be found in App. A.3
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4.1.2 COMPARISONS TO PREVIOUS WORKS

We compare our work to previous methods from Reed-Hard (Reed et al., 2014), S-model (Gold-
berger & Ben-Reuven, 2016), Wang et al. (2018), Rand. weights (Ren et al., 2018), Bi-level-model
(Jenni & Favaro, 2018), MentorNet (Jiang et al., 2017), Lq (Zhang & Sabuncu, 2018), Trunc Lq

(Zhang & Sabuncu, 2018), Forward T̂ (Patrini et al., 2017), Co-teaching (Han et al., 2018b), DAC
(Thulasidasan et al., 2019), Random reweighting (Ren et al., 2018), and Learning to reweight (Ren
et al., 2018). In case of co-teaching (Han et al., 2018b) and MentorNet (Jiang et al., 2017), the
source codes are available and hence used for evaluation.

(Ren et al., 2018) and DAC (Thulasidasan et al., 2019) considered the setting of having a small clean
validation set of 1000 and 5000 images respectively. For comparison purposes, we also experiment
with a small clean set of 1000 images additionally. Further, we abandon oracle experiments or
methods using additional information to keep the evaluation comparable. For instance, Forward T
(Patrini et al., 2017) uses the true underlying confusion matrix to correct the loss. This information
is neither known in typical scenarios nor used by other methods.

Whenever possible, we adopt the reported performance from the corresponding publications. The
testing scenarios are kept as similar as possible to enable a fair comparison. All tested scenarios use
a noisy validation set with the same noise distribution as the training set unless stated otherwise.

4.1.3 NETWORKS CONFIGURATION AND TRAINING

For the basic training of self-ensemble model, we use the Mean Teacher model (Tarvainen &
Valpola, 2017) available on GitHub 1 . The students and teacher networks are residual networks (He
et al., 2016) with 26 layers with Shake-Shake-regularization (Gastaldi, 2017). We use the Py-
Torch (Paszke et al., 2017) implementation of the network and keep the training settings close
to (Tarvainen & Valpola, 2017). The network is trained with Stochastic Gradient Descent. In each
filtering iteration, the model is trained for a maximum of 300 epochs, with patience of 50 epochs.
For more training details, see the appendix.

4.2 EXPERIMENTS RESULTS

4.2.1 SYMMETRIC LABEL NOISE

CIFAR-10 and 100 Results for typical uniform noise scenarios with noise ratios on CIFAR-10
and CIFAR-100 are shown in Tab. 1. More results are visualized in Fig. 1a (CIFAR-10) and Fig. 1b
(CIFAR-100). Our approach SELF performs robustly in the case of lower noise ratios with up to 60%
and outperforms previous works. Although a strong performance loss occurs at 80% label noise,
SELF still outperforms most of the previous approaches. The experiment SELF* using a 1000 clean
validation images shows that the performance loss mostly originates from the progressive filtering
relying too strongly on the extremely noisy validation set.

ImageNet-ILSVRC Tab. 4 shows the precision@1 and @5 of various models, given 40% label
noise in the training set. Our networks are based on ResNext18 and Resnext50. Note that MentorNet
(Jiang et al., 2017) uses Resnet101 (P@1: 78.25) (Goyal et al., 2017), which has higher performance
compared to Resnext50 (P@1: 77.8) (Xie et al., 2017) on the standard ImageNet validation set.

Despite the weaker model, SELF (ResNext50) surpasses the best previously reported results by
more than 5% absolute improvement. Even the significantly weaker model ResNext18 outperforms
MentorNet, which is based on a more powerful ResNet101 network.

4.2.2 ASYMMETRIC LABEL NOISE

Tab. 2 shows more challenging noise scenarios when the noise is not class-symmetric and uniform.
Concretely, labels are flipped among semantically similar classes such as CAT and DOG on CIFAR-
10. On CIFAR-100, each label is flipped to the next class with a probability p. In these scenarios, our
framework SELF also retains high performance and only shows a small performance drop at 40%
noise. The high label noise resistance of our framework indicates that the proposed self-ensemble
filtering process helps the network identify correct samples, even under extreme noise ratios.

1https://github.com/CuriousAI/mean-teacher
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Table 1: Comparison of classification accuracy when learning under uniform label noise on CIFAR-
10 and CIFAR-100. Following previous works, we compare two evaluation scenarios: with a noisy
validation set (top) and with 1000 clean validation samples (bottom). The best model is marked in
bold. Having a small clean validation set improves the model but is not necessary.

CIFAR-10 CIFAR-100
NOISE RATIO 40% 60% 80% 40% 60% 80 %

USING NOISY VALIDATION SET

REED-HARD (REED ET AL., 2014) 69.66 - - 51.34 - -
S-MODEL (GOLDBERGER & BEN-REUVEN, 2016) 70.64 - - 49.10 - -
OPEN-SET WANG ET AL. (2018) 78.15 - - - - -
RAND. WEIGHTS (REN ET AL., 2018) 86.06 - - 58.01 - -
BI-LEVEL-MODEL (JENNI & FAVARO, 2018) 89.00 - 20.00 61.00 - 13.00
MENTORNET (JIANG ET AL., 2017) 89.00 - 49.00 68.00 - 35.00
Lq (ZHANG & SABUNCU, 2018) 87.13 82.54 64.07 61.77 53.16 29.16
TRUNC Lq (ZHANG & SABUNCU, 2018) 87.62 82.70 67.92 62.64 54.04 29.60
FORWARD T̂ (PATRINI ET AL., 2017) 83.25 74.96 54.64 31.05 19.12 08.90
CO-TEACHING (HAN ET AL., 2018B) 81.85 74.04 29.22 55.95 47.98 23.22
SELF (OURS) 93.70 93.15 69.91 71.98 66.21 42.09

USING CLEAN VALIDATION SET (1000 IMAGES)

DAC (THULASIDASAN ET AL., 2019)2 90.93 87.58 70.80 68.20 59.44 34.06
MENTORNET (JIANG ET AL., 2017) 78.00 - - 59.00 - -
RAND. WEIGHTS (REN ET AL., 2018) 86.55 - - 58.34 - -
REN ET AL (REN ET AL., 2018) 86.92 - - 61.31 - -
SELF (OURS) 95.10 93.77 79.93 74.76 68.35 46.43

Table 2: Asymmetric noise on CIFAR-10,
CIFAR-100. All methods use Resnet34.
CIFAR-10: flip TRUCK → AUTOMOBILE,
BIRD → AIRPLANE, DEER → HORSE,
CAT↔DOG with prob. p. CIFAR-100: flip
class i to (i+1)%100 with prob. p. Numbers are
adopted from Zhang & Sabuncu (2018). SELF
retains high performances across all noise ratios
and outperforms all previous works.

CIFAR-10
NOISE RATIO 10% 20% 30% 40%

CCE 90.69 88.59 86.14 80.11
MAE 82.61 52.93 50.36 45.52
FORWARD T̂ 90.52 89.09 86.79 83.55
Lq 90.91 89.33 85.45 76.74
TRUNC Lq 90.43 89.45 87.10 82.28
SELF (OURS) 93.75 92.76 92.42 89.07

CIFAR-100

CCE 66.54 59.20 51.40 42.74
MAE 13.38 11.50 08.91 08.20
FORWARD T̂ 45.96 42.46 38.13 34.44
Lq 68.36 66.59 61.45 47.22
TRUNC Lq 68.86 66.59 61.87 47.66
SELF (OURS) 72.45 70.53 65.09 53.83

Table 3: Effect of the architecture on classifica-
tion accuracy on CIFAR-10, 100 with uniform
label noise. SELF is compatible with all tested
architectures.

CIFAR-10 CIFAR-100

NOISE 40% 80% 40% 80%

RESNET101

MENTORNET 89.00 49.00 68.00 35.00
CO-T. 62.58 21.79 39.58 16.79
SELF 92.77 64.52 69.00 39.73

WIDE RESNET 28-10

MENTORNET 88.7 46.30 67.50 30.10
REWEIGHT 86.02 - 58.01 -
SELF 93.34 67.41 72.48 42.06

RESNET34

Lq 87.13 64.07 61.77 29.16
TRUNC Lq 87.62 67.92 62.64 29.60
FORWARD T̂ 83.25 54.64 31.05 8.90
SELF 91.13 63.59 66.71 35.56

RESNET26

CO-T. 81.85 29.22 55.95 23.22
SELF 93.70 69.91 71.98 42.09

4.2.3 EFFECTS OF DIFFERENT ARCHITECTURES

Previous works utilize a various set of different architectures, which hinders a fair comparison.
Tab. 3 shows the performance of our framework SELF compared to previous approaches. SELF
outperforms other works in all scenarios except for CIFAR-10 with 80% noise. Typical robust
learning approaches lead to significant accuracy losses at 40% noise, while SELF still retains high
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(a) Ablation exps. on CIFAR-10 (b) Ablation exps. on CIFAR-100

Figure 4: Ablation study on the importance of the components in our framework SELF, evaluated
on (a) Cifar-10 and (b) Cifar-100 with uniform noise. Please refer Tab. 5 for details of components.

performance. Further, note that SELF allows the network’s performance to remain consistent across
the different underlying architectures.

4.2.4 ABLATION STUDY

Table 4: Classification accuracy on clean
ImageNet validation dataset. The mod-
els are trained at 40% label noise and the
best model is picked based on the evalu-
ation on noisy validation data. Mentornet
shows the best previously reported results.
Mentornet* is based on Resnet-101. We
chose the smaller Resnext50 model to re-
duce the run-time.

Resnext18 Resnext50
Accurracy P@1 P@5 P@1 P@5

Mentornet* - - 65.10 85.90
ResNext 50.6 75.99 56.25 80.90
Mean-T. 58.04 81.82 62.96 85.72
SELF (Ours) 66.92 86.65 71.31 89.92

Table 5: Ablation study on CIFAR-10 and CIFAR-
100. The Resnet baseline was trained on the full
noisy label set. Adding progressive filtering im-
proves over this baseline. The Mean Teacher main-
tains an ensemble of model snapshots, which helps
counteract noise. Having progressive filtering and
model ensembles (-MVA-pred.) makes the model
more robust but still fails at 80% noise. The full
SELF framework additionally uses the prediction
ensemble for detection of correct labels.

CIFAR-10 CIFAR-100
NOISE RATIO 40% 80% 40% 80%

RESNET26 83.20 41.37 53.18 19.92
FILTERING 87.35 49.58 61.40 23.42
MEAN-T. 93.70 52.50 65.85 26.31
- MVA-PRED. 93.77 57.40 71.69 38,61
SELF (OURS) 93.70 69.91 71.98 42.09

Tab. 5 shows the importance of each component in our framework. See Fig. 4a, Fig. 4b for experi-
ments on more noise ratios. As expected, the Resnet-baseline rapidly breaks down with increasing
noise ratios. Adding self-supervised filtering increases the performance slightly in lower noise ratios.
However, the model has to rely on extremely noisy snapshots. Contrary, using a model ensemble
alone such as in Mean-Teacher can counteract noise on the noisy dataset CIFAR-10. On the more
challenging CIFAR-100, however, the performance decreases strongly. With self-supervised filter-
ing and model ensembles, SELF (without MVA-pred) is more robust and only impairs performance
at 80% noise. The last performance boost is given by using moving-average predictions so that the
network can reliably detect correctly labeled samples gradually.

5 CONCLUSION

We propose a simple and easy to implement a framework to train robust deep learning models under
incorrect or noisy labels. We filter out the training samples that are hard to learn (possibly noisy
labeled samples) by leveraging ensemble of predictions of the single network’s output over different
training epochs. Subsequently, we allow clean supervision from the non-hard samples and further
leverage additional unsupervised loss from the entire dataset. We show that our framework results in
DNN models with superior generalization performance on CIFAR-10, CIFAR-100 & ImageNet and
outperforms all previous works under symmetric (uniform) and asymmetric noises. Furthermore,
our models remain robust despite the increasing noise ratio and change in network architectures.
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A APPENDIX

A.1 MEAN TEACHER MODEL FOR ITERATIVE FILTERING

We apply the Mean Teacher algorithm in each iteration i in the train(Dfilter,Dval) procedure as
follows.

• Input: examples with potentially clean labels Dfilter from the filtering procedure. In the
beginning (i = 0), here Dfilter refers to entire labeled dataset.

• Initialize a supervised neural network as the student model Ms
i .

• Initialize the Mean Teacher model M t
i as a copy of the student model with all weights

detached.
• Let the loss function be the sum of normal classification loss of Ms

i and the consistency
loss between the outputs of M t

i and M t
i

• Select an optimizer
• In each training iteration:

– Update the weights of Ms
i using the selected optimizer

– Update the weights of M t
i as an exponential moving-average of the student weights

– Evaluate performance of Ms
i and M t

i over Dval to verify the early stopping criteria.

• Return the best M t
i

A.2 TRAINING DETAILS

A.2.1 CIFAR-10 AND CIFAR-100

Dataset Tab. 6 shows the details of CIFAR-10 and 100 datasets in our evaluation pipeline. The
validation set is contaminated with the same noise ratio as the training data unless stated otherwise.

Network training For the training our model SELF, we use the standard configuration provided
by Tarvainen & Valpola (2017) 3. Concretely, we use the SGD-optimizer with Nesterov Sutskever
et al. (2013) momentum, a learning rate of 0.05 with cosine learning rate annealing Loshchilov &
Hutter (2016), a weight decay of 2e-4, max iteration per filtering step of 300, patience of 50 epochs,
total epochs count of 600.

Table 6: Dataset description. Classification tasks on CIFAR-10 and CIFAR-100 with uniform noise.
Note that the noise on the training and validation set is not correlated. Hence, maximizing the
accuracy on the noisy set provides a useful (but noisy) estimate for the generalization ability on
unseen test data.

TYPE CIFAR-10 CIFAR-100

TASK CLASSIFICATION 10-WAY 100-WAY
RESOLUTION 32X32

DATA
TRAIN (NOISY) 45000 45000
VALID (NOISY) 5000 5000
TEST (CLEAN) 10000 10000

For basic training of baselines models without semi-supervised learning, we had to set the learning
rate to 0.01. In the case of higher learning rates, the loss typically explodes. Every other option is
kept the same.

Semi-supervised learning For the mean teacher training, additional hyperparameters are required.
In both cases of CIFAR-10 and CIFAR-100, we again take the standard configuration with the con-
sistency loss to mean-squared-error and a consistency weight: 100.0, logit distance cost: 0.01,

3https://github.com/CuriousAI/mean-teacher
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(a)

(b) (c)

Figure 5: Simple training losses to counter label noise. (a) shows the prediction of a sample given
a model. The red bar indicates the noisy label, blue the correct one. Arrows depict the magnitude
of the gradients (b) Typical losses reweighting schemes are not wrong but suffer from the gradient
vanishing problem. Non-linear losses such as Negative-log-likelihood are not designed for gradient
ascent. (c)Push-away-loss: as a simple baseline, we propose the intuitive push-away-loss to improve
the gradients. We take this version as a strong baseline for a fair comparison.

consistency-ramp-up:5. The total batch-size is 512, with 124 samples being reserved for labeled
samples, 388 for unlabeled data. Each epoch is defined as a complete processing of all unlabeled
data. When training without semi-supervised-learning, the entire batch is used for labeled data.

Data augmentation The data are normalized to zero-mean and standard-variance of one. Further,
we use real-time data augmentation with random translation and reflection, subsequently random
horizontal flip. The standard PyTorch-library provides these transformations.

A.2.2 IMAGENET-ILSVRC-2015

Network Training The network used for evaluation were ResNet He et al. (2016) and Resnext Xie
et al. (2017) for training. All ResNext variants use a cardinality of 32 and base width of 4 (32x4d).
ResNext models follow the same structure as their Resnet counterparts, except for the cardinality
and base width.

All other configurations are kept as close as possible to Tarvainen & Valpola (2017). The initial
learning rate to handle large batches Goyal et al. (2017) is set to 0.1; the base learning rate is 0.025
with a single cycle of cosine annealing.

Semi-supervised learning Due to the large images, the batch size is set to 40 in total with 20/20
for labeled and unlabeled samples, respectively. We found the Kullback-divergence leads to no
meaningful network training. Hence, we set the consistency loss to mean-squared-error, with a
weight of 1000. We use consistency ramp up of 5 epochs to give the mean teacher more time in
the beginning. Weight decay is set to 5e-5; patience is four epochs to stop training in the current
filtering iteration.

Filtering We filter noisy samples with the topk=5 strategy, instead of taking the maximum-
likelihood (ML) prediction as on CIFAR-10 and CIFAR-100. That means the samples are kept for
supervised training if their provided label lies within the top 5 predictions of the model. The main
reason is that each image of ImageNet might contain multiple objects. Filtering with ML-predictions
is too strict and would lead to a small recall of the detection of the correct sample.

Data Augmentation For all data, we normalize the RGB-images by the mean: (0.485, 0.456,
0.406) and the standard variance (0.229, 0.224, 0.225). For training data, we perform a random
rotation of up to 10 degrees, randomly resize images to 224x224, apply random horizontal flip
and random color jittering. This noise is needed in regular mean-teacher training. The jittering
setting are: brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1. The validation data are resized
to 256x256 and randomly cropped to 224x224
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(a) (b)

Figure 6: The entropy loss for semi-supervised learning. (a) Extreme predictions such as [0, 1]
are encouraged by minimizing the entropy on each prediction. (b) Additionally, maximizing the
entropy of the mean prediction on the entire dataset or a large batch forces the model to balance its
predictions over multiple samples.

A.2.3 SEMI-SUPERVISED LOSSES

For the learning of wrongly labeled samples, Fig. 6 shows the relationship between the typical
reweighting scheme and our baseline push-away-loss. Typically, reweighting is applied directly to
the losses with samples weights w(k) for each sample k as shown in Eq. 4

minw
(k)
i NLL(y

(k)
label|x

(k), D) (1)

D is the dataset, x(k) and y(k)label are the samples k and its noisy label. w(k)
i is the samples weight for

the sample k at step i. Negative samples weights w(k)
i are often assigned to push the network away

from the wrong labels. Let w(k)
i = −c(k)i with c(k)i > 0, then we have:

min−c(k)i NLL(y
(k)
label|x

(k), D) (2)

Which results in:
max c

(k)
i NLL(y

(k)
label|x

(k), D) (3)
In other words, we perform gradient ascent for wrongly labeled samples. However, the Negative-
log-likelihood is not designed for gradient ascent. Hence the gradients of wrongly labeled samples
vanish if the prediction is too close to the noisy label. This effect is similar to the training of
Generative Adversarial Network (GAN) Goodfellow et al.. In the GAN-framework, the generator
loss is not simply set to the negated version of the discriminator’s loss for the same reason.

Therefore, to provide a fair comparison with our framework, we suggest the push-away-loss
LPush−away(y

(k)
label, x

(k), D) with improved gradients as follows:

min
1

|Y |−1
∑

y,y 6=y
(k)
label

c
(k)
i NLL(y|x(k), D) (4)

Whereby Y is the set of all classes in the training set. This loss has improved gradients to push the
model away from the potentially wrong labels.

Entropy minimization The typical entropy loss for semi-supervised learning is shown in Fig. 6.
It encourages the model to provide extreme predictions (such as 0 or 1) for each sample. Over a
large number of samples, the model should balance its predictions over all classes.

The entropy loss can easily be applied to all samples to express the uncertainty about the provided
labels. Alternatively, the loss can be combined with a strict filtering strategy, as in our work, which
removes the labels of potentially wrongly labeled samples.

For a large noise ratio, predictions of wrongly labeled samples fluctuate strongly over previous
training iterations. Amplifying these network decisions could lead to even noisier models model.
Combined with iterative filtering, the framework will have to rely on a single noisy model snapshot.
In the case of an unsuitable snapshot, the filtering step will make many wrong decisions.
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Table 7: Accuracy of the complete removal of samples during iterative filtering on CIFAR-10 and
CIFAR-100. The underlying model is the MeanTeacher based on Resnet26. When samples are com-
pletely removed from the training set, they are no longer used for either supervised-or-unsupervised
learning. This common strategy from previous works leads to rapid performance breakdown.

CIFAR-10 CIFAR-100
NOISE RATIO 40% 80 % 40% 80 %

USING NOISY DATA ONLY

DATA REMOVAL 93.4 59.98 68.99 35.53
SELF (OURS) 93.7 69.91 71.98 42.09

WITH CLEAN VALIDATION SET

COMPL. REMOVAL 94.39 70.93 71.86 36.61
SELF (OURS) 95.1 79.93 74.76 46.43

A.3 MORE EXPERIMENTS RESULTS

A.3.1 COMPLETE REMOVAL OF SAMPLES

Tab. 7 shows the results of deleting samples from the training set. It leads to significant performances
gaps compared to our strategy (SELF), which considers the removed samples as unlabeled data. In
case of a considerable label noise of 80%, the gap is close to 9%.

Continuously using the filtered samples lead to significantly better results. The unsupervised-loss
provides meaningful learning signals, which should be used for better model training.

A.3.2 SEMI-SUPERVISED LEARNING FOR PROGRESSIVE FILTERING

Tab. 8 shows different semi-supervised learning strategies with and without iterative filtering. The
push-away-loss corresponds to assigning negative weights to potentially noisy labels. The entropy
loss minimizes the network’s uncertainty on a set of samples. Since our labels are all potentially
noisy, it is meaningful to apply this loss to all training samples instead of removed samples only.
Hence we compare both variants. The Mean-teacher loss is always applied to all samples (details in
the appendix).

Without filtering: Learning from the entropy-loss performs second-best, when the uncertainty is
minimized on all samples. Without the previous filtering step, there is no set of unlabeled samples
to perform a traditional semi-supervised-learning. The Mean-teacher performs best since the teacher
represents a stable model state, aggregated over multiple iterations.

With filtering: Applying entropy-loss to all samples or only unsupervised samples leads to very
similar performance. Both are better than the standard push-away-loss. Our Mean Teacher achieves
by far the best performance, due to the temporal ensemble of models and sample predictions for
filtering.

A.3.3 SAMPLE TRAINING PROCESS

Fig. 7 shows the sample training processes of SELF under 60% and 80% noise on CIFAR-100. The
mean-teacher always outperform the student models. Further, note that regular training leads to
rapid over-fitting to label noise.

Contrary, with our effective filtering strategy, both models slowly increase their performance while
the training accuracy approaches 100%. Hence, by using progressive filtering, our model could
erase the inconsistency in the provided labels set.
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Table 8: Analysis of semi-supervised learning strategies. Push-away-loss, entropy-loss, and mean-
teacher-loss are separately considered. The best two performances from the respective category are
marked. The entropy loss is further applied to all training samples or only to the removed samples
from earlier filtering steps.

CIFAR-10
NOISE RATIO 40% 80%

RESNET26 83.2 41.37
ENTROPY (ALL-SAMPLES) 85.98 46.93
MEAN TEACHER (ALL-SAMPLES) 90.4 52.5

WITH ITERATIVE FILTERING

PUSH AWAY+IF 90.47 50.79
ENTROPY (ALL SAMPLES)+IF 90.4 52.46
ENTROPY (UNLABELED SAMPLES)+IF 90.02 53.44
SELF (OURS) 93.7 69.91

(a) (b)

Figure 7: Sample training curves of our approach SELF on CIFAR-100 with (a) 60% and (b) 80%
noise, using noisy validation data. Note that with our approach, the training loss remains close to 0.
Further, note that the mean-teacher continously outperforms the noisy student models. This shows
the positive effect of temporal emsembling to counter label noise.
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