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ABSTRACT

We describe a simple and general neural network weight compression approach,
in which the network parameters (weights and biases) are represented in a “la-
tent” space, amounting to a reparameterization. This space is equipped with a
learned probability model, which is used to impose an entropy penalty on the
parameter representation during training, and to compress the representation using
a simple arithmetic coder after training. Classification accuracy and model com-
pressibility is maximized jointly, with the bitrate–accuracy trade-off specified by a
hyperparameter. We evaluate the method on the MNIST, CIFAR-10 and ImageNet
classification benchmarks using six distinct model architectures. Our results show
that state-of-the-art model compression can be achieved in a scalable and general
way without requiring complex procedures such as multi-stage training.

1 INTRODUCTION

Artificial neural networks (ANNs) have proven to be highly successful on a variety of tasks, and as a
result, there is an increasing interest in their practical deployment. However, ANN parameters tend to
require a large amount of space compared to manually designed algorithms. This can be problematic,
for instance, when deploying models onto devices over the air, where the bottleneck is often network
speed, or onto devices holding many stored models, with only few used at a time. To make these
models more practical, several authors have proposed to compress model parameters (Han et al.,
2015; Louizos et al., 2017; Molchanov et al., 2017; Havasi et al., 2018). While other desiderata often
exist, such as minimizing the number of layers or filters of the network, we focus here simply on
model compression algorithms that 1. minimize compressed size while maintaining an acceptable
classification accuracy, 2. are conceptually simple and easy to implement, and 3. can be scaled easily
to large models.

Classic data compression in a Shannon sense (Shannon, 1948) requires discrete-valued data (i.e.,
the data can only take on a countable number of states) and a probability model on that data known
to both sender and receiver. Practical compression algorithms are often lossy, and consist of two
steps. First, the data is subjected to (re-)quantization. Then, a Shannon-style entropy coding method
such as arithmetic coding (Rissanen & Langdon, 1981) is applied to the discrete values, bringing
them into a binary representation which can be easily stored or transmitted. Shannon’s source coding
theorem establishes the entropy of the discrete representation as a lower bound on the average length
of this binary sequence (the bit rate), and arithmetic coding achieves this bound asymptotically. Thus,
entropy is an excellent proxy for the expected model size.

The type of quantization scheme affects both the fidelity of the representation (in this case, the
precision of the model parameters, which in turn affects the prediction accuracy) as well as the bit
rate, since a reduced number of states coincides with reduced entropy. ANN parameters are typically
represented as floating point numbers. While these technically have a finite (but large) number of
states, the best results in terms of both accuracy and bit rate are typically achieved for a significantly
reduced number of states. Existing approaches to model compression often acknowledge this by
quantizing each individual linear filter coefficient in an ANN to a small number of pre-determined
values (Louizos et al., 2018; Baskin et al., 2018; Li et al., 2016a). This is known as scalar quantization
(SQ). Other methods explore vector quantization (VQ), which is closely related to k-means clustering,
in which each vector of filter coefficients is quantized jointly (Chen et al., 2015; Ullrich et al., 2017).
This is equivalent to enumerating a finite set of representers (representable vectors), while in SQ the
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Figure 1: Visualization of representers in scalar quantization vs. reparameterized quantization. The
axes represent two different model parameters (e.g., linear filter coefficients). Small black dots are
samples of the model parameters, red and blue discs are the representers. Left: in scalar quantization,
the representers must be given by a Kronecker product of scalar representers along the cardinal axes,
even though the distribution of samples may be skewed. Right: in reparameterized scalar quantization,
the representers are still given by a Kronecker product, but in a transformed (here, rotated) space.
This allows a better adaptation of the representers to the parameter distribution.

set of representers is given by the Kronecker product of representable scalar elements. VQ is much
more general than SQ, in the sense that representers can be placed arbitrarily: if the set of useful filter
vectors all live in a subset of the entire space, there is no benefit in having representers outside of that
subset, which may be unavoidable with SQ (Figure 1, left). Thus, VQ has the potential to yield better
results, but it also suffers from the “curse of dimensionality”: the number of necessary states grows
exponentially with the number of dimensions, making it computationally infeasible to perform VQ
for much more than a handful of dimensions. One of the key insights leading to this paper is that the
strengths of SQ and VQ can be combined by representing the data in a “latent” space. This space can
be an arbitrary rescaling, rotation, or otherwise warping of the original data space. SQ in this space,
while making quantization computationally feasible, can provide substantially more flexibility in the
choice of representers compared to the SQ in the data space (Figure 1, right). This is in analogy to
recent image compression methods based on autoencoders (Ballé et al., 2016; Theis et al., 2017).

The contribution of this paper is two-fold. First, we propose a novel end-to-end trainable model
compression method that uses scalar quantization and entropy penalization in a reparameterized
space of model parameters. The reparameterization allows us to use efficient SQ, while achieving
flexibility in representing the model parameters. Second, we provide state-of-the-art results on
a variety of network architectures on several datasets. This demonstrates that more complicated
strategies involving pretraining, multi-stage training, sparsification, adaptive coding, etc., as employed
by many previous methods, are not necessary to achieve good performance. Our method scales to
modern large image datasets and neural network architectures such as ResNet-50 on ImageNet.

2 ENTROPY PENALIZED REPARAMETERIZATION

We consider the classification setup, where we are given a dataset D = {(x1, y1), ...(xN , yN )}
consisting of pairs of examples xi and corresponding labels yi. We wish to minimize the expected
negative log-likelihood on D, or cross-entropy classification loss, over the set of model parameters Θ:

Θ∗ = arg min
Θ

E(x,y)∼D [− log p(y|x; Θ)] , (1)

where p(y|x; Θ) is the likelihood our model assigns to a dataset sample (x, y). The likelihood
function is implemented using an ANN with parameters Θ = {θ1,W ,θ1,b,θ2,W ,θ2,b, . . . ,θN,W },
where θk,W and θk,b denote the weight (including convolutional) and bias terms at layer k, respec-
tively.

Compressing the model amounts to compressing each parameter in the set Θ. Instead of compressing
each parameter directly, we compress reparameterized forms of them. To be precise, we introduce
the reparameterizations Φ = {φ1,W ,φ1,b,φ2,W ,φ2,b, . . . ,φN,W } and parameter decoders fconv,
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Figure 2: Classifier architecture. The φ tensors are stored in their compressed form. During inference,
they are read from storage, uncompressed, and transformed via f into θ, which are then used as
parameters in typical convolutional or dense layers. When uncompressed, φ are integer tensors.

Figure 3: The internals of fconv and fdense in our experiments for layer k. In the fconv visualization,
H , W , I , O refer to the convolutional height, width, input channel, output channel, respectively. For
the fdense visualization, I , O refer to the number of input and output activations. For fconv, we use an
affine transform, while for fdense we use a scalar shift and scale, represented as ψ for both. We find
that this is sufficiently expressive to get state of the art compression. Note also that in both cases,
the number of parameters in ψ is significantly smaller compared to the size of the corresponding φ.
Therefore ψ does not lead to significant model storage overhead.

fdense, fbias such that

θk,W = fconv(φk,W ) if layer k is convolutional, (2)
θk,W = fdense(φk,W ) if layer k is fully connected, (3)
θk,b = fbias(φk,b) if layer k has a bias. (4)

We can think of each parameter decoder f as a mapping from reparameterization space to parameter
space. For ease of notation, we write F = {fconv, fdense, fbias} and Θ = F(Φ). The parameter
decoders themselves may have learnable parameters, which we denote Ψ. Our method is visually
summarized in figures 2 and 3.

2.1 MODEL PARTITIONING

A central component of our approach is partitioning the set of model parameters into groups. For
the purpose of creating a model compression method, we interpret entire groups of model pa-
rameters as samples from the same learned distribution. We define a fully factorized distribution
q(Φ) =

∏
φ∈Φ qφ(φ), and introduce parameter sharing within the factors qφ of the distribution that

correspond to the same group, as well as within the corresponding decoders. These group assignments
are fixed a priori. For instance, in figure 2, θ1,W and θ2,W can be assumed to be samples of the
same distribution, that is qφ1,W

(·) = qφ2,W
(·). To be consistent, we also use the same parameter

decoder fconv to decode them. Further, each of the reparameterizations φ is defined as a rank-2 tensor
(a matrix), where each row corresponds to a "sample" from the learned distribution. The operations in
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f apply the same transformation to each row (figure 3). As an example, in fconv, each spatial H ×W
matrix of filter coefficients is assumed to be a sample from the same distribution. We describe how
this aids in compression in the following section.

Our method can be applied analogously to various model partitionings. In fact, in our experiments,
we vary the size of the groups, i.e., the number of parameters assumed i.i.d., depending on the total
number of parameters of the model (Θ). The size of the groups parameterizes a trade-off between
compressibility and overhead: if groups consisted of just one scalar parameter each, compressibility
would be maximal, since q would degenerate (i.e., would capture the value of the parameter with
certainty). However, the overhead would be maximal, since F and q would have a large number of
parameters that would need to be included in the model size (defeating the purpose of compression).
On the other hand, encoding all parameters of the model with one and the same decoder and scalar
distribution would minimize overhead, but may be overly restrictive by failing to capture distributional
differences amongst all the parameters, and hence lead to suboptimal compressibility. We describe
the group structure of each network that we use in more detail in the experiments section.

2.2 COMPRESSING Φ WITH SHANNON CODING

In order to apply a Shannon-style entropy coder efficiently to the reparameterizations Φ, we need
a discrete alphabet of representers and associated probabilities for each representer. Rather than
handling an expressive set of representers, as in VQ, we choose to fix them to the integers, and
achieve expressivity via the parameter decoders F instead.

Each φ ∈ Zd×` is a matrix interpreted as consisting of d samples from a discrete probability
distribution producing vectors of dimension `. We fit a factorized probability model

q(φ) =

d∏
j=1

∏̀
i=1

qi(φj,i) (5)

to each column i of φ, using ` different probability models qi for each corresponding parameter
decoder (the form of qi is described in the next section). Fitting of probability models is typically done
by minimizing the negative log-likelihood. Assuming φ follows the distribution q, Shannon’s source
coding theorem states that the minimal length of a bit sequence encoding φ is the self-information of
φ under q:

I(φ) = − log2 q(φ), (6)

which is identical to Shannon cross entropy up to an expectation operator, and identical to the negative
log likelihood up to a constant factor. By minimizing I over q and φ during training, we thus achieve
two goals: 1) we fit q to the model parameters in a maximum likelihood sense, and 2) we directly
optimize the parameters for compressibility.

After training, we design an arithmetic code for q, and use it to compress the model parameters. This
method incurs only a small overhead over the theoretical bound due to the finite length of the bit
sequence (arithmetic coding is asymptotically optimal). Practically, the overhead amounts to less than
1% of the size of the bit sequence; thus, self-information is an excellent proxy for model size. Further
overhead results from including a description of Ψ, the parameters of the parameter decoders, as well
as of q itself (in the form of a table) in the model size. However, these can be considered constant
and small compared to the total model size, and thus do not need to be explicitly optimized for.

The overall loss function is simply the additive combination of the original cross-entropy classification
loss under reparameterization with the self-information of all reparameterizations:

L(Φ,Ψ) = E(x,y)∼D [− log p(y|x;F(Φ)] + λ
∑
φ∈Φ

I(φ). (7)

We refer to the second term (excluding the constant λ) as the rate loss. By varying λ across different
experiments, we can explore the Pareto frontier of compressed model size vs. model accuracy. To
compare our method to other work, we varied λ such that our method produced similar accuracy, and
then compared the resulting model size.
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2.3 DISCRETE OPTIMIZATION

Since Φ is discrete-valued, we need to make some further approximations in order to optimize L over
it using stochastic gradient descent. To get around this, we maintain continuous surrogates Φ̂.

For optimizing the classification loss, we use the “straight-through” gradient estimator Bengio et al.
(2013), which provides a biased gradient estimate but has shown good results in practice. This
consists of rounding the continuous surrogate to the nearest integer during training, and ignoring the
rounding for purposes of backpropagation. After training, we only keep the discretized values.

In order to obtain good estimates for both the rate term and its gradient during training, we adopt
a relaxation approach previously described in (Ballé et al., 2018); the code is provided as an open
source library1. In a nutshell, the method replaces the probability mass functions qi with a set of
non-parametric continuous density functions, which are based on small ANNs. These density models
are fitted to φ̂j,i + nj,i, where nj,i ∼ U(− 1

2 ,
1
2 ) is i.i.d. uniformly distributed additive noise. This

turns out to work well in practice, because the negative log likelihood of these noise-affected variates
under the continuous densities approximates the self-information I:

I(φ) ≈
d∑

j=1

∑̀
i=1

− log2 q̃i(φj,i + nj,i), (8)

where q̃i denote the density functions. Once the density models are trained, the values of the
probability mass functions modeling φ are derived from the substitutes q̃i and stored in a table, which
is included in the model description. The parameters of q̃i are no longer needed after training.

3 EXPERIMENTS

For our MNIST and CIFAR-10 experiments, we evaluate our method by applying it to four distinct
image classification networks: LeNet300-100 (Lecun et al., 1998) and LeNet-5-Caffe2 on MNIST (Le-
Cun & Cortes, 2010), and VGG-163 (Simonyan & Zisserman, 2015) and ResNet-20 (He et al., 2016a;
Zagoruyko & Komodakis, 2016) with width multiplier 4 (ResNet-20-4) on CIFAR-10 (Zagoruyko
& Komodakis, 2016). For our ImageNet experiments, we evaluate our method on the ResNet-18
and ResNet-50 (He et al., 2016b) networks. We train all our models from scratch and compare them
with recent state-of-the-art methods by quoting performance from their respective papers. Compared
to many previous approaches, we do not initialize the network with pre-trained or pre-sparsified
weights.

We found it useful to use two separate optimizers: one to optimize the variables of the probability
model and one to optimize the variables of the network. The optimizer for the probability model is
always Adam (Kingma & Ba, 2014) with a learning rate of 0.0001. We chose to always use Adam
because the parameter updates used by Adam are independent of any scaling of the objective (when
its hyper-parameter ε is sufficiently small). In our method, the probability model variables only get
gradients from the entropy loss which is scaled by the rate penalty λ. Adam normalizes out this scale
and makes the learning rate of the probability model independent of λ and of other hyperparameters
such as the model partitioning.

3.1 MNIST EXPERIMENTS

We apply our method to two LeNet variants: LeNet300-100 and LeNet5-Caffe and report results
in Table 1. We train the networks using Adam with a constant learning rate of 0.001 for 200,000
iterations. To remedy some of the training noise from quantization, we maintain an exponential
moving average (EMA) of the weights and evaluate using those. Note that this does not affect the
quantization, as quantization is performed after the EMA variables are restored.

LeNet300-100 consists of 3 fully connected layers. We partitioned this network into three parameter
groups: one for the first two fully connected layers, one for the classifier layer, and one for biases.

1https://github.com/tensorflow/compression
2https://github.com/BVLC/caffe/tree/master/examples/mnist
3http://torch.ch/blog/2015/07/30/cifar.html
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LeNet5-Caffe consists of two 5× 5 convolutional layers followed by two fully connected layers, with
max pooling following each convolutional layer. We partitioned this network into four parameter
groups: One for both of the convolutional layers, one for the penultimate fully connected layer, one
for the final classifier layer, and one for the biases.

As evident from Table 1, for the larger LeNet300-100 model, our method outperforms all the baselines
while maintaining a comparable error rate. For the smaller LeNet5-Caffe model, our method is second
only to Minimal Random Code Learning (Havasi et al., 2018). Note that in both of the MNIST models,
the number of probability distributions ` = 1 in every parameter group, including in the convolutional
layers. To be precise, the φk,W for the convolutional weights θk,W will beH ·W ·I ·O×1. We found
that this gives a better trade-off, since the model is small to begin with, and having ` = 5 · 5 = 25
scalar probability models for 5× 5 convolutional layers would have too much overhead.

For both of the MNIST models, we found that letting each subcomponent of F be a simple dimension-
wise scalar affine transform (similar to fdense in figure 3), was sufficient. Since each φ is quantized to
integers, having a flexible scale and shift leads to flexible SQ, similar to in (Louizos et al., 2018). Due
to the small size of the networks, more complex transformation functions lead to too much overhead.

3.2 CIFAR-10 EXPERIMENTS

We apply our method to VGG-16 (Simonyan & Zisserman, 2015) and ResNet-20-4 (He et al., 2016a;
Zagoruyko & Komodakis, 2016) and report the results in Table 1. For both VGG-16 and ResNet-20-4,
we use momentum of 0.9 with an initial learning rate of 0.1, and decay by 0.2 at iterations 256,000,
384,000, and 448,000 for a total of 512,000 iterations. This learning rate schedule was fixed from
the beginning and was not tuned in any way other than verifying that our models’ training loss had
converged.

VGG-16 consists of 13 convolutional layers of size 3× 3 followed by 3 fully connected layers. We
split this network into four parameter groups: one for all convolutional layers and one each all fully
connected layers. We do not compress biases. We found that our biases in float32 format add up to
about 20 KB, and we add that to our reported numbers. ResNet-20-4 consists of 3 ResNet groups
with 3 residual blocks each. There is also an initial convolution layer and a final fully connected
classification layer. We partition this network into two parameter groups: one for all convolutional
layers and one for the final classification layer. We also do not compress biases but include them in
our results; they add up to about 11 KB.

For VGG-16 and ResNet-20-4 convolutions, ` = O × I = 9; fconv and fdense are exactly as pictured
in figure 3. To speed up training, we fixed φW . We found that the inverse real-valued discrete
Fourier transform (DFT) performs much better than SQ, or any random orthogonal matrix (Figure 4).
From the error vs. rate plots, the benefit of reparameterization in the high compression regime
is evident. VGG-16 and ResNet-20-4 both contain batch normalization (Ioffe & Szegedy, 2015)
layers that include a moving average for the mean and variance. Following (Havasi et al., 2018), we
do not include the moving averages in our reported numbers. We do, however, include the batch
normalization bias term β and let it function as the bias for each layer (γ is set to a constant 1).

3.3 IMAGENET EXPERIMENTS

For the ImageNet dataset (Russakovsky et al., 2015), we reproduce the training setup and hyper-
parameters from He et al. (2016b). All 3x3 convolutional layers belong to a single parameter group,
similar to our CIFAR experiments, 1x1 convolutional layers to a single group (applicable to ResNet-
50), and all the remaining layers in their own groups. This gives a total of 4 parameter groups for
ResNet-50 and 3 groups for ResNet-18. Analogously to the CIFAR experiments, we compare SQ to
using random orthogonal or DFT matrices for reparameterizing the convolution kernels (figure 4a).

4 DISCUSSION

Existing model compression methods are typically built on a combination of pruning, quantization,
or coding. Pruning involves sparsifying the network either by removing individual parameters or
higher level structures such as convolutional filters, layers, activations, etc. Various strategies for
pruning weights include looking at the Hessian (Cun et al., 1990) or just their `p norm (Han et al.,
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Model Algorithm Size Error (Top-1)

LeNet300-100
(MNIST)

Uncompressed 1.06 MB 1.6%
Bayesian Compression (GNJ) (Louizos et al., 2017) 18.2 KB (58x) 1.8%
Bayesian Compression (GHS) (Louizos et al., 2017) 18.0 KB (59x) 2.0%
Sparse Variational Dropout (Molchanov et al., 2017) 9.38 KB (113x) 1.8%
Our Method (SQ) 8.56 KB (124x) 1.9%

LeNet5-Caffe
(MNIST)

Uncompressed 1.72 MB 0.7%
Sparse Variational Dropout (Molchanov et al., 2017) 4.71 KB (365x) 1.0%
Bayesian Compression (GHS) (Louizos et al., 2017) 2.23 KB (771x) 1.0%
Minimal Random Code Learning (Havasi et al., 2018) 1.52 KB (1110x) 1.0%
Our Method (SQ) 2.84 KB (606x) 0.9%

VGG-16
(CIFAR-10)

Uncompressed 60 MB 6.6%
Bayesian Compression (Louizos et al., 2017) 525 KB (116x) 9.2%
DeepCABAC (Wiedemann et al., 2019) 960 KB (62.5x) 9.0%
Minimal Random Code Learning (Havasi et al., 2018) 417 KB (159x) 6.6%
Minimal Random Code Learning (Havasi et al., 2018) 168 KB (452x) 10.0%
Our Method (DFT) 101 KB (590x) 10.0%

ResNet-20-4
(CIFAR-10)

Uncompressed 17.2 MB 5%
Our Method (SQ) 176 KB (97x) 10.3%
Our Method (DFT) 128 KB (134x) 8.8%

ResNet-18
(ImageNet)

Uncompressed 46.7 MB 30.0%
AP + Coreset-S (Dubey et al., 2018) 3.11 MB (15x) 32.0%
Our Method (SQ) 2.78 MB (17x) 30.0%
Our Method (DFT) 1.97 MB (24x) 30.0%

ResNet-50
(ImageNet)

Uncompressed 102 MB 25%
AP + Coreset-S (Dubey et al., 2018) 6.46 MB (16x) 26.0%
DeepCABAC (Wiedemann et al., 2019) 6.06 MB (17x) 25.9%
Our Method (SQ) 5.91 MB (17x) 26.5%
Our Method (DFT) 5.49 MB (19x) 26.0%

Table 1: Our compression results compared to the existing state of the art. Our method is able to
achieve higher compression than previous approaches in LeNet300-100, VGG-16, and ResNet-18/50,
while maintaining comparable prediction accuracy. We have reported the models that have the closest
accuracy to the baselines. For the complete view of the trade-off refer to Figures 4a and 4b. For
VGG-16 and ImageNet experiments, we report a median of three runs with a fixed entropy penalty.
For ResNet-20-4, we report the SQ and DFT points closest to 10% error from 4b. Note that the values
we reproduce here for MRC are the corrected values found in the OpenReview version of their paper.
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Figure 4: Error vs. Rate plot for ResNet-18 on ImageNet and ResNet-20-4 on CIFAR-10 for SQ,
DFT transformation, and a random orthogonal transformation. The DFT transformation is clearly
beneficial in comparison to the other two transforms. All experiments were trained with the same
hyper-parameters (including the set of entropy penalties), only differing in the transformation matrix.

2015). Srinivas & Babu (2015) focus on pruning individual units, and Li et al. (2016b) prunes
convolutional filters. Louizos et al. (2017) and Molchanov et al. (2017), which we compare to in
our compression experiments, also prune parts of the network. Dubey et al. (2018) describes a
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dimensionality reduction technique specialized for CNN architectures. Pruning is a simple approach
to reduce memory requirements as well as computational complexity, but doesn’t inherently tackle
the problem of efficiently representing the parameters that are left. Here, we primarily focus on the
latter: given a model architecture and a task, we’re interested in finding a set of parameters which can
be described in a compact form and yield good prediction accuracy. Our work is largely orthogonal
to the pruning literature, and could be combined if reducing the number of units is desired.

Quantization involves restricting the parameters to a small set of unique values. There is work in
binarizing or ternarizing networks (Courbariaux et al., 2015; Li et al., 2016a; Zhou et al., 2018) via
either straight-through gradient approximation (Bengio et al., 2013) or stochastic rounding (Gupta
et al., 2015). Recently, Louizos et al. (2018) introduced a new differentiable quantization procedure
that relaxes quantization. We use the straight-through heuristic, but could possibly use other stochastic
approaches to improve our methods. While most of these works focus on uniform quantization,
Baskin et al. (2018) also extend to non-uniform quantization, which our generalized transformation
function amounts to. Han et al. (2015); Ullrich et al. (2017) share weights and quantize by clustering,
and Chen et al. (2015) randomly enforce weight sharing, and thus effectively perform VQ with a
pre-determined assignment of parameters to representers.

Coding (entropy coding, or Shannon-style compression) methods produce a bit sequence that can
allow convenient storage or transmission of a trained model. This generally involves quantization as a
first step, followed by methods such as Huffman coding (Huffman, 1952), arithmetic coding (Rissanen
& Langdon, 1981), etc. Entropy coding methods exploit a known probabilistic structure of the data to
produce optimized binary sequences whose length ideally closely approximates the cross entropy of
the data under the probability model. In many cases, authors represent the quantized values directly as
binary numbers with few digits (Courbariaux et al., 2015; Li et al., 2016a; Louizos et al., 2018), which
effectively leaves the probability distribution over the values unexploited for minimizing model size;
others do exploit it (Han et al., 2015). Wiedemann et al. (2018) formulate model compression with
an entropy constraint, but use (non-reparameterized) scalar quantization. Their model significantly
underperforms all the state-of-the-art models that we compare with (Table 1). Some recent work has
claimed improved compression performance by skipping quantization altogether (Havasi et al., 2018).
Our work focuses on coding with quantization.

Han et al. (2015) defined their method using a four-stage training process: 1. training the origi-
nal network, 2. pruning and re-training, 3. quantization and re-training, and 4. entropy coding.
This approach has influenced many follow-up publications. In the same vein, many current high-
performing methods have significant complexity in implementation or require a multi-stage training
process. Havasi et al. (2018) requires several stages of training and retraining while keeping parts
of the network fixed. Wiedemann et al. (2019) require pre-sparsification of the network, which is
computationally expensive, and use a more complex (context-adaptive) variant of arithmetic coding
which may be affected by MPEG patents. These complexities can prevent methods from scaling to
larger architectures or decrease their practical usability. In contrast, our method requires only a single
training stage followed by a royalty-free version of arithmetic coding. In addition, we commit to
releasing the source code of our method for easy reproducibility (upon publication).

Our method has parallels to recent work in learned image compression (Ballé et al., 2016; Theis et al.,
2017) that uses end-to-end trained deep models for significant performance improvements in lossy
image compression. These models operate in an autoencoder framework, where scalar quantization
is applied in the latent space. Our method can be viewed as having just a decoder transformation that
is used to transform the latent representation into the model parameters, but no encoder.

5 CONCLUSION

We describe a simple model compression method built on two ingredients: joint (i.e., end-to-end)
optimization of compressibility and classification performance in only a single training stage, and
reparameterization of model parameters, which increases the flexibility of the representation over
scalar quantization, and is applicable to arbitrary network architectures. We demonstrate that state-of-
the-art model compression performance can be achieved with this simple framework, outperforming
methods that rely on complex, multi-stage training procedures. Due to its simplicity, the approach is
particularly suitable to compress larger models, such as VGG and especially ResNets. In future work,
we may consider the potential benefits of even more flexible (deeper) parameter decoders.
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