
Under review as a conference paper at ICLR 2020

META REINFORCEMENT LEARNING WITH AU-
TONOMOUS INFERENCE OF SUBTASK DEPENDENCIES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose and address a novel few-shot RL problem, where a task is characterized
by a subtask graph which describes a set of subtasks and their dependencies that
are unknown to the agent. The agent needs to quickly adapt to the task over few
episodes during adaptation phase to maximize the return in the test phase. Instead
of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph
Inference (MSGI), which infers the latent parameter of the task by interacting with
the environment and maximizes the return given the latent parameter. To facilitate
learning, we adopt an intrinsic reward inspired by upper confidence bound (UCB)
that encourages efficient exploration. Our experiment results on two grid-world
domains and StarCraft II environments show that the proposed method is able
to accurately infer the latent task parameter, and to adapt more efficiently than
existing meta RL and hierarchical RL methods.

1 INTRODUCTION

Recently, reinforcement learning (RL) systems have achieved super-human performance on many
complex tasks (Mnih et al., 2015; Silver et al., 2016; Van Seijen et al., 2017). However, these works
mostly have been focused on a single known task where the agent can be trained for a long time (e.g.,
Silver et al. (2016)). We argue that agent should be able to solve multiple tasks with varying sources
of reward. Recent work in multi-task RL has attempted to address this; however, they focused on
the setting where the structure of task are explicitly described with natural language instructions (Oh
et al., 2017; Andreas et al., 2017; Yu et al., 2017; Chaplot et al., 2018), programs (Denil et al., 2017),
or graph structures (Sohn et al., 2018). However, such task descriptions may not readily be available.
A more flexible solution is to have the agents infer the task by interacting with the environment.
Recent work in Meta RL (Hochreiter et al., 2001; Duan et al., 2016; Wang et al., 2016; Finn et al.,
2017) (especially in few-shot learning settings) has attempted to have the agents implicitly infer tasks
and quickly adapt to them. However, they have focused on relatively simple tasks with a single goal
(e.g., multi-armed bandit, locomotion, navigation, etc.).
We argue that real-world tasks often have a hierarchical structure and multiple goals, which require
long horizon planning or reasoning ability (Erol, 1996; Xu et al., 2017; Ghazanfari & Taylor, 2017;
Sohn et al., 2018). Take, for example, the task of making a breakfast in Figure 1. A meal can be
served with different dishes and drinks (e.g., boiled egg and coffee), where each could be considered
as a subtask. These can then be further decomposed into smaller substask until some base subtask
(e.g., pickup egg) is reached. Each subtask can provide the agent with reward; if only few subtasks
provide reward, this is considered a sparse reward problem. When the subtask dependencies are
complex and reward is sparse, learning an optimal policy can require a large number of interactions
with the environment. This is the problem scope we focus on in this work: learning to quickly infer
and adapt to varying hierarchical tasks with multiple goals and complex subtask dependencies.
To this end, we formulate and tackle a new few-shot RL problem called subtask graph inference
problem, where the task is defined as a factored-MDP (Boutilier et al., 1995; Jonsson & Barto, 2006)
with hierarchical structure represented by subtask graph (Sohn et al., 2018). The task consists of
multiple subtasks, where each subtask gives reward when completed (see Figure 1 for more detail).
The complex dependencies between subtasks (i.e., preconditions) enforce agent to execute all the
required subtasks before it can execute certain subtask. Intuitively, the agent can efficiently solve the
task by leveraging the inductive bias of underlying task structure (Section 2.2).

Inspired by the recent works on multi-task and few-shot RL, we propose a meta reinforcement
learning approach that explicitly infers the latent structure of the task (e.g., subtask graph). The agent
learns its adaptation policy to collect as much information about the environment as possible in order
to rapidly and accurately infer the unknown task structure. After that, the agent’s test policy is a

1

Under review as a conference paper at ICLR 2020

Put
in

Pickup

Use

� = 1

...

Pickup Pickup

Boil

Put
in

Put
in

� = 2

Adaptation (exploration) Test (exploitation)

Inferred subtask graph

...
Put
in

Pickup

Subtask Graph Inference

��

�1

�1 ��

�
′

...
Use

Pickup Pickup

Put
in

Update

: Precondition

: Subtask

Figure 1: Overview of our method in the context of “prepare breakfast” task. This task can be broken down into
subtasks (e.g., pickup mug) that composes the underlying subtask graph G. (Left) To learn about the unknown
task, the agent collects trajectories over K episodes through a parameterized adaptation policy πadapt

θ that learns
to explore the environment. (Center) With each new trajectory, the agent attempts to infer the task’s underlying
ground-truth subtask graph G with Ĝ. (Right) A separate test policy πtest

Ĝ
uses the inferred subtask graph Ĝ to

produce a trajectory that attempts to maximize the agent’s reward
∑
rt (e.g., the green trajectory that achieves

the boil egg subtask). The more precise Ĝ, the more reward the agent would receive, which implicitly improves
the adaptation policy πadapt

θ to better explore the environment and therefore better infer Ĝ in return.

contextual policy that takes the inferred subtask graph as an input and maximizes the expected return
(See Figure 1). We leverage inductive logic programming (ILP) technique to derive an efficient task
inference method based on the principle of maximum likelihood. To facilitate learning, we adopt an
intrinsic reward inspired by upper confidence bound (UCB) that encourages efficient exploration. We
evaluate our approach on various environments ranging from simple grid-world (Sohn et al., 2018) to
StarCraft II (Vinyals et al., 2017). In all cases, our method can accurately infer the latent subtask
graph structure, and adapt more efficiently to unseen tasks than the baselines.

The contribution of this work can be summarized as follows:
• We propose a new meta-RL problem with more general and richer form of tasks compared to the

recent meta-RL approaches.
• We propose an efficient task inference algorithm that leverages inductive logic programming,

which accurately infers the latent subtask graph from the agent’s experience data.
• We implement a deep meta-RL agent that efficiently infers the subtask graph for faster adaptation.
• We compare our method with other meta-RL agents on various domains, and show that our method

adapts more efficiently to unseen tasks with complex subtask dependencies.

2 PROBLEM DEFINITION

2.1 BACKGROUND: FEW-SHOT REINFORCEMENT LEARNING

A task is defined by an MDPMG = (S,A,PG,Rτ) parameterized by a task parameter G with a
set of states S, a set of actions A, transition dynamics PG, reward functionRG. In the K-shot RL
formulation (Duan et al., 2016; Finn et al., 2017), each trial under a fixed taskMG consists of an
adaptation phase where the agent learns a task-specific behavior and a test phase where the adapted
behavior is evaluated. For example, RNN-based meta-learners (Duan et al., 2016; Wang et al., 2016)
adapt to a taskMG by updating its RNN states (or fast-parameters) φt, where the initialization and
update rule of φt is parameterized by a slow-parameter θ: φ0 = g(θ), φt+1 = f(φt; θ). Gradient-
based meta-learners (Finn et al., 2017; Nichol et al., 2018) instead aim to learn a good initialization
of the model so that it can adapt to a new task with few gradient update steps. In the test phase, the
agent’s performance on the taskMG is measured in terms of the return:

RMG
(πφH) = EπφH ,MG

[∑H′

t=1 rt

]
, (1)

where πφH is the policy after K episodes (or H update steps) of adaptation, H ′ is the horizon of test
phase, and rt is the reward at time t in the test phase. The goal is to find an optimal parameter θ that
maximizes the expected return EG[RMG

(πφH)] over a given distribution of tasks p(G).

2.2 THE SUBTASK GRAPH INFERENCE PROBLEM

We formulate the subtask graph inference problem, an instance of few-shot RL problem where a
task is parameterized by subtask graph (Sohn et al., 2018). Following few-shot RL settings, the
agent’s goal is to quickly adapt to the given task (i.e., MDP) in the adaptation phase to maximize the

2

Under review as a conference paper at ICLR 2020

Algorithm 1 Adaptation policy optimization during meta-training

Require: p(G): distribution over subtask graph
1: while not done do
2: Sample batch of task parameters {Gi}Mi=1 ∼ p(G)
3: for all Gi in the batch do
4: Rollout K episodes τ = {st,ot, rt, dt}Ht=1 ∼ π

adapt
θ in taskMGi . adaptation phase

5: Compute rUCB
t as in Eq.(7)

6: Ĝi = ILP(τ) . subtask graph inference
7: Sample τ ′ ∼ πexe

Ĝi
in taskMGi . test phase

8: Update θ ← θ + η∇θ
∑M
i=1RPG+UCB

MGi

(
πadapt
θ

)
usingRPG+UCB

M in Eq.(9)

return in the test phase (see Figure 1). A task consists of N subtasks and the subtask graph models a
hierarchical dependency between subtasks.
Subtask: A subtask Φi can be defined by a tuple (completion set Sicomp ⊂ S, precondition Gic :
S 7→ {0, 1}, subtask reward function Gir : S → R). A subtask Φi is complete if the current state is
contained in its completion set (i.e., st ∈ Sicomp), and the agent receives a reward rt ∼ Gir upon the
completion of subtask Φi. A subtask Φi is eligible (i.e., subtask can be executed) if its precondition
Gic is satisfied (see Figure 1 for examples). A subtask graph is a tuple of precondition and subtask
reward of all the subtasks: G = (Gc, Gr). Then, the task defined by the subtask graph is a factored
MDP (Boutilier et al., 1995; Schuurmans & Patrascu, 2002); i.e., the transition model is factored as
p(s′|s, a) =

∏
i pGic(s′i|s, a) and the reward function is factored as R(s, a) =

∑
iRGr

i(s, a) (see
Appendix for the detail). The main benefit of factored MDP is that it allows us to model many
hierarchical tasks in a principled way with a compact representation such as dynamic Bayesian
network (Dean & Kanazawa, 1989; Boutilier et al., 1995). For each subtask Φi, the agent can learn
an option Oi (Sutton et al., 1999b) that executes the subtask1.
Environment: The state input to the agent at time step t consists of st = {xt, et, stept, epit,obst}.
• Completion: xt ∈ {0, 1}N indicates whether each subtask is complete.
• Eligibility: et ∈ {0, 1}N indicates whether each subtask is eligible (i.e., precondition is satisfied).
• Time budget: stept ∈ R is the remaining time steps until episode termination.
• Episode budget: epit ∈ R is the remaining number of episodes in adaptation phase.
• Observation: obst ∈ RH×W×C is a (visual) observation at time t.

3 METHOD

We propose a Meta-learner with Subtask Graph Inference (MSGI) which infers the latent subtask
graph G. Figure 1 overviews our approach. Our main idea is to employ two policies: adaptation
policy and test policy. During the adaptation phase, an adaptation policy πadapt

θ rolls out K episodes
of adaptation trajectories. From the collected adaptation trajectories, the agent infers the subtask
graph Ĝ using inductive logic programming (ILP) technique. A test policy πtest

Ĝ
, conditioned on the

inferred subtask graph Ĝ, rolls out episodes and maximizes the return in the test phase. Note that the
performance depends on the quality of the inferred subtask graph. The adaptation policy indirectly
contributes to the performance by improving the quality of inference. Intuitively, if the adaptation
policy completes more diverse subtasks during adaptation, the more “training data” is given to the
ILP module, which results in more accurate inferred subtask graph. Algorithm 1 summarizes our
meta-training procedure. For meta-testing, see Algorithm 2 in Appendix C.

3.1 SUBTASK GRAPH INFERENCE

Let τH = {s1,o1, r1, d1, . . . , sH} be an adaptation trajectory of the adaptation policy πadapt
θ for K

episodes (or H steps in total) in adaptation phase. The goal is to infer the subtask graph G for
this task, specified by preconditions Gc and subtask rewards Gr. We find the maximum-likelihood
estimate (MLE) of G = (Gc, Gr) that maximizes the likelihood of the adaptation trajectory τH :

1As in Andreas et al. (2017); Oh et al. (2017); Sohn et al. (2018), such options are pre-learned with curriculum
learning; the policy is learned by maximizing the subtask reward, and the initiation set and termination condition
are given as Ii = {s|Gic(s) = 1} and βi = I(xi = 1)

3

Under review as a conference paper at ICLR 2020

Logic

expression

Logic

expression

CART

train

𝑡
𝒙 𝒆

𝐴𝐵𝐶𝐷𝐸 𝐴𝐵𝐶𝐷𝐸

0 00000 11100
1 10000 11100
2 11000 11101
⋮ ⋮ ⋮
𝐻 11110 11111

Agent

trajectory

Precondition of 𝐸

CART

train

Subtask

𝐴

⋮

Input
𝒙

out
𝒆𝐴

𝐴𝐵𝐶𝐷𝐸 𝐴
00000 1
10000 1
11000 1
⋮ ⋮

11110 1

Subtask

𝐸

𝐴𝐵 ҧ𝐴𝐵𝐶+

𝐴𝐵 + 𝐵𝐶

Simplify

F T
𝒙𝐵>0

𝒆𝐸=0 𝒙𝐴>0

F T
𝒙𝐶>0 𝒆𝐸=1

F T
𝒆𝐸=0 𝒆𝐸=1

𝒆𝐴=1

Decision tree of 𝐴

Decision tree of 𝐸

Precondition of 𝐴

True

Input out
𝒙 𝒆𝐸

𝐴𝐵𝐶𝐷𝐸 𝐸
00000 0
10000 0
11000 1
⋮ ⋮

11110 1

Inferred

subtask graph

⋮

A B C

D E

A B C

A

E

Build

graph

Build

graph

Figure 2: Our inductive logic programming module infers the precondition Gc from adaptation trajectory. For
example, the decision tree of subtask E (bottom row) estimates the latent precondition function fGEc : x 7→ eE

by fitting its input-output data (i.e., agent’s trajectory {xt, eEt }Ht=1). The decision tree is constructed by choosing
a variable (i.e., a component of x) at each node that best splits the data. The learned decision trees of all the
subtasks are represented as logic expressions, and then transformed and merged to form a subtask graph.

ĜMLE = arg maxGc,Gr
p(τH |Gc, Gr). The likelihood term can be expanded as

p(τH |Gc, Gr) = p(s1|Gc)

H∏
t=1

πθ (ot|τt) p(st+1|st,ot, Gc)p(rt|st,ot, Gr)p(dt|st,ot) (2)

∝ p(s1|Gc)

H∏
t=1

p(st+1|st,ot, Gc)p(rt|st,ot, Gr), (3)

where we dropped the terms that are independent of G. From the definitions in Section 2.2, precondi-
tion Gc defines the mapping x 7→ e, and the subtask reward Gr determines the reward as rt ∼ Gr

i if
subtask i is eligible (i.e., eit = 1) and option Oi is executed at time t. Therefore, we have

ĜMLE = (ĜMLE
c , ĜMLE

r) =

(
arg max

Gc

H∏
t=1

p(et|xt, Gc), arg max
Gr

H∏
t=1

p(rt|et,ot, Gr)

)
. (4)

We note that no supervision from the ground-truth subtask graph G is used. Below we explain how to
compute the estimate of preconditions ĜMLE

c and subtask rewards ĜMLE
r .

Precondition inference via logic induction Since the precondition function fGc : x 7→ e (see
Section 2.2 for definition) is a deterministic mapping, the probability term p(et|xt, Gc) in Eq.(4) is 1

if et = fGc(xt) and 0 otherwise. Therefore, we can rewrite ĜMLE
c in Eq.(4) as:

ĜMLE
c = arg max

Gc

H∏
t=1

I(et = fGc(xt)), (5)

where I(·) is the indicator function. Since the eligibility e is factored, the precondition function fGc
i

for each subtask is inferred independently. We formulate the problem of finding a boolean function
that satisfies all the indicator functions in Eq.(5) (i.e.,

∏H
t=1 I(et = fGc(xt)) = 1) as an inductive

logic programming (ILP) problem (Muggleton, 1991). Specifically, {xt}Ht=1 forms binary vector
inputs to programs, and {eit}Ht=1 forms Boolean-valued outputs of the i-th program that denotes the
eligibility of the i-th subtask. We use the classification and regression tree (CART) to infer the
precondition function fGc for each subtask based on Gini impurity (Breiman, 2017). Intuitively, the
constructed decision tree is the simplest boolean function approximation for the given input-output
pairs {xt, et}. Then, we convert it to a logic expression (i.e., precondition) in sum-of-product (SOP)
form to build the subtask graph. Figure 2 summarizes the overall logic induction process.

Subtask reward inference To infer the subtask reward function ĜMLE
r in Eq.(4), we model each

component of subtask reward as a Gaussian distribution Gir ∼ N (µ̂i, σ̂i). Then, µ̂iMLE becomes the
empirical mean of the rewards received after taking the eligible option Oi in the trajectory τH :

ĜMLE,i
r = µ̂iMLE = E

[
rt|ot = Oi, eit = 1

]
=

∑H
t=1 rtI(ot = Oi, eit = 1)∑H
t=1 I(ot = Oi, eit = 1)

. (6)

4

Under review as a conference paper at ICLR 2020

3.2 TEST PHASE: SUBTASK GRAPH EXECUTION POLICY

Once a subtask graph Ĝ has been inferred, we can derive a subtask graph execution (SGE) policy
πexe
Ĝ

(o|x) that aims to maximize the cumulative reward in the test phase. Note that this is precisely
the problem setting used in Sohn et al. (2018). Therefore, we employ a graph reward propagation
(GRProp) policy (Sohn et al., 2018) as our SGE policy. Intuitively, the GRProp policy approximates
a subtask graph to a differentiable form such that we can compute the gradient of modified return
with respect to the completion vector to measure how much each subtask is likely to increase the
modified return. Due to space limitation, we give a detail of the GRProp policy in Appendix G.

3.3 LEARNING: OPTIMIZATION OF THE ADAPTATION POLICY

We now describe how to learn the adaptation policy πadapt
θ , or its parameters θ. We can directly

optimize the objectiveRMG
(π) using policy gradient methods (Williams, 1992; Sutton et al., 1999a),

such as actor-critic method with generalized advantage estimation (GAE) (Schulman et al., 2015).
However, we find it challenging to train our model for two reasons: 1) delayed and sparse reward
(i.e., the return in the test phase is treated as if it were given as a one-time reward at the last step of
adaptation phase), and 2) large task variance due to highly expressive power of subtask graph. To
facilitate learning, we propose to give an intrinsic reward rUCB

t to agent in addition to the extrinsic
environment reward, where rUCB

t is the upper confidence bound (UCB) (Auer et al., 2002)-inspired
exploration bonus term as follows:

rUCB
t = wUCB · I(xt is novel), wUCB =

N∑
i=1

log(ni(0) + ni(1))

ni(eit)
, (7)

where N is the number of subtasks, eit is the eligibility of subtask i at time t, and ni(e) is the
visitation count of ei (i.e., the eligibility of subtask i) during the adaptation phase until time t. The
weight wUCB is designed to encourage the agent to make eligible and execute those subtasks that have
infrequently been eligible, since such rare data points in general largely improve the inference by
balancing the dataset that CART (i.e., our logic induction module) learns from. The conditioning
term I(xt is novel) encourages the adaptation policy to visit novel states with a previously unseen
completion vector xt (i.e., different combination of completed subtasks), since the data points with
same xt input will be ignored in the ILP module as a duplication. We implement I(xt is novel) using
a hash table for computational efficiency. Then, the intrinsic objective is given as follows:

RUCB
MG

(
πadapt
θ

)
= Eπadapt

θ ,MG

[∑H
t=1 r

UCB
t

]
, (8)

where H is the horizon of adaptation phase. Finally, we train the adaptation policy πadapt
θ using an

actor-critic method with GAE (Schulman et al., 2015) to maximize the following objective:

RPG+UCB
MG

(
πadapt
θ

)
= RMG

(
πGRProp
Ĝ

)
+ βUCBRUCB

MG

(
πadapt
θ

)
, (9)

whereRMG
(·) is the meta-learning objective in Eq.(1), βUCB is the mixing hyper-parameter, and Ĝ

is the inferred subtask graph that depends on the adaptation policy πadapt
θ . The complete procedure for

training our MSGI agent with UCB reward is summarized in Algorithm 1.

4 RELATED WORK

Meta Reinforcement Learning. There are roughly two broad categories of meta-RL approaches:
gradient-based meta-learners (Finn et al., 2017; Nichol et al., 2018; Gupta et al., 2018; Finn et al.,
2018; Kim et al., 2018) and RNN-based meta-learners (Duan et al., 2016; Wang et al., 2016). Gradient-
based meta RL algorithms, such as MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), learn
the agent’s policy by taking policy gradient steps during an adaptation phase, where the meta-learner
aims to learn a good initialization that enables rapid adaptation to an unseen task. RNN-based
meta-RL methods (Duan et al., 2016; Wang et al., 2016) updates the hidden states of a RNN as a
process of adaptation, where both of hidden state initialization and update rule are meta-learned.
Other variants of adaptation models instead of RNNs such as temporal convolutions (SNAIL) (Mishra
et al., 2018) also have been explored. Our approach is closer to the second category, but different
from existing works as we directly and explicitly infer the task parameter.
Logic induction. Inductive logic programming systems (Muggleton, 1991) learn a set of rules from
examples. (Xu et al., 2017) These works differ from ours as they are open-loop LPI; the input data to
LPI module is generated by other policy that does not care about ILP process. However, our agent
learns a policy to collect data more efficiently (i.e., closed-loop ILP). There also have been efforts

5

Under review as a conference paper at ICLR 2020

Figure 3: Left: A visual illustration of Playground domain and an example of underlying subtask graph. Right:
A warfare scenario in SC2LE domain (Vinyals et al., 2017). The agent must prepare for the upcoming warfare
by training appropriate units, through an appropriate order of subtasks (see Appendix for more details).

to combine neural networks and logic rules to deal with noisy and erroneous data and seek data
efficiency, such as (Hu et al., 2016; Evans & Grefenstette, 2017; Dong et al., 2019).
Autonomous Construction of Task Structure. Task planning approaches represented the task
structure using Hierarchical Task Networks (HTNs) (Tate, 1977). HTN identifies subtasks for a given
task and represent symbolic representations of their preconditions and effects, to reduce the search
space of planning (Hayes & Scassellati, 2016). They aim to execute a single goal task, often with
assumptions of simpler subtask dependency structures (e.g., without NOT dependency (Ghazanfari &
Taylor, 2017; Liu et al., 2016)) such that the task structure can be constructed from the successful
trajectories. In contrast, we tackle a more general and challenging setting, where each subtask gives a
reward (i.e., multi-goal setting) and the goal is to maximize the cumulative sum of reward within an
episode. More recently, these task planning approaches were successfully applied to the few-shot
visual imitation learning tasks by constructing recursive programs (Xu et al., 2017) or graph (Huang
et al., 2018). Contrary to them, we employ an active policy that seeks for experience useful in
discovering the task structure in unknown and stochastic environments.

5 EXPERIMENTS

In the experiment, we investigate the following research questions: (1) Does MSGI correctly infer
task parameters G? (2) Does adaptation policy πadapt

θ improve the efficiency of few-shot RL? (3)
Does the use of UCB bonus facilitate training? (4) How well does MSGI perform compared with
other meta-RL algorithms? (5) Can MSGI generalize to longer adaptation horizon, and unseen and
more complex tasks?

We evaluate our approach in comparison with the following baselines:
• Random is a policy that executes a random eligible subtask that has not been completed.
• RL2 is the meta-RL agent in Duan et al. (2016), trained to maximize the return over K episodes.
• HRL is the hierarchical RL agent in Sohn et al. (2018) trained with the same actor-critic method as

our approach during adaptation phase. The network parameter is reset when the task changes.
• GRProp+Oracle is the GRProp policy (Sohn et al., 2018) provided with the ground-truth subtask

graph as input This is roughly an upper bound of the performance of MSGI-based approaches.
• MSGI-Rand (Ours) uses a random policy as an adaptation policy, with the task inference module.
• MSGI-Meta (Ours) uses a meta-learned policy (i.e., πadapt

θ) as an adaptation policy, with the task
inference module.

For RL2 and HRL, we use the same network architecture as our MSGI adaptation policy. More details
of training and network architecture can be found in Appendix H. The domains on which we evaluate
these approaches include two simple grid-world environments (Mining and Playground) (Sohn
et al., 2018) and a more challenging domain SC2LE (Vinyals et al., 2017) (StarCraft II).

5.1 EXPERIMENTS ON MINING AND PLAYGROUND DOMAINS

Mining (Sohn et al., 2018) is inspired by Minecraft (see Figure 3) where the agent receives reward by
picking up raw materials in the world or crafting items with raw materials. Playground (Sohn et al.,
2018) is a more flexible and challenging domain, where the environment is stochastic and subtask
graphs are randomly generated (i.e., precondition is an arbitrary logic expression). We follow the
setting in Sohn et al. (2018) for choosing train/evaluation sets. We measure the performance in terms
of normalized rewardR = (R−Rmin)/(Rmax−Rmin) averaged over 4 random seeds, whereRmin and
Rmax correspond to the average reward of the Random and the GRProp+Oracle agent, respectively.

6

Under review as a conference paper at ICLR 2020

5.1.1 TRAINING PERFORMANCE

0 1 2 3 4 5 6 7 8
Trial (thousand)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R̂

Playground (D1)

MSGI-Meta(Ours)
MSGI-Rand(Ours)
HRL
RL2

Figure 4: Learning curves on the
Playground domain. We mea-
sure the normalized reward (y-
axis) in a test phase, after a certain
number of training trials (x-axis).

Figure 4 shows the learning curves of MSGI-Meta and RL2, trained
on the D1-Train set of Playground domain. We set the adaptation
budget in each trial to K = 10 episodes. For MSGI-Rand and HRL
(which are not meta-learners), we show the average performance
after 10 episodes of adaptation. As training goes on, the performance
of MSGI-Meta significantly improves over MSGI-Rand with a large
margin. It demonstrates that our meta adaptation policy learns to
explore the environment more efficiently, inferring subtask graphs
more accurately. We also observe that the performance of RL2 agent
improves over time, eventually outperforming the HRL agent. This
indicates that RL2 learns 1) a good initial policy parameter that
captures the common knowledge generally applied to all the tasks
and 2) an efficient adaptation scheme such that it can adapt to the
given task more quickly than standard policy gradient update in HRL.

5.1.2 ADAPTATION AND GENERALIZATION PERFORMANCE

0 5 10 15 20
Budget (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

R̂

Playground (D1)

0 5 10 15 20
Budget (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

R̂

Playground (D2)

0 5 10 15 20
Budget (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

R̂

Playground (D3)

0 5 10 15 20
Budget (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

R̂

Playground (D4)

0 10 20 30 40 50
Budget (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

R̂

Mining

MSGI-Meta(Ours)
MSGI-Rand(Ours)
HRL
RL2

Figure 5: Generalization performance on unseen tasks (D1-Eval, D2, D3, D4, and Mining-Eval) with varying
adaptation horizon. We trained agent with the fixed adaptation budget (K = 10 for Playground and K = 25
for Mining) denoted by the vertical dashed line, and tested with varying unseen adaptation budgets. We report
the average return during test phase. The shaded area in the plot indicates the range between R+ σ and R− σ
where σ is the standard error of normalized reward.

Adaptation efficiency. In Figure 5, we measure the test performance (in terms of the normalized
reward R) by varying episode budget K (i.e., how many episodes are used in adaptation phase), after
8000 trials of meta-training (Figure 4). Intuitively, it shows how quickly the agent can adapt to the
given task. Our full algorithm MSGI-Meta consistently outperforms MSGI-Rand across all the tasks,
showing that our meta adaptation policy can efficiently explore informative states that are likely
to result in more accurate subtask graph inference. Also, both of our MSGI-based models perform
better than HRL and RL2 baselines in all the tasks, showing that explicitly inferring underlying task
structure and executing the predicted subtask graph is more effective than learning slow-parameters
and fast-parameters (e.g., RNN states) on those tasks involving complex subtask dependencies.

Generalization performance. We test whether the agents can generalize over unseen task and longer
adaptation horizon, as shown in Figure 5. For Playground, we follow the setup of (Sohn et al., 2018):
we train the agent on D1-Train with the adaptation budget of 10 episodes, and test on unseen graph
distributions D1-Eval and larger graphs D2-D4. We report the agent’s performance as the normalized
reward with up to 20 episodes of adaptation budget. For Mining, the agent is trained on randomly
generated graphs with 25 episodes budget and tested on 440 hand-designed graphs used in (Sohn
et al., 2018), with up to 50 episodes of adaptation budget. Both of our MSGI-based models generalize
well to unseen tasks and over different adaptation horizon lengths, continuingly improving the agent’s
performance. It demonstrates that the efficient exploration scheme that our meta adaptation policy
can generalize to unseen tasks and longer adaptation horizon, and that our task execution policy,
GRProp, generalizes well to unseen tasks as already shown in (Sohn et al., 2018). However, RL2 fails
to generalize to unseen task and longer adaptation horizon: on D2-D4 with adaptation horizons longer
than the length the meta-learner was trained for, the performance of the RL2 agent is almost stationary
or even decreases for very long-horizon case (D2, D3, and Mining), eventually being surpassed by

7

Under review as a conference paper at ICLR 2020

0 5 10 15 20
Adaptation (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

Av
g.

 su
cc

es
s r

at
e

Build BattleCruiser

0 5 10 15 20
Adaptation (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

Av
g.

 w
in

 ra
te

Defeat Zerglings

0 5 10 15 20
Adaptation (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

Av
g.

 w
in

 ra
te

Defeat Hydralisks

0 5 10 15 20
Adaptation (episodes)

0.0
0.2
0.4
0.6
0.8
1.0

Av
g.

 w
in

 ra
te

Defeat Hydra- & Ultra-lisks

MSGI-GRProp (Ours)
HRL
Random

Figure 6: Adaptation performance with different adaptation horizon on SC2LE domain.

the HRL agent. This indicates (1) the adaptation scheme that RL2 learned does not generalize well to
longer adaptation horizons, and (2) a common knowledge learned from the training tasks does not
generalize well to unseen test tasks.

5.2 EXPERIMENTS ON STARCRAFT II DOMAIN

SC2LE (Vinyals et al., 2017) is a challenging RL domain built upon the real-time strategy game
StarCraft II. We focus on two particular types of scenarios: Defeat Enemy and Build Unit. Each
type of the scenarios models the different aspect of challenges in the full game. The goal of Defeat
Enemy is to eliminate various enemy armies invading in 2,400 steps. We consider three different
combinations of units with varying difficulty: Defeat Zerglings, Defeat Hydralisks, Defeat Hydralisks
& Ultralisks (see Figure 8 and demo videos at http://bit.ly/2M56WNO). The goal of Build Unit
scenario is to build a specific unit within 2,400 steps. To showcase the advantage of MSGI infering the
underlying subtask graph, we set a Battlecruiser unit as the goal, which is in the highest rank in the
technology tree of Terran race. In both scenarios, the agent needs to train workers, collect resources,
and construct buildings and produce units in a right order to win the game. Each building or unit
has a precondition as per the technology tree of the player’s race (see Figure 10 and Appendix D for
more details). Note that the precondition of each subtask is determined by the domain and remains
fixed across the tasks. If we train the meta agents (MSGI-Meta and RL2), the agents memorize the
subtask dependencies (i.e., over-fitting) and does not learn any useful policy for efficient adaptation.
Thus, we only evaluate Random and HRL as our baseline agents, and instead of MSGI-Meta, we use
MSGI-GRProp agent to efficiently collect experiences in adaptation phase. MSGI-GRProp infers the
subtask graph after every episode from the accumulated experiences and uses it to run the GRProp
policy. Since the environment does not provide any subtask-specific reward, we set the subtask reward
using the UCB bonus term in Eq. (7) to encourage efficient exploration (See Appendix for detail).

Subtask graph inference. We quantitatively evaluate the inferred subtask graph in terms of the
precision and recall of the inferred precondition function fĉ : x 7→ ê. Specifically, we compare the
inference output ê with the GT label e generated by the GT precondition function fc : x 7→ e for all
possible binary assignments of input (i.e., completion vector x). For all the tasks, our MSGI-GRProp
agent almost perfectly infers the preconditions with more than 94% precision and 96% recall of all
possible binary assignments, when averaged over all 163 preconditions in the game, with only 20
episodes of adaptation budget. We provide the detailed quantitative and qualitative results on the
inferred subtask graph in supplemental material.

Adaptation efficiency. Figure 6 shows the adaptation efficiency of MSGI-GRProp, HRL agents, and
Random policy on the four scenarios. We report the average victory or success rate over 8 episodes.
MSGI-GRProp consistently outperforms HRL agents with a high victory rate, by (1) quickly figuring
out the useful units and their prerequisite buildings and (2) focusing on executing these subtasks in
a correct order. For example, our MSGI-GRProp learns from the inferred subtask graph that some
buildings such as sensor tower or engineering bay are unnecessary for training units and avoids
constructing them (see Appendix E for the inferred subtask graph).

6 CONCLUSION
We introduced and addressed a few-shot RL problem with a complex subtask dependencies. We
proposed to learn the adaptation policy that efficiently collects experiences in the environment, infer
the underlying hierarchical task structure, and maximize the expected reward using the execution
policy given the inferred subtask graph. The empirical results confirm that our agent can efficiently
explore the environment during the adaptation phase that leads to better task inference and leverage
the inferred task structure during the test phase. In this work, we assumed that the option is pre-
learned and the environment provides the status of each subtask. In the future work, our approach
may be extended to more challenging settings where the relevant subtask structure is fully learned
from pure observations, and options to execute these subtasks are also automatically discovered.

8

http://bit.ly/2M56WNO

Under review as a conference paper at ICLR 2020

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In ICML, 2017.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3):235–256, 2002.

Craig Boutilier, Richard Dearden, Moises Goldszmidt, et al. Exploiting structure in policy construc-
tion. In IJCAI, volume 14, pp. 1104–1113, 1995.

Leo Breiman. Classification and regression trees. Routledge, 2017.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. In AAAI, 2018.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation. Compu-
tational intelligence, 5(2):142–150, 1989.

Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas. Pro-
grammable agents. arXiv preprint arXiv:1706.06383, 2017.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In ICLR, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Kutluhan Erol. Hierarchical task network planning: formalization, analysis, and implementation.
PhD thesis, 1996.

Richard Evans and Edward Grefenstette. Learning Explanatory Rules from Noisy Data. arXiv
preprint arXiv:1711.04574, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), NIPS,
pp. 9516–9527, 2018.

Behzad Ghazanfari and Matthew E Taylor. Autonomous extracting a hierarchical structure of tasks in
reinforcement learning and multi-task reinforcement learning. arXiv preprint arXiv:1709.04579,
2017.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. arXiv preprint arXiv:1802.07245,
2018.

Bradley Hayes and Brian Scassellati. Autonomously constructing hierarchical task networks for
planning and human-robot collaboration. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5469–5476. IEEE, 2016.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In International Conference on Artificial Neural Networks, pp. 87–94. Springer, 2001.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep neural
networks with logic rules. arXiv preprint arXiv:1603.06318, 2016.

De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese, and
Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. arXiv preprint arXiv:1807.03480, 2018.

9

Under review as a conference paper at ICLR 2020

Anders Jonsson and Andrew Barto. Causal graph based decomposition of factored mdps. Journal of
Machine Learning Research, 7(Nov):2259–2301, 2006.

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. arXiv preprint arXiv:1806.03836, 2018.

Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nishant Shukla, Yunzhong He, Song-chun Zhu,
and Joyce Chai. Jointly learning grounded task structures from language instruction and visual
demonstration. In EMNLP, 2016.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In ICLR, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Stephen Muggleton. Inductive logic programming. New Gen. Comput., 8(4):295–318, February
1991. ISSN 0288-3635. doi: 10.1007/BF03037089. URL http://dx.doi.org/10.1007/
BF03037089.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2, 2018.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. arXiv preprint arXiv:1706.05064, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Dale Schuurmans and Relu Patrascu. Direct value-approximation for factored mdps. In Advances in
Neural Information Processing Systems, pp. 1579–1586, 2002.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. In NeurIPS, pp. 7156–7166, 2018.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, 1999a.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,
1999b.

Austin Tate. Generating project networks. In Proceedings of the 5th international joint conference
on Artificial intelligence-Volume 2, pp. 888–893. Morgan Kaufmann Publishers Inc., 1977.

Harm Van Seijen, Mehdi Fatemi, Joshua Romoff, Romain Laroche, Tavian Barnes, and Jeffrey
Tsang. Hybrid reward architecture for reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 5392–5402, 2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft ii: A
new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

10

http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1007/BF03037089

Under review as a conference paper at ICLR 2020

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese.
Neural task programming: Learning to generalize across hierarchical tasks. arXiv preprint
arXiv:1710.01813, 2017.

Haonan Yu, Haichao Zhang, and Wei Xu. A deep compositional framework for human-like language
acquisition in virtual environment. arXiv preprint arXiv:1703.09831, 2017.

11

Under review as a conference paper at ICLR 2020

Appendix: Meta Reinforcement Learning with Autonomous
Inference of Subtask Dependencies

A SUBTASK GRAPH AND FACTORED MDP

A.1 BACKGROUND: FACTORED MARKOV DECISION PROCESSES

A factored MDP (FMDP) (Boutilier et al., 1995; Jonsson & Barto, 2006) is an MDP M =
(S,A,P,R), where the state space S is defined by a set of discrete state variables s = {s1, . . . , sd}.
Each state variable si ∈ s takes on a value in its domain D(si). The state set S is a (subset of)
Cartesian product of the domain of all state variables ×si∈sD(si). In FMDP, the state variables si
are conditionally independent, such that the transition probability can be factored as follows:

p(st+1|st, at) = p(s1t+1|st, at)p(s2t+1|st, at) . . . p(sdt+1|st, at). (10)
Then, the model of FMDP can be compactly represented by the subtask graph (Sohn et al., 2018) or
dynamic Bayesian network (DBN) (Dean & Kanazawa, 1989; Boutilier et al., 1995). They represent
the transition of each state variable p(sit+1|st, at) in either a Boolean expression (i.e., subtask graph)
or a binary decision tree (i.e., DBN). For more intuitive explanation, see the subtask graph paragraph
in Section 2.2 and Figure 1.

Jonsson & Barto (2006); Sohn et al. (2018) suggested that the factored MDP can be extended to
the option framework. Specifically, the option is defined based on the change in state variable (e.g.,
completion of subtask in Sohn et al. (2018)), and the option transition model and option reward
function are assumed to be factored. Similar to Eq. 10, the transition probability can be factored as
follows:

p(s′|s, o) =
∏
i

p(s′i|s, o), R(s, o) =
∑
i

Ri(s, o). (11)

In (Sohn et al., 2018), the option Oi completes the subtask Φi by definition; thus, p(s′i|s, o) = 0 and
Ri(s, o) = 0 if o 6= Oi. By introducing the eligibility vector e, the transition and reward functions
are further expanded as follows:

p(x′i|x, o = Oi) = p(x′i|ei = 1)p(ei = 1|x), (12)

Ri(x, o = Oi) = Gr
iI(ei = 1), (13)

where p(x′i|ei = 1) indicates that the subtask is completed x′i if the subtask is eligible ei = 1, p(ei|x)
is the precondition Gc, and I(ei = 1) indicates that the reward is given only if the subtask i is eligible.

B DETAILS OF TASK

For self-containedness, we repeat the details of how the task (i.e., MDP) is defined by the subtask graph
G from (Sohn et al., 2018). We define each task as an MDP tupleMG = (S,A,PG,RG, ρG, γ)
where S is a set of states, A is a set of actions, PG : S ×A× S → [0, 1] is a task-specific state
transition function, RG : S ×A → R is a task-specific reward function and ρG : S → [0, 1] is a
task-specific initial distribution over states. We describe the subtask graph G and each component of
MDP in the following paragraphs.

Subtask and Subtask Graph A subtask graph G is a tuple of the subtask reward Gr ∈ RN , and
the precondition Gc of N subtasks. The set of subtasks is O = Aint × X , where Aint is a set of
primitive actions to interact with objects, and X is a set of all types of interactive objects in the
domain. To execute a subtask (aint, obj) ∈ Aint ×X , the agent should move on to the target object
obj and take the primitive action aint.

State The state st consists of the observation obst ∈ {0, 1}W×H×C , the completion vector
xt ∈ {0, 1}N , the eligibility vector et ∈ {0, 1}N , the time budget stept ∈ R and number of episode
left during the adaptation epit ∈ R. An observation obst is represented as H ×W × C tensor,
where H and W are the height and width of map respectively, and C is the number of object types in
the domain. The (h,w, c)-th element of observation tensor is 1 if there is an object c in (h,w) on
the map, and 0 otherwise. The time budget indicates the number of remaining time-steps until the
episode termination. The completion vector and eligibility vector provides additional information

12

Under review as a conference paper at ICLR 2020

about N subtasks. The details of completion vector and eligibility vector will be explained in the
following paragraph.

Figure 7: Dependency
between subtask graph
and MDP

State Distribution and Transition Function Given the current state
(obst,xt, et), the next step state (obst+1,xt+1, et+1) is computed from
the subtask graph G. Figure 7 describes the dependency between subtask
graph and MDP. In the beginning of episode, the completion vector xt is
initialized to a zero vector in the beginning of the episode x0 = [0, . . . , 0]
and the observation obs0 is sampled from the task-specific initial state dis-
tribution ρG. Specifically, the observation is generated by randomly placing
the agent and the N objects corresponding to the N subtasks defined in the
subtask graph G. When the agent executes subtask i, the i-th element of
completion vector is updated by the following update rule:

xit+1 =

{
1 if eit = 1
xit otherwise . (14)

The observation is updated such that agent moves on to the target object, and perform corresponding
primitive action. The eligibility vector et+1 is computed from the completion vector xt+1 and
precondition Gc as follows:

eit+1 = OR
j∈Childi

(
yjAND

)
, (15)

yiAND = AND
j∈Childi

(
x̂i,jt+1

)
, (16)

x̂i,jt+1 = xjt+1w
i,j + (1− xjt+1)(1− wi,j), (17)

wherewi,j = 0 if there is a NOT connection between i-th node and j-th node, otherwisewi,j = 1, and
wi,j’s are defined by the Gc. Intuitively, x̂i,jt = 1 when j-th node does not violate the precondition of
i-th node. Executing each subtask costs different amount of time depending on the map configuration.
Specifically, the time cost is given as the Manhattan distance between agent location and target object
location in the grid-world plus one more step for performing a primitive action.

Task-specific Reward Function The reward function is defined in terms of the subtask reward
vector Gr ∈ RN and the eligibility vector et, where the subtask reward vector Gr is the component
of subtask graph G the and eligibility vector is computed from the completion vector xt and subtask
graph G as Eq. 17. Specifically, when agent executes subtask i, the amount of reward given to agent
at time step t is given as follows:

rt =

{
Gir if eit = 1

0 otherwise . (18)

Learning option The option framework can be naturally applied to the subtask graph-based tasks.
Consider the (optimal) option Oi = (Ii, πio, βi) for subtask Φi. Its initiation set is Ii = {s|ei = 1},
where s is the state, ei is the i-th component of eligibility vector e, and e is an element of s. The
termination condition is βi = I(xit = 1), where xi is the i-th component of completion vector x. The
policy πio maximizes the subtask reward Gir. Similar to Andreas et al. (2017); Oh et al. (2017); Sohn
et al. (2018), the option for each subtask is pre-learned via curriculum learning; i.e., the agent learns
options from the tasks consisting of single subtask by maximizing the subtask reward.

C ALGORITHM IN META-TESTING

D DETAILS OF THE SC2LE DOMAIN

The SC2LE domain (Vinyals et al., 2017) provides suite of mini-games focusing on specific aspects
of the entire StarCraft II game. In this paper, we custom design two types of new, simple mini-games
called Build Unit and Defeat Zerg troops. Specifically, we built Defeat Zerglings, Defeat Hydralisks,
Defeat Hydralisks & Ultralisks and Build Battlecruiser mini-games that compactly capture the most
fundamental goal of the full game. The Build Unit mini-game requires the agent to figure-out the
target unit and its precondition correctly, such that it can train the target unit within the given short
time budget. The Defeat Zerg troops mini-game mimics the full game more closely; the agent is

13

Under review as a conference paper at ICLR 2020

Algorithm 2 Process of single trial for a taskMG at meta-test time

Require: The current parameter θ
Require: A taskMG parametrized by a task parameter G (unknown to the agent)

1: Roll out K train episodes τH = {st,ot, rt, dt}Ht=1 ∼ π
adapt
θ in taskMG . adaptation phase

2: Infer a subtask graph: Ĝ = (Ĝc, Ĝr) = (ILP(τH),RI(τH)) . task inference
3: Roll out a test episode τ ′ = {s′t,o′t, r′t, d′t}H

′

t=1 ∼ πexe
Ĝ

in taskMG . test phase
4: Measure the performance R =

∑
t r
′
t for this task

required to train enough units to win a war against the opponent players. To make the task more
challenging and interesting, we designed the reward to be given only at the end of episode depending
on the success of the whole task. Similar to the standard Melee game in StarCraft II, each episode is

Figure 8: (Top) The agent starts the game initially with limited resources of 50 minerals, 0 gases, 3 foods, 11
SCVs collecting resources, 1 idle SCV and pre-built Refinery. (Middle) From the initial state, the agent needs to
strategically collect resources and build structures in order to be well prepared for the upcoming battle. (Bottom)
After 2,400 environment steps, the war breaks; all the buildings in the map are removed, and the enemy units
appear. The agent’s units should eliminate the enemy units within 240 environment steps during the war.

14

Under review as a conference paper at ICLR 2020

initialized with 50 mineral, 0 gas, 7 and 4 SCVs that start gathering mineral and gas, respectively, 1
idle SCV, 1 refinery, and 1 Command Center (See Figure 8). The episode is terminated after 2,400
environment steps (equivalent to 20 minutes in game time). In the game, the agent is initially given
50 mineral, 0 gas, 7 and 4 SCVs that start gathering mineral and gas, respectively, 1 idle SCV, 1
refinery, and 1 Command Center (See Figure 8) and is allowed to prepare for the upcoming battle
only for 2,400 environment steps (equivalent to 20 minutes in game time). Therefore, the agent must
learn to collect resources and efficiently use them to build structures for training units. All the four
custom mini-games share the same initial setup as specified in Figure 8.

Defeat Zerg troops scenario: At the end of the war preparation, different combinations of enemy
unit appears: Defeat Zerglings and Defeat Hydralisks has 20 zerglings and 15 hydralisks, respectively,
and Defeat Hydralisks & Ultralisks contains a combination of total 5 hydralisks and 3 ultralisks.
When the war finally breaks out, the units trained by the agent will encounter the army of Zerg units
in the map and combat until the time over (240 environment steps or 2 minutes in the game) or either
side is defeated. Specifically, the agent may not take any action, and the units trained by the agent
perform an auto attack against the enemy units. Unlike the original full game that has ternary reward
structure of +1 (win) / 0 (tie) / −1 (loss), we use binary reward structure of +1 (win) and −1 (loss or
tie). Notice that depending on the type of units the agent trained, the tie can happen. For instance, if
the units trained by the agent are air units that cannot attack the ground units and the enemy units
are the ground units that cannot attack the air units, then no combat will take place, so we consider
this case as a loss. Build unit scenario: The agent receives the reward of +1 if the target unit is
successfully trained within the time limit, and the episode terminates. When the episode terminates
due to time limit, the agent receives the reward of −1. We gave 2,400 step budget for the Build
Battlecruiser scenario such that only highly efficient policy can finish the task within the time limit.

The transition dynamics (i.e., build tech-tree) in SC2LE domain has a hierarchical characteristic
which can be inferred by our MSGI agent (see Figure 8). We conducted the experiment on Terran
race only, but our method can be applied to other races as well.

Subtask. There are 85 subtasks: 15 subtasks of constructing each type of building (Supply depot,
Barracks, Engineeringbay, Refinery, Factory, Missile turret, Sensor tower, Bunker, Ghost academy,
Armory, Starport, Fusioncore, Barrack-techlab, Factory-techlab, Starport-techlab), 17 subtasks
of training each type of unit (SCV, Marine, Reaper, Marauder, Ghost, Widowmine, Hellion, Hell-
bat, Cyclone, Siegetank, Thor, Banshee, Liberator, Medivac, Viking, Raven, Battlecruiser), one
subtask of idle worker, 32 subtasks of selecting each type of building and unit, gathering min-
eral, gathering gas, and no-op. For gathering mineral, we set the subtask as (mineral≥ val) where
val ∈ {50, 75, 100, 125, 150, 300, 400}. Similarly for gathering gas, we set the subtask as (gas≥ val)
where val ∈ {25, 50, 75, 100, 125, 150, 200, 300}. For no-op subtask, the agent takes the no-op ac-
tion for 8 times.

Eligibility. The eligibility of the 15 building construction subtasks and 17 training unit subtasks is
given by the environment as an available action input. For the selection subtasks, we extracted the
number of corresponding units using the provided API of the environment. Gathering mineral, gas,
and no-op subtasks are always eligible.

Completion. The completion of the 15 construction subtasks and 17 training subtasks is 1 if the
corresponding building or unit is present on the map. For the selection subtasks, the completion is
1 if the target building or unit is selected. For gathering mineral and gas subtasks, the subtask is
completed if the condition is satisfied (i.e., gas≥ 50). The no-op subtask is never completed.

Subtask reward. In SC2LE domain, the agent does not receive any reward when completing a
subtask. The only reward given to agent is the binary reward rHepi = {+1,−1} at the end of episode
(i.e., t = Hepi). Therefore, the subtask reward inference method described in Eq.(4) may not be
applied. Instead, we tried to infer the subtask reward Ĝr ∈ RN (see Section 3 for definition) from
a victory reward rHepi by building a binary classifier that predicts the victory reward rHepi from
the option count vector n ∈ NN using a logistic model (i.e., logistic regression), where N is the
number of subtasks and the option count vector n counts how many times each option had been
executed within an episode. Intuitively speaking, we assume that the execution of each subtask (i.e.,
option) gives an implicit subtask reward that is un-observable by the agent, and the victory reward is
determined by thresholding the sum of subtask rewards within an episode as follows:

rHepi = I(Gr
>n > β), (19)

15

Under review as a conference paper at ICLR 2020

where I(·) is the indicator function and β is the threshold. Then, we approximate it using a sigmoid
function σ(·) as follows:

rHepi = σ(Gr
>n− β). (20)

In the adaptation phase, we randomly sampled the subtask reward vector Gr from the uniform
distribution in [0, 1]N , and used it for running MSGI-GRProp agent while recording the option count
vector n. Then, the option count vectors n and the victory rewards rHepi from the K episodes in

adaptation phase form a training data
{
ni, rHepi,i

}K
i=1

for estimating the parameters of logistic model
as follows:

log
rHepi

1− rHepi

= Ĝr
>n− β, (21)

where Ĝr ∈ RN and β ∈ R are the weight and bias parameters to be learned. Finally, we used the
learned Ĝr as the subtask reward vector for running our MSGI-GRProp agent in test phase. We used
the scikit-learn (Pedregosa et al., 2011) implementation of logistic regression.

E MORE RESULTS ON THE SC2LE DOMAIN

Accuracy of inferred subtask graph. Figure 9 shows the accuracy of the subtask graph inferred by
MSGI-GRProp agent (Section 5.2), in terms of precision and recall over different adaption horizon.

0 5 10 15 20
Episodes

0.0
0.2
0.4
0.6
0.8
1.0

Defeat Zerglings

Precision
Recall

0 5 10 15 20
Episodes

0.0
0.2
0.4
0.6
0.8
1.0

Defeat Hydralisks

Precision
Recall

0 5 10 15 20
Episodes

0.0
0.2
0.4
0.6
0.8
1.0

Defeat Hydra- & Ultra-lisks

Precision
Recall

Figure 9: Precision and recall of binary assignments on the inferred subtask graph’s precondition.

Qualitative Examples. Figure 11 shows a simplified form of the subtask graph inferred by our MSGI-
GRProp agent after 20 episodes of adaptation. For better readability, we removed the preconditions
of resources (food, mineral, gas); Figure 12 depicts the full subtask graph. Compared to the actual
tech-tree of the game, we can see the dependency between buildings and units are correctly inferred.

16

Under review as a conference paper at ICLR 2020

Figure 10: The actual tech-tree of Terran race in StarCraft II. There exists a hierarchy in the task, which can be
autonomously discovered by our MSGI agent.

ComCenter&

select
SCV

& &

&

&

&

&

&

&

&
&

&

&

SupDepot Barracks
&

EnginBay

Refinery

Factory &

MissTurret

SensTower

Bunker

GhostAcad &

&

Armory

&
&

Starport

&

FusionCore

Barracks
TechLab &&select

Barracks

&

&

Factory
TechLab

&

&&
select
Factory

&

&

Starport
TechLab &

&

select
Starport

&

&

&

&

&

Marine

Reaper

Marauder

Ghost

WidowMine

Hellion

Hellbat

Cyclone

SiegeTank

Thor

Banshee

Liberator

Medivac

Viking

Raven

Battlecruiser

Figure 11: A simplified version of subtask graph inferred by our MSGI-GRProp agent after 10 episodes of
adaptation.

17

Under review as a conference paper at ICLR 2020

ComCenter&

select
SCV

&

&

&

&

&

&

&

&

&

&

&

&

mineral
400

SupDepot

mineral
100

&

&

&

&

Barracks &

mineral
150

&

&

&

&

&

&

EnginBay

mineral
125 &

Refinery

mineral
75

&

&

Factory

&

gas
100

&

&

&

MissTurret

SensTower

Bunker

GhostAcad

gas
50

&

&

Armory

Starport

&

FusionCore

gas
150

&

&

Barracks
TechLab

&

select
Barracks

&
mineral

50

&

&

&

&

gas
25

&

&

Factory
TechLab

&

select
Factory

Starport
TechLab

select
Starport

&

&

SCV

select
ComCenter

food
1

Marine

Reaper

Marauder

food
2

Ghost

gas
125

&

WidowMine

Hellion

Hellbat

Cyclone

food
3

SiegeTank

Thor

gas
200 &

food
6

Banshee
Liberator

Medivac

Viking

gas
75

& Raven

Battlecruisergas
300

#idle SCV>0

&

mineral
300 &

no-op

Figure 12: The full subtask graph inferred by our MSGI agent.

18

Under review as a conference paper at ICLR 2020

F MORE RESULTS ON MINING AND PLAYGROUND

F.1 QUALITATIVE RESULT ON THE SUBTASK GRAPH INFERENCE

Figure 13 illustrates a qualitative example of the inferred subtask graphs inferred by MSGI-Meta
and MSGI-Rand agents on the Mining-Eval set. The adaptation budget was K = 50 episodes
and episode length was T = 80 steps. Both of MSGI-Meta and MSGI-Rand correctly inferred
most of subtasks in the lower hierarchy (e.g., Get stone, Cut wood, Get string) of the subtask
graph. However, only MSGI-Meta was successful in inferring the preconditions of subtasks in the
highest hierarchy (e.g., Smelt gold, Make goldware, and Craft necklace); MSGI-Rand never had an
experience where their preconditions are all satisfied, and thus failed to learn the preconditions of
these task. It demonstrates that MSGI-Meta with a meta-learned adaptation policy is able to collect
more comprehensive experience for accurate subtask graph inference.

F.2 QUANTITATIVE ANALYSIS OF THE ADAPTATION POLICY

Coverage (%)
Method D1 D2 D3 D4 Eval

MSGI-Meta 89 87 81 75 90
MSGI-Rand 83 77 68 58 85

We measured the portion of subtasks being eligible or
completed at least once (i.e., coverage) during adapta-
tion to measure how exploratory MSGI-Meta and ran-
dom policy are. We report the averaged coverage over
the evaluation graph set and 8 random seeds. The table shows that MSGI-Meta can make more
diverse subtasks complete and eligible than the random policy thanks to more accurate subtask graph
inference.

G DETAILS OF GRPROP POLICY

For self-containedness, we provide the description of GRProp policy from Sohn et al. (2018). We
also make a few modifications on ÕR (x) and ÃND (x) in Eqs. 29 and 30.

Intuitively, GRProp policy modifies the subtask graph to a differentiable form such that we can
compute the gradient of modified return with respect to the subtask completion vector in order to
measure how much each subtask is likely to increase the modified return. Let xt be a completion
vector and Gr be a subtask reward vector (see Section 2 for definitions). Then, the sum of reward
until time-step t is given as:

Ut = Gr
>xt. (22)

We first modify the reward formulation such that it gives a half of subtask reward for satisfying the
preconditions and the rest for executing the subtask to encourage the agent to satisfy the precondition
of a subtask with a large reward:

Ût = Gr
>(xt + et)/2. (23)

Let yjAND be the output of j-th AND node. The eligibility vector et can be computed from the subtask
graph G and xt as follows:

eit = OR
j∈Childi

(
yjAND

)
, yjAND = AND

k∈Childj

(
x̂j,kt

)
, x̂j,kt = xktw

j,k + NOT(xkt)(1− wj,k),

(24)

where wj,k = 0 if there is a NOT connection between j-th node and k-th node, otherwise wj,k = 1.
Intuitively, x̂j,kt = 1 when k-th node does not violate the precondition of j-th node. The logical AND,
OR, and NOT operations in Eq. 24 are substituted by the smoothed counterparts as follows:

pi = λorẽ
i + (1− λor)x

i, (25)

ẽi = ÕR
j∈Childi

(
ỹjAND

)
, (26)

ỹjAND = ÃND
k∈Childj

(
x̂j,k

)
, (27)

x̂j,k = wj,kpk + (1− wj,k)ÑOT
(
pk
)
, (28)

19

Under review as a conference paper at ICLR 2020

(a) A ground-truth subtask graph. (b) A subtask graph inferred by MSGI-Meta.

(c) A subtask graph inferred by MSGI-Rand.

Figure 13: A qualitative example of subtask graph inference, in the Mining domain.

20

Under review as a conference paper at ICLR 2020

Input
Env

ILP

Env
Adaptation (K episodes) Test phase

CNN

GRU

FC

Concat

ConcatFC

GRU FC

FC

NSGI architecture

Figure 14: (Left) Our MSGI model and (Right) the architecture of adaptation policy πadapt
θ .

where x ∈ Rd is the input completion vector,

ÕR (x) = softmax(worx) · x, (29)

ÃND (x) =
ζ(x, wand)

ζ(||x||, wand)
, (30)

ÑOT (x) = −wnotx, (31)

||x|| = d, ζ(x, β) = 1
β log(1 + exp(βx)) is a soft-plus function, and λor = 0.6, wor = 2, wand =

3, wnot = 2 are the hyper-parameters of GRProp. Note that we slightly modified the implementation
of ÕR and ÃND from sigmoid and hyper-tangent functions in (Sohn et al., 2018) to softmax and
softplus functions for better performance. With the smoothed operations, the sum of smoothed and
modified reward is given as:

Ũt = Gr
>p, (32)

where p = [p1, . . . , pd] and pi is computed from Eq. 25. Finally, the graph reward propagation policy
is a softmax policy,

π(ot|G,xt) = Softmax
(
T∇xtŨt

)
= Softmax

(
TGr

>(λor∇xt ẽt + (1− λor))
)
, (33)

where we used the softmax temperature T = 40 for Playground and Mining domain, and linearly
annealed the temperature from T = 1 to T = 40 during adaptation phase for SC2LE domain.
Intuitively speaking, we act more confidently (i.e., higher temperature T) as we collect more data
since the inferred subtask graph will become more accurate.

H IMPLEMENTATION DETAILS

H.1 DETAILS OF MSGI ARCHITECTURE

Figure 14 illustrates the architecture of our MSGI model. Our adaptation policy takes the agent’s
trajectory τt = {st,ot, rt,dt} at time step t as input, where s = {obs,x, e, step, epi}. We used
convolutional neural network (CNN) and gated rectifier unit (GRU) to encode both the temporal and
spatial information of observation input obs. For other inputs, we simply concatenated all of them
along the dimension after normalization, and encoded with GRU and fully-connected (FC) layers.
Finally, the flat embedding and observation embedding are concatenated with separate heads for the
value and policy output respectively (See supplemental material for more detail).

Our MSGI architecture encodes the observation input using CNN module. Specifically, the ob-
servation embedding is computed by Conv1(16x1x1-1/0)-Conv2(32x3x3-1/0)-Conv3(64x3x3-1/1)-
Conv4(32x3x3-1/1)-Flatten-FC(512)-GRU(512). Other inputs are all concatenated into a single
vector, and fed to GRU(512). In turn, we extracted two flat embeddings using two separate FC(512)
heads for policy and value outputs. For each output, the observation and flat embeddings and concate-
nated into single vector, and fed to FC(512)-FC(d) for policy output and FC(512)-FC(1) for value
output, where d is the policy dimension. We used ReLU activation function in all the layers.

H.2 DETAILS OF TRAINING MSGI-META

Algorithm 1 describes the pseudo-code for training our MSGI-Meta model with and without UCB
bonus term. In adaptation phase, we ran a batch of 48 parallel environments. In test phase, we
measured the average performance over 4 episodes with 8 parallel workers (i.e., average over 32

21

Under review as a conference paper at ICLR 2020

episodes). We used actor-critic method with GAE (Schulman et al., 2015) as follows:

∇θL = EG∼Gtrain

[
Es∼πθ

[
−∇θ log πθ

∞∑
l=0

(
l−1∏
n=0

(γλ)kn

)
δt+l

]]
, (34)

δt = rt + γktV πθ (st+1)− V πθ (st), (35)
where we used the learning rate η = 0.002, γ = 1, and λ = 0.9. We used RMSProp optimizer with
the smoothing parameter of 0.99 and epsilon of 1e-5. We trained our MSGI-Meta agent for 8000
trials, where the agent is updated after every trial. We used the best hyper-parameters chosen from
the sets specified in Table 2 for all the agents. We also used the entropy regularization with annealed
parameter βent. We started from βent = 0.05 and linearly decreased it after 1200 trials until it reaches
βent = 0 at 3200 trials. During training, we update the critic network to minimize E[(Rt − V πθ (st))

2
],

where Rt is the cumulative reward at time t with the weight of 0.03. We clipped the magnitude of
gradient to be no larger than 1.

Hyperparameter Notation Methods
MSGI-Meta RL2 HRL

Learning Rate (LR) η 2e-3 1e-3 1e-3
LR multiplier 0.999 0.999 0.999

GAE λ 0.9 0.9 0.9
Critic βcritic 0.12 0.005 0.12

Entropy βent 0.1 1.0 0.03
UCB βUCB 1.0 - -

Architecture (dflat, dgru) (512, 512) (512, 512) (512, 512)

Table 1: Summary of hyper-parameters used for MSGI-Meta, RL2, and HRL agents.

Hyperparameter Notation Values

Learning rate (LR) η {1.0, 2.5, 5.0}×{e-5, e-4, e-3}
LR multiplier {0.96, 0.98, 0.99, 0.993, 0.996, 0.999, 1.0}

GAE λ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 1.0}
Critic βcritic {0.005, 0.01, 0.03, 0.06, 0.12, 0.25}

Entropy βent {0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
UCB βUCB {1.0, 3.0}

Architecture (dflat, dgru) {(128, 128), (256, 256), (512, 512)}

Table 2: The range of hyper-parameters we searched over. We did beam-search to find the best parameter with
the priority of η, λ, β, βent, (dflat, dgru), LR-decay.

H.3 DETAILS OF TRAINING RL2 AND HRL

For training RL2 and HRL, we used the same architecture and algorithm with MSGI-Meta. For RL2,
we used the same hyper-parameters except the learning rate η = 0.001 and the critic loss weight of
0.005. For HRL, we used the learning rate η = 0.001 and the critic loss weight of 0.12. We used the
best hyper-parameters chosen from the sets specified in Table 2 for all the agents.

22

	Introduction
	Problem Definition
	Background: Few-shot Reinforcement Learning
	The Subtask Graph Inference Problem

	Method
	Subtask Graph Inference
	Test phase: Subtask Graph Execution Policy
	Learning: Optimization of the Adaptation Policy

	Related Work
	Experiments
	Experiments on Mining and Playground Domains
	Training Performance
	Adaptation and Generalization Performance

	Experiments on StarCraft II Domain

	Conclusion
	Subtask graph and factored MDP
	Background: Factored Markov Decision Processes

	Details of task
	Algorithm in meta-testing
	Details of the SC2LE Domain
	More results on the SC2LE Domain
	More results on Mining and Playground
	Qualitative result on the subtask graph inference
	Quantitative analysis of the adaptation policy

	Details of GRProp policy
	Implementation Details
	Details of MSGI architecture
	Details of Training MSGI-Meta
	Details of training RL2 and HRL

