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ABSTRACT

Unsupervised embedding learning aims to extract good representations from data
without the use of human-annotated labels. Such techniques are apparently in
the limelight because of the challenges in collecting massive-scale labels re-
quired for supervised learning. This paper proposes a comprehensive approach,
called Super-AND, which is based on the Anchor Neighbourhood Discovery
model (Huang et al., 2019). Multiple losses defined in Super-AND make sim-
ilar samples gather even within a low-density space and keep features invariant
against augmentation. As a result, our model outperforms existing approaches in
various benchmark datasets and achieves an accuracy of 89.2% in CIFAR-10 with
the ResNet18 backbone network, a 2.9% gain over the state-of-the-art.

1 INTRODUCTION

Deep learning and convolutional neural network have become an indispensable technique in com-
puter vision (LeCun et al., 2015; Krizhevsky et al., 2012; Lawrence et al., 1997). Remarkable
developments, in particular, were led by supervised learning that requires thousands or more labeled
data. However, high annotation costs have become a significant drawback in training a scalable and
practical model in many domains. In contrast, unsupervised deep learning that requires no label
has recently started to get attention in computer vision tasks. From clustering analysis (Caron et al.,
2018; Ji et al., 2018), and self-supervised model (Gidaris et al., 2018; Bojanowski & Joulin, 2017) to
generative model (Goodfellow et al., 2014; Kingma & Welling, 2013; Radford et al., 2016), various
learning methods came out and showed possibilities and prospects.

Unsupervised embedding learning aims to extract visually meaningful representations without any
label information. Here “visually meaningful” refers to finding features that satisfy two traits: (i)
positive attention and (ii) negative separation (Ye et al., 2019; Zhang et al., 2017c; Oh Song et al.,
2016). Data samples from the same ground truth class, i.e., positive samples, should be close in the
embedding space (Fig. 1a); whereas those from different classes, i.e., negative samples, should be
pushed far away in the embedding space (Fig. 1b). However, in the setting of unsupervised learning,
a model cannot have knowledge about whether given data points are positive samples or negative
samples.

(a) Positive attention (b) Negative separation

Figure 1: Illustration of two characteristics; (a) Positive attention, (b) Negative separation. Data
points with same shape and same color in this plot are positive samples. Otherwise, they are negative
samples.

Several new methods have been proposed to find ‘visually meaningful’ representations. The sample
specificity method considers all data points as negative samples and separates them in the feature
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space (Wu et al., 2018; Bojanowski & Joulin, 2017). Although this method achieves high perfor-
mance, its decisions are known to be biased from learning only from negative separation. One
approach utilizes data augmentation to consider positive samples in training (Ye et al., 2019), which
efficiently reduces any ambiguity in supervision while keeping invariant features in the embedding
space. Another approach is called the Anchor Neighborhood Discovery (AND) model, which allevi-
ates the complexity in boundaries by discovering the nearest neighbor among the data points (Huang
et al., 2019). Each of these approaches overcomes different limitations of the sample specificity
method. However, no unified approach has been proposed.

This paper presents a holistic method for unsupervised embedding learning, named Super-AND.
Super-AND extends the AND algorithm and unifies various but dominant approaches in this do-
main with its unique architecture. Our proposed model not only focuses on learning distinctive
features across neighborhoods, but also emphasizes edge information in embeddings and maintains
the unchanging class information from the augmented data. Besides combining existing techniques,
we newly introduce Unification Entropy loss (UE-loss), an adversary of sample specificity loss,
which is able to gather similar data points within a low-density space. Extensive experiments are
conducted on several benchmark datasets to verify the superiority of the model. The results show
the synergetic advantages among modules of Super-AND. The main contributions of this paper are
as follows:

• We effectively unify various techniques from state-of-the-art models and introduce a new
loss, UE-loss, to make similar data samples gather in the low-density space.

• Super-AND outperforms all baselines in various benchmark datasets. It achieved an accu-
racy of 89.2% in the CIFAR-10 dataset with the ResNet18 backbone network, compared to
the state-of-the-art that gained 86.3%.

• The extensive experiments and the ablation study show that every component in Super-
AND contributes to the performance increase, and also indicate their synergies are critical.

Our model’s outstanding performance is a step closer to the broader adoption of unsupervised tech-
niques in computer vision tasks. The premise of data-less embedding learning is at its applicability
to practical scenarios, where there exists only one or two examples per cluster. Codes and trained
data for Super-AND are accessible via a GitHub link.1

2 RELATED WORK

Existing research on unsupervised deep learning can be summarized into four groups below:

Generative model. This type of model is a powerful branch in unsupervised learning. By recon-
structing the underlying data distribution, a model can generate new data points as well as features
from images without labels. Generative adversarial network (Goodfellow et al., 2014) has led to
rapid progress in image generation problems (Zhang et al., 2019; Arjovsky et al., 2017). While
some attempts have been made in terms of unsupervised embedding learning (Radford et al., 2016),
the main objective of generative models lies at mimicking the true distribution of each class, rather
than discovering distinctive categorical information the data contains.

Self-supervised learning. This type of learning uses inherent structures in images as pseudo-labels
and exploits labels for back-propagation. For example, a model can be trained to create embeddings
by predicting the relative position of a pixel from other pixels (Doersch et al., 2015) or the degree of
changes after rotating images (Gidaris et al., 2018). Predicting future frames of a video can benefit
from this technique (Walker et al., 2016). Wu et al. (2018) proposed the sample specificity method
that learns feature representation from capturing apparent discriminability among instances. All of
these methods are suitable for unsupervised embedding learning, although there exists a risk of false
knowledge from generated labels that weakly correlate with the underlying class information.

Learning invariants from augmentation. Data augmentation is a strategy that enables a model
to learn from datasets with an increased variety of instances. Popular techniques include flipping,
scaling, rotation, and grey-scaling. These techniques do not deform any crucial features of data, but
only change the style of images. Some studies hence use augmentation techniques and train models

1(Anonymized GitHub) https://github.com/super-AND/super-AND
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Figure 2: Illustration of basic architecture in Super-AND. Original RGB images and sobel-processed
images are encoded by backbone CNN networks and concatenated. These vectors then projected to
128 dimensional sphere embedding with l2 normalization. Finally, adjacency relationship vector
and probability vector are calculated.

to learn invariant features. In particular, Ji et al. (2018) used mutual information to extract invariant
features between the augmented images, and Ye et al. (2019) regarded the augmented images as
positive samples of original pictures for unsupervised feature learning. This study also adopts the
same concept to reduce the distance of relationship vectors between the original and the augmented
images.

Clustering analysis. This type of analysis is an extensively studied area in unsupervised learning,
whose main objective is to group similar objects into the same class. Many studies either leveraged
deep learning for dimensionality reduction before clustering (Schroff et al., 2015; Baldi, 2012) or
trained models in an end-to-end fashion (Xie et al., 2016; Yang et al., 2016). Caron et al. (2018)
proposed a concept called deep cluster, an iterative method that updates its weights by predicting
cluster assignments as pseudo-labels. However, directly reasoning the global structures without any
label is error-prone. The AND model, which we extend in this work, combines the advantages
of sample specificity and clustering strategy to mitigate the noisy supervision via neighborhood
analysis (Huang et al., 2019).

3 THE PROPOSED SUPER-AND MODEL

Problem definition. Assume that there is an unlabeled image set I, and a batch set B with n
images: B = {x1,x2, ...,xn} ⊂ I. Our goal is to get a feature extractor fθ whose representations
(i.e., vi = fθ(xi)) are “visually meaningful,” a definition we discussed earlier.

Let B̂ = {x̂1, x̂2, ..., x̂n} be the augmentation set of input batches B. Super-AND projects images
xi, x̂i from batches B, B̂ to 128 dimensional embeddings vi, v̂i. During this process, the Sobel-
processed images (Maini & Aggarwal, 2008) are also used, and feature vectors from both images
are concatenated to emphasize edge information in embeddings (see the left side in Fig. 2). Then,
the model computes the probability of images pi, p̂i being recognized as its own class with a non-
parametric classifier (see the right side in Fig. 2). A temperature parameter (τ < 1) was added
to ensure a label distribution with low entropy (Hinton et al., 2015). To reduce the computational
complexity in calculating embeddings from all images, we set up a memory bankM to save instance
embeddings mi accumulated from the previous steps, as similarly proposed by Wu et al. (2018).
The memory bank M is updated by exponential moving average (Lucas & Saccucci, 1990). The
probability vector pi is defined in Eq 1, where the superscript j in vector notation (i.e., vj) represents
the j-th component value of a given vector.

pji =
exp(m>j vi/τ)∑n
k=1 exp(m

>
k vi/τ)

(1)

ri =
vi ·mi

||vi ·mi||2
(2)

We define the neighborhood relationship vectors ri, r̂i, and compute these vectors by the cosine
similarity between the embedding vectors vi, v̂i, and the memory bank M (Eq 2). The extracted
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vectors are used to define the loss term that detects a discrepancy between neighborhoods. The loss
term also enforces features v to remain unchanged even after data augmentation. The loss term is
written as

Land = AND(M,P,N ) (3)
Lue = UELoss(M,V ) (4)

Laug = AugLoss(R, R̂) (5)
Ltotal = Land + w(t)× Lue + Laug (6)

whereN is the set of progressively selected pairs discovered by the nearest neighbor algorithm, and
V,R, R̂, P are matrices of concatenated embedded vectors vi, ri, r̂i,pi from the batch image set,
respectively. w(t) is the hyper-parameter that controls the weights of UE-loss. The algorithm below
describes how to train Super-AND.

Algorithm 1: Main algorithm for training Super-AND.
Input : Unlabeled image set I, encoder fθ to train, the number of total rounds for training:

Rounds, and the number of total epochs for training: Epochs
Output: Trained encoder fθ
1 Memory M initialized
2 for r ← 1 to Rounds do
3 Ñ ← NeighborhoodDiscovery(I, fθ)
4 N ← NeighborhoodSelection(Ñ , fθ, r)
5 for t← 1 to Epochs do
6 Get batch B from I
7 B̂ ← DataAugmentation(B)
8 V, V̂ ← fθ(B), fθ(B̂)
9 R, R̂← CosineSimilarity(M,V ), CosineSimilarity(M, V̂ )

10 Land, Lue, Laug ← AND(M,P,N ), UELoss(M,V ), AugLoss(R, R̂)
11 Ltotal ← Land + w(t)× Lue + Laug
12 M ← MemoryUpdate(M)
13 Compute gradient and update weights by backpropagation
14 end
15 end

3.1 NEIGHBORHOOD DISCOVERY AND SUPERVISION

Existing clustering methods like (Caron et al., 2018; Xie et al., 2016) train networks to find an
optimal mapping. However, their learned decisions are unstable due to initial randomness, and some
overfitting can occur during the training period (Zhang et al., 2017a). To tackle these limitations,
the AND model suggests a finer-grained clustering focusing on ‘neighborhoods’. By regarding
the nearest-neighbor pairs as local classes, AND can separate data points that belong to different
neighborhood sets from those in the same neighborhood set. We adopt this neighborhood discovery
strategy in our Super-AND.

The AND algorithm has three main steps: (1) neighborhood discovery, (2) progressive neighborhood
selection with curriculum, and (3) neighborhood supervision. For the first step, the k nearest neigh-
borhood (k-NN) algorithm is used to discover all neighborhood pairs (Eq 7 and Eq 8), and these pairs
are progressively selected for curriculum learning. We choose a small part of neighborhood pairs at
the first round, and gradually increase the amount of selection for training (Current/Total rounds ×
100%). Since we cannot assure that every neighborhood is visually similar, this progressive method
helps provide a consistent view of local class information for training at each round.

Ñ (x) = {xi|xi 6= x, fθ(xi)
>fθ(x) is top-1 in I} (7)

Ñ = {(xi, Ñ (xi)) | xi ∈ I} (8)

When selecting candidate neighborhoods for local classes, the entropy of probability vectorH(xi) is
utilized as a criterion (Eq 9). Probability vector pi, obtained from softmax function (Eq 1), shows the
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visual similarity between training instances in a probabilistic manner. Data points with low entropy
represent they reside in a relatively low-density area and have only a few surrounding neighbors.
Neighborhood pairs containing such data points likely share consistent and easily distinguishable
features from other pairs. We select neighborhood set N from Ñ that is in a lower entropy order.

H(xi) = −
∑
j

pji logpji (9)

The AND-loss function is defined to distinguish neighborhood pairs from one another. Data points
from the same neighborhoods need to be classified in the same class (i.e., the left-hand term in
Eq 10). If any data point is present in the selected pair, it is considered to form an independent class
(i.e., the right-hand term in Eq 10).

Land = −
∑

i∈(B∩N )

log(
∑

j∈Ñ (xi)

pji )−
∑

i∈(B∩N c)

log(pii) (10)

3.2 UNIFICATION ENTROPY LOSS

Existing sample specificity methods (Wu et al., 2018; Bojanowski & Joulin, 2017) consider every
single data point as a prototype for a class. They use the cross-entropy loss to separate all data
points in the L2-normalized embedding space. Due to its confined space by normalization, data
points cannot be placed far away from one another, and this space limitation induces an effect that
leads to a concentration of positive samples, as shown in Fig. 1a.

The unification entropy loss (UE-loss) is able to even strengthen the concentration-effect above. We
define the UE-loss as the entropy of the probability vector p̃i. Probability vector p̃i is calculated
from the softmax function and represents the similarity between instances except for instance itself
(Eq 11). By excluding the class of one’s own, minimizing the loss makes nearby data points attract
each other — a concept that is contrary to minimizing the sample specificity loss. Employing both
AND-loss and the UE-loss will enforce similar neighborhoods to be positioned close while keeping
the overall neighborhoods as separated as possible. This loss is calculated as in Eq 12.

p̃ji =
exp(m>j vi/τ)∑n

k=1,k 6=i exp(m
>
k vi/τ)

H̃(xi) = −
∑
j 6=i

p̃ji log p̃ji (11)

Lue = −
∑
i

H̃(xi) (12)

3.3 LEARNING INVARIANTS IN DATA AUGMENTATION

Unsupervised embedding learning aims at training encoders to extract visually meaningful features
that are consistent with ground truth labels. Such learning cannot use any external guidance on
features. Several previous studies tried to infer which features are substantial in a roundabout way;
data augmentation is one such solution (Ye et al., 2019; Ji et al., 2018; Perez & Wang, 2017; Volpi
et al., 2018). Since augmentation does not deform the underlying data characteristics, invariant
features learned from the augmented data will still contain the class-related information. Naturally,
a training network based on these features will show performance gain.

We define the Augmentation-loss to learn invariant image features. Assume that there is an image
along with its augmented versions. We may regard every augmentation instance as a positive sample.
The neighborhood relationship vectors, which show the similarity between all instances stored in
memory, should also be similar to initial data points than other instances in the same batch. In Eq 13,
the probability of an augmented instance that is correctly identified as class-i is denoted as p̄ii; and
that of i-th original instance that is wrongly identified as class-j (j 6= i), p̄ji . The Augmentation-loss
is then defined to minimize misclassification over instances in all batches (Eq 14).

p̄ii =
exp(r>i r̂i/τ)∑n
k=1 exp(r

>
k r̂i/τ)

p̄ji =
exp(r>j ri/τ)∑n
k=1 exp(r

>
k ri/τ)

, j 6= i (13)

Laug = −
∑
i

∑
j 6=i

log(1− p̄ji )−
∑
i

log(p̄ii) (14)
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4 EXPERIMENTS

The evaluation involved extensive experiments. We enumerated the model with different backbone
networks on two kinds of benchmarks: coarse-grained and fine-grained. Our ablation study helps
speculate which components of the model are critical in performance. Finally, the proposed model
is compared to the original AND from different perspectives.

4.1 IMPLEMENTATION DETAILS

Datasets. A total of six image datasets are utilized, where three are coarse-grained datasets: (1)
CIFAR-10 (Krizhevsky et al., 2009): CIFAR-10 dataset has 10 classes images with 32 × 32 pixels.
(2) CIFAR-100: CIFAR-100 consists of the same images in CIFAR-10, but it has 100 classes. (3)
SVHN (Netzer et al., 2011): Street View House Numbers (SVHN) is the real-world dataset with 10
classes of digit images of 32×32 pixels. Fine-grained datasets include: (4) Stanford Dogs (Khosla
et al., 2011) contains 120 breeds of dog images, (5) CUB-200 (Welinder et al., 2010): this Caltech-
UCSD Birds dataset contains 200 species of bird images, and (6) STL-10 (Coates et al., 2011)
contains images in 96×96 pixels of 10 classes such as airplanes and birds. Dataset (6) is used for
qualitative analysis.

Training. We used AlexNet (Krizhevsky et al., 2012) and ResNet18 (He et al., 2016) as the back-
bone networks. Hyper-parameters were tuned in the same way as the AND algorithm. We used
SGD with Nesterov momentum 0.9 for the optimizer. We fixed the learning rate as 0.03 for the first
80 epochs, and scaled-down 0.1 every 40 epochs. The batch size is set as 128, and the model was
trained in 5 rounds and 200 epochs per round. Weights for UE-loss w(t) (Eq 6) are initialized from
0 and increased 0.2 every 80 epochs. For Augmentation-loss, we used four types: Resized Crop,
Grayscale, ColorJitter, and Horizontal Flip. Horizontal Flip was not used in the case of the SVHN
dataset because the SVHN dataset is digit images. Update momentum of the exponential moving
average for memory bank was set to 0.5.

Evaluation. Following the method from Wu et al. (2018), we used the weighted k-NN classifier
for making prediction. Top k-nearest neighbors Ntop were retrieved and used to predict the fi-
nal outcome in a weighted fashion. We set k = 200 and the weight function for each class c as∑
i∈Ntop

exp(v>i M/τ) ·1(ci = c), where ci is the class index for i-th instance. Top-1 classification
accuracy was used for evaluation.

4.2 RESULTS & COMPONENT ANALYSIS

Baseline models. We adopt six state-of-the-art baselines for comparison. They are (1) Split-
Brain (Zhang et al., 2017b), (2) Counting (Noroozi et al., 2017), (3) DeepCluster (Caron et al.,
2018), (4) Instance (Wu et al., 2018), (5) ISIF (Ye et al., 2019), and (6) AND (Huang et al., 2019).
For fair comparison, the same backbone networks were used.

Coarse-grained evaluation. Table 1 describes the object classification performance of seven mod-
els, including the proposed Super-AND on three coarse-grained datasets: CIFAR-10, CIFAR-100,
and SVHN. Super-AND surpasses state-of-the-art baselines on all datasets except for one case,
where the model underperforms marginally on CIFAR-100 with AlexNet. One notable observa-

Table 1: k-NN Evaluation on coarse-grained datasets. Results that are marked as ∗ are borrowed
from the previous works (Huang et al., 2019; Ye et al., 2019).

Dataset CIFAR-10 CIFAR-100 SVHN
Network ResNet18 AlexNet ResNet18 AlexNet ResNet18 AlexNet

Split-Brain∗ - 11.7 - 1.3 - 19.7
Counting∗ - 41.7 - 15.9 - 43.4

DeepCluster∗ 67.6 62.3 - 22.7 - 84.9
Instance 80.8 60.3 50.7 32.7 93.6 79.8

ISIF 83.6 74.4 54.4 44.1 91.3 89.8
AND 86.3 74.8 57.2 41.5 94.4 90.9

Super-AND 89.2 75.6 61.5 42.7 94.9 91.9
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Table 2: k-NN evaluation on fine-
grained datasets. (SD: Stanford Dogs)

Dataset SD CUB-200
Instance 27.0 11.6

ISIF 31.4 13.2
AND 32.3 14.4

Super-AND 39.0 17.6

Table 3: Backbone network
Analysis on CIFAR-10.

Network Accuracy
AlexNet 75.6

ResNet18 89.2
ResNet101 90.5

Table 4: Ablation study on
CIFAR-10.

Network Accuracy
Full 89.2

w/o UE 88.7
w/o Sobel 88.3
w/o Aug 86.4

tion is that the difference between previous models and super-AND is mostly larger in the case
of ResNet18 than the AlexNet backbone network. These results reveal that our model is superior
to other methods and may indicate that our methodology can give more benefits to stronger CNN
architectures.

Fine-grained evaluation. We perform evaluations on fine-grained datasets that require the ability
to discriminate subtle differences between classes. Table 2 shows that Super-AND achieves an
outstanding performance compared to three baselines with the ResNet18 backbone network. We
excerpted the results of Instance and AND model from the previous work.

Backbone network. We tested the choice of backbone networks in terms of classification perfor-
mance. AlexNet, ResNet18, and ResNet101 are used and evaluated on CIFAR-10, as shown in
Table 3. From the results, we can infer that the stronger the backbone network our model has, the
better the performance model can produce.

Ablation study. To verify every component does its role and has some contribution to the perfor-
mance increase, an ablation study was conducted. Since Super-AND combines various mechanisms
based on AND algorithm, we study the effect of removing each component: (1) Super-AND without
the UE-loss, (2) Super-AND without the Sobel filter, (3) Super-AND without the Augmentation-loss.
Table 4 displays the evaluation result based on the CIFAR-10 dataset and the ResNet18 backbone
network. We found that every component contributes to the performance increase, and a particularly
dramatic decrease in performance occurs when removing the Augmentation-loss.

Initialization. Instead of running the algorithm from an arbitrary random model, we can pre-train
the network with “good” initial data points to discover consistent neighborhoods. We investigate
two different initialization methods and check whether the choice is critical. Three models were
compared: (1) a random model, (2) an initialized model with instance loss (Wu et al., 2018) from
AND, and (3) an initialized model with multiple losses from Super-AND. Table 5 shows that the
choice of initialization is not significant, and solely using the instance loss even has an adverse effect
on performance. This finding implies that Super-AND is robust to random initial data points, yet the
model will show an unexpected outcome if initialization uses ambiguous knowledge.

Table 5: Analysis of different initialization methods on CIFAR-10.

Initialization method Random Instance Instance + UELoss + AugLoss
Accuracy 89.2 87.5 89.1

4.3 COMPARISON TO THE ANCHOR NEIGHBORHOOD DISCOVERY (AND) MODEL

Embedding quality analysis. Super-AND leverages the synergies from learning both similarities
in neighborhoods and invariant features from data augmentation. Super-AND, therefore, has a high
capability of discovering cluster relationships, compared to the original AND model that only uses
the neighborhood information. Fig. 3 exploits t-SNE (Maaten & Hinton, 2008) to visualize the
learned representations of three of the selected classes based on the two algorithms in CIFAR-10.
The plot demonstrates that Super-AND discovers consistent and discriminative clusters.

We investigated the embedding quality by evaluating the class consistency of selected neighbor-
hoods. Cheat labels are used to check whether neighborhood pairs come from the same class. Since
both algorithms increase the selection ratio every round when gathering the part of discovered neigh-
borhoods, the consistency of selected neighborhoods will naturally decrease. This relationship is
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Figure 3: t-SNE visualization for the learned representations
of three selected classes from CIFAR-10 in (a) AND (Huang
et al., 2019) and (b) Super-AND.

Figure 4: Neighborhood con-
sistency over training rounds.

drawn in Fig. 4. The reduction for Super-AND, nonetheless, is not significant compared to AND:
our model maintains high-performance throughout the training rounds.

Qualitative study. Fig. 5 illustrates the top-5 nearest retrievals of AND (i.e., upper rows) and
Super-AND (i.e., lower rows) based on the STL-10 dataset. The example queries shown are dump
trucks, airplanes, horses, and monkeys. Images with red frames, which indicate negative samples,
appear more frequently for AND than Super-AND. This finding implies that Super-AND excels
in capturing the class information compared to AND. Its clusters are robust to misleading color
information and well recognize the shape of objects within images. For example, in the case of
the airplane query, pictures retrieved from Super-AND are consistent in shape while AND results
confuse a cruise picture as an airplane. The color composition in Super-AND is also more flexible
and can find a red dump truck or a spotted horse, as shown in the examples.

Query

Retrieval

AND

Super-

AND

Airplane

Dump Horse

Monkey

truck

carriage

cruise

deer

pelican
car

classic
dogdeer

deerbird bird

bird

deer

AND

Super-

AND

Figure 5: The nearest-neighbor retrievals of example queries from STL-10. The upper retrieval row
from every query shows the results from the AND model, and the lower ones are from the Super-
AND model. The left-side results are successful cases for both models, and the right-side results are
failure cases. Images with surrounding red frames indicate the wrongly retrieved negative samples.

5 CONCLUSION

This paper presents Super-AND, a holistic technique for unsupervised embedding learning. Be-
sides the synergetic advantage combining existing methods brings, the newly proposed UE-loss that
groups nearby data points even in a low-density space while maintaining invariant features via data
augmentation. The experiments with both coarse-grained and fine-grained datasets demonstrate our
model’s outstanding performance against the state-of-the-art models. Our efforts to advance unsu-
pervised embedding learning directly benefit future applications that rely on various image cluster-
ing tasks. The high accuracy achieved by Super-AND makes the unsupervised learning approach an
economically viable option where labels are costly to generate.
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