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ABSTRACT

We introduce kNN-LMs, which extend a pre-trained neural language model (LM)
by linearly interpolating it with a k-nearest neighbors (kNN) model. The near-
est neighbors are computed according to distance in the pre-trained LM embed-
ding space, and can be drawn from any text collection, including the original
LM training data. Applying this transformation to a strong Wikitext-103 LM,
with neighbors drawn from the original training set, our kNN-LM achieves a new
state-of-the-art perplexity of 15.79 – a 2.9 point improvement with no additional
training. We also show that this approach has implications for efficiently scaling
up to larger training sets and allows for effective domain adaptation, by simply
varying the nearest neighbor datastore, again without further training. Qualita-
tively, the model is particularly helpful in predicting rare patterns, such as factual
knowledge. Together, these results strongly suggest that learning similarity be-
tween sequences of text is easier than predicting the next word, and that nearest
neighbor search is an effective approach for language modeling in the long tail.

1 INTRODUCTION

Neural language models (LMs) typically solve two subproblems: (1) mapping sentence prefixes to
fixed-sized representations, and (2) using these representations to predict the next word in the text
(Bengio et al., 2003; Mikolov et al., 2010). We present a new language modeling approach that is
based on the hypothesis that the representation learning problem may be easier than the prediction
problem. For example, any English speaker knows that Dickens is the author of and Dickens wrote
will have essentially the same distribution over the next word, even if they do not know what that
distribution is. We provide strong evidence that existing language models, similarly, are much better
at the first problem, by using their prefix embeddings in a simple nearest neighbor scheme that
significantly improves overall performance.

We introduce a kNN-LM approach that extends a pre-trained LM by linearly interpolating its next
word distribution with a k-nearest neighbors (kNN) model. The nearest neighbors are computed
according to distance in the pre-trained embedding space and can be drawn from any text collec-
tion, including the original LM training data. This approach allows rare patterns to be memorized
explicitly, rather than implicitly in model parameters. It also improves performance when the same
training data is used for learning the prefix representations and the kNN model, strongly suggesting
that the prediction problem is more challenging than previously appreciated.

To better measure these effects, we conduct an extensive empirical evaluation. Applying our kNN
transformation to a strong Wikitext-103 LM using only the original dataset achieves a new state-
of-the-art perplexity of 15.79 – a 2.86 point improvement over the base model (Baevski & Auli,
2019) – with no additional training. We also show that the approach has implications for efficiently
scaling up to larger training sets and allows for effective domain adaptation, by simply varying the
nearest neighbor datastore. Using kNN search over a 4-billion token dataset can outperform training
a model on the same data, opening a new path for efficiently using large datasets in language models.
Similarly, adding out-of-domain data to the datastore, again without further training, approaches in-
domain training performance. Qualitatively, we find the model is particularly helpful for long-tail
patterns, such as factual knowledge, which might be easier to access via explicit memory.
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Figure 1: An illustration of kNN-LM. A datastore is constructed with an entry for each training set
token, and an encoding of its leftward context. For inference, a test context is encoded, and the k
most similar training contexts are retrieved from the datastore, along with the corresponding targets.
A distribution over targets is computed based on the distance of the corresponding context from the
test context. This distribution is then interpolated with the original model’s output distribution.

2 NEAREST NEIGHBOR LANGUAGE MODELLING

Language models (LMs) assign probabilities to sequences. Given a context sequence of tokens
ct = (w1, . . . wt−1), autoregressive LMs estimate p(wt|ct), the distribution over target token wt.

The kNN-LM involves augmenting such a pre-trained LM with a nearest neighbors retrieval mech-
anism, without any additional training. This can be done with a single forward pass over a text
collection (potentially including the original LM training set), where the resulting context-target
pairs are stored in a key-value datastore that is queried during inference, as illustrated in Figure 1.

Datastore Let f(·) be the function that maps a context c to a fixed-length vector representation
computed by the pre-trained LM. For instance, in a Transformer LM, f(c) could map c on to an
intermediate representation output by an arbitrary self-attention layer. Then, given the i-th training
example (ci, wi) ∈ D, we define the key-value pair (ki, vi), where the key ki is the vector represen-
tation of the context f(ci) ∈ Rd and the value vi is the target word wi. The datastore (K,V) is thus
the set of all key-value pairs constructed from all the training examples in D:

(K,V) = {(f(ci), wi)|(ci, wi) ∈ D} (1)

Inference At test time, given the input context x the model generates the output distribution over
next words pLM(y|x) and the context representation f(x). The model queries the datastore with
f(x) to retrieve its k-nearest neighborsN according to a distance function d(·, ·) (L2 distance in our
experiments). Then, it computes a distribution over neighbors based on a softmax of their negative
distances, while aggregating probability mass for each vocabulary item across all its occurrences in
the retrieved targets (items that do not appear in the retrieved targets have zero probability):

pkNN(y|x) ∝
∑

(ki,vi)∈N

1y=vi exp(−d(ki, f(x))) (2)

Finally, we follow Grave et al. (2017a) and interpolate the nearest neighbor distribution pkNN with
the model distribution pLM using a tuned parameter λ to produce the final kNN-LM distribution:

p(y|x) = λ pkNN(y|x) + (1− λ) pLM(y|x) (3)

Implementation The datastore contains an entry for each target in the training set, which for LMs
can be up to billions of examples. To search over this large datastore, we use FAISS (Johnson
et al., 2017), an open source library for fast nearest neighbor retrieval in high dimensional spaces.
FAISS speeds up search by clustering the keys and looking up neighbors based on the cluster cen-
troids, while reducing memory usage by storing compressed versions of the vectors. We found in
preliminary experiments that using L2 distance results in better performance for kNN-LM.

Related Cache Models Prior work (Grave et al., 2017c; Merity et al., 2017) used a similar ap-
proach to compute similarity to the previous hidden states of test documents, making it easier to
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copy rare vocabulary items from the recent past. Such techniques have been less popular since the
development of Transformers (Vaswani et al., 2017), which can learn to copy recent words using
self-attention; in Section 4.1, we observe relatively small gains from caching recent items in the
same test document à la Grave et al. (2017c). Most relatedly, Grave et al. (2017a) describe an online
language model using nearest neighbor search over all previous hidden states, to improve domain
adaptation. In our work, we only save training data, with the goal of explicitly memorizing training
examples to better generalize to similar cases at test time.

3 EXPERIMENTAL SETUP

Data Experiments in this paper use the following English corpora:

WIKITEXT-103 is a standard benchmark by Merity et al. (2017) for autoregressive language mod-
eling with a 250K word-level vocabulary. It consists of 103M tokens of Wikipedia in the training
set and 250K tokens in each of the development and test sets.

BOOKS-1B is the Toronto Books Corpus (Zhu et al., 2015), containing 1B tokens. Complete books
are held out for validation/test.

WIKI-3B is English Wikipedia, containing 3B tokens.

BOOKSWIKI-4B is the concatenation of the above two corpora, similarly to Devlin et al. (2019).

BOOKSWIKI-100M is a random 100M token subset of BOOKSWIKI-4B.

Except for Wikitext-103, text is tokenized using the byte-pair encoding (Sennrich et al., 2015) with
the 29k subword vocabulary from BERT (Devlin et al., 2019).

Model Architecture kNN-LM is compatible with any model that produces fixed size context
representations. We use decoder-only Transformers (Vaswani et al., 2017) for language modeling,
which are the current state of the art. Since the kNN-LM makes no changes to the underlying LM,
we take the exact architecture and optimization described by Baevski & Auli (2019) and use it to
create a kNN-LM for inference. This model consists of 16 layers, each with 16 self-attention heads,
1024 dimensional hidden states, and 4096 dimensional feedforward layers, amounting to 247M
trainable parameters. It processes 3072 tokens of context per example for Wikitext-103 and 1024
tokens for the rest of the corpora. Following Baevski & Auli (2019), we use adaptive inputs and an
adaptive softmax (Grave et al., 2017b) with tied weights (Press & Wolf, 2017) for the Wikitext-103
experiments. On other datasets we do not use adaptive inputs or an adaptive softmax.

Evaluation LMs are trained to minimize the negative log-likelihood of the training corpus, and
evaluated by perplexity (exponentiated negative log-likelihood) on held out data. Following Baevski
& Auli (2019), 512 tokens are scored per test example, but up to 2560 tokens of extra prior context
are provided for Wikitext-103 and up to 512 tokens for the rest of the corpora.

kNN-LM The keys used for kNN-LM are the 1024-dimensional representations fed to the feed-
forward network in the final layer of the Transformer LM (after self-attention and layernorm; see
Section 5 for further explanation). We perform a single forward pass over the training set with this
model, in order to save the keys and values. A FAISS index is then created using 1M randomly
sampled keys to learn 4096 cluster centroids. For efficiency, keys are quantized to 64-bytes. Dur-
ing inference, we retrieve k = 1024 neighbors, and the index looks up 32 cluster centroids while
searching for the nearest neighbors. For Wikitext-103 experiments, we recompute distances with
full precision keys, but for the other datasets we use the FAISS distances between quantized keys
directly, for faster evaluation. We tune the interpolation parameter λ on the validation set.

Computational Cost Although the kNN-LM requires no training given an existing LM, it does
add some other computational overheads. Storing the keys and values requires a single forward pass
over the training set, at a fraction of the cost of training for one epoch. Once the keys are saved,
for WIKITEXT-103 building the cache with 103M entries takes roughly two hours on a single CPU.
Finally, running on the validation set took approximately 25 minutes when retrieving 1024 keys.
While the cost of building a large cache grows linearly in the number of entries, it is trivial to
parallelize and requires no GPU-based training.
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Model Perplexity (↓) # Trainable Params
Dev Test

Baevski & Auli (2019) 17.96 18.65 247M
+Transformer-XL (Dai et al., 2019) - 18.30 257M
+Phrase Induction (Luo et al., 2019) - 17.40 257M

Baevski & Auli (2019) 17.96 18.65 247M
+kNN-LM 16.06 16.12 247M

+Continuous Cache (Grave et al., 2017c) 17.67 18.27 247M
+kNN-LM + Continuous Cache 15.81 15.79 247M

Table 1: Performance on WIKITEXT-103. The kNN-LM substantially outperforms existing work.
Gains are additive with the related but orthogonal continuous cache, allowing us to improve the base
model by almost 3 perplexity points with no additional training.

Model Perplexity (↓) # Trainable Params
Dev Test

Baevski & Auli (2019) 12.97 13.74 247M
+kNN-LM 7.22 8.98 247M

Table 2: Performance on BOOKS-1B, showing that kNN-LM works well in multiple domains.

4 EXPERIMENTS

4.1 USING THE TRAINING DATA AS THE DATASTORE

We first experiment with creating a datastore from the same data used to train the LM. Table 1 shows
that kNN-LM improves perplexity on WIKITEXT-103 from 18.65 (Baevski & Auli, 2019) to a new
state-of-the-art of 16.12. We also provide reported perplexities from two other recent models that
also build upon Baevski and Auli’s, suggesting that further improvements may be possible by aug-
menting the kNN-LM with these techniques. We compare with models trained only on the standard
training set, but recent work has shown performance can be improved by training on additional data,
from either the test set (Krause et al., 2019) or large amounts of web text (Shoeybi et al., 2019).

We also experiment with a continuous cache model, a related but orthogonal technique from Grave
et al. (2017c), in which the model saves and retrieves neighbors from earlier in the test document,
rather than the training set. Gains from interpolating with the continuous cache are smaller than
reported in the original setting that used LSTMs, perhaps because self-attentive language models
can learn to perform such queries. The continuous-cache improvements are additive with the kNN-
LM, pushing our state-of-the-art result to 15.79, a gain of 2.86 over the base model.

Finally, we repeat the experiment using text from a different domain, BOOKS-1B, to control for the
possibility that encyclopedic Wikipedia text is somehow uniquely good for caching. Table 2 shows
an even sharper improvement in perplexity, from 13.74 to 8.98, suggesting that this is not the case.

4.2 MORE DATA WITHOUT TRAINING

Section 4.1 has shown that retrieving neighbors from the training data can significantly improve
language modeling performance. This raises the question: can retrieving nearest neighbors from
data be a substitute for training on it? To test this, we train a LM on BOOKSWIKI-100M and use it
to build a datastore from BOOKSWIKI-4B, a corpus 40 times larger than the training set. We then
compare this kNN-LM to a vanilla LM trained on the entire BOOKSWIKI-4B corpus.1

1The original LM (Baevski & Auli, 2019) was trained for 286K steps on a corpus of similar size to
BOOKSWIKI-100M. When scaling up to BOOKSWIKI-4B, we tuned the number of updates on the valida-
tion set and found that training for 572K steps (double) produces a slightly stronger baseline.
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Training Data Datastore Perplexity (↓)
Dev Test

BooksWiki-4B - 20.23 20.09
BooksWiki-100M - 28.33 28.62

BooksWiki-100M BooksWiki-4B 16.54 17.36

Table 3: Experimental results on BooksWiki-4B. The model trained on 100M tokens is augmented
with a datastore that contains all 4B training examples, outperforming a model trained on 4B tokens.
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Figure 2: Language model performance with different sizes of datastore. Increasing the datastore
size monotonically improves performance, and has not saturated even with 4B tokens. A kNN-LM
trained on 100M tokens with a datastore of 2B tokens outperforms a LM trained on 4B tokens.

Table 3 shows that, as expected, the model trained on 4B tokens dramatically outperforms the model
trained on 100M tokens, improving perplexity from 28.62 to 20.09. However, adding nearest neigh-
bors retrieval over 4B examples to the model trained on 100M tokens improves perplexity from
28.62 to 17.63; i.e. retrieving nearest neighbors from the corpus outperforms training on it. This
result suggests that rather than training language models on ever larger datasets, we can use smaller
datasets to learn representations and augment them with kNN-LM over a large corpus.

To understand how the amount of data used for kNN retrieval affects performance, we use the
BOOKSWIKI-100M model to create datastores using different amounts of randomly sampled data
from BOOKSWIKI-4B. Figure 2 shows that using only 2B examples for the datastore already sur-
passes the performance of the model trained on 4B tokens. In addition, performance does not satu-
rate at 4B examples, suggesting that growing the datastore more could lead to further gains.

4.3 DOMAIN ADAPTATION

We also experiment with domain adaptation by creating a datastore on the target domain training set.
Table 4 shows that an in-domain LM on BOOKS-1B has a relatively low perplexity (13.74), while a
model trained on WIKI-3B performs poorly on the books domain (38.13 perplexity). Adding kNN
search over BOOKS-1B to the WIKI-3B model approaches in-domain training, demonstrating that
representations learned by the WIKI-3B model generalize well to other domains. Thus, kNN-LM
allows a single model to be effective in multiple domains, by simply adding a datastore per domain.

5 TUNING NEAREST NEIGHBOR SEARCH

While the kNN-LM is conceptually straightforward, and requires no training, a number of hyperpa-
rameters are introduced for nearest-neighbor search. We experiment with different choices here.

Key Function For similarity search, we extract a representation of context c using an intermedi-
ate state of the LM f(c). Transformers compute a number of different intermediate states, and we
compare several choices depicted in Figure 3, with results shown in Table 5. While all the instanti-

5



Under review as a conference paper at ICLR 2020

Training Data Datastore Perplexity (↓)
Dev Test

Wiki-3B - 38.09 38.13
Books-1B - 12.97 13.74

Wiki-3B Books-1B 12.74 15.07

Table 4: Domain Adaptation experiments, with results on BOOKS-1B. Adding an in-domain datas-
tore to a Wikipedia-trained model improves results by 23 points, approaching in-domain training.

Multi Headed 
Self Attention

Feed Forward Network

+

Layer Norm

Layer Norm

+

Figure 3: Transformer LM layer.

Key Type λ Dev ppl. (↓)

No datastore - 17.96
Model output 0.1 17.07
Model output layer normalized 0.1 17.01
FFN input after layer norm 0.25 16.06
FFN input before layer norm 0.1 17.06
MHSA input after layer norm 0.1 16.76
MHSA input before layer norm 0.1 17.14

Table 5: WIKITEXT-103 validation results using dif-
ferent states from the final layer of the LM as the rep-
resentation function f(·) for keys and queries. We re-
trieve k=1024 neighbors and λ is tuned.

ations of f we tried are helpful, we achieved the largest improvement by using the input to the final
feedforward network. We also observe that normalized representations (i.e. taken immediately after
layer norm) perform better. Repeating the experiment on the second-last transformer layer showed
similar results (not shown), suggesting that the feedforward layer might be focusing more on the
prediction problem, while the onus of representing the input falls more on the self-attention layer.

Number of Neighbors per Query Each query returns the top-k neighbors. Figure 4 shows that
performance monotonically improves as more neighbors are returned, and suggests that even larger
improvements may be possible with a higher value of k. Nonetheless, even a small number of
neighbors (k = 8) is enough to achieve a new state of the art.

Interpolation Parameter We use a parameter λ to interpolate between the base model distribution
and the distribution from kNN search over the dataset. Figure 5 shows that λ = 0.25 is optimal on
WIKITEXT-103. However, we found λ = 0.8 improved domain adaptation results (Figure 5).

Precision of Similarity Function The nearest-neighbor search algorithm computes similarities
against quantized keys. We found results were improved from 16.5 perplexity on Wikitext-103 to
16.06 by recomputing similarities with full precision keys in Equation 2.

6 ANALYSIS

Qualitative Analysis To understand why kNN-LM improves performance, we manually examine
cases in which pkNN was significantly better than pLM. Table 6 shows one such example, along with
several others in Appendix A. The example shows an interesting case where the model matches the
trigram impact on the in several retrieved neighbors, but puts almost all weight on the most relevant
neighbor, thus adding more value than an n-gram LM.

In general, we find that examples where kNN-LM is most helpful typically contain rare patterns.
Examples include factual knowledge, names, and near-duplicate sentences from the training set. In
these cases, assigning train and test instances similar representations (via f(·)) appears to be an
easier problem than implicitly memorizing the next word in model parameters.
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Figure 4: Effect of the number of nearest-
neighbors returned per word on WIKITEXT-103
(validation set). Returning more entries from the
datastore monotonically improves performance.
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Figure 6: Example where the kNN model has much higher confidence in the correct target than the
LM. Although there are other training set examples with similar local n-gram matches, the nearest
neighbour search is highly confident of specific and very relevant context.

Simple vs Neural Representation We observe that many long-tail phenomena manifest as rare
n-grams (e.g. names). Is it therefore possible to interpolate an n-gram model with a Transformer
LM, as an alternative to our kNN approach? Figure 7 shows little improvement from using n-gram
LMs – 0.2 perplexity points (similarly to Bakhtin et al. (2018)). This result highlights the need to
use the learned representation function f(·) to measure similarity between more varied contexts.

Implicit vs Explicit Memory If a neural representation function is crucial for kNN-LM, could
implicitly memorizing the training dataset in the neural network parameters replace the explicit
memory in the datastore? To test this, we train a Transformer LM with no dropout. Figure 8 shows
that this model eventually reaches zero training loss, indicating that it can make perfect predictions
for all examples in the training set; the model has memorized the dataset. Naturally, the memorizing
LM overfits, i.e. the training loss drops to 0 while the best validation perplexity is much higher at
28.59. For comparison, the vanilla transformer LM (with dropout) has a much higher training loss
(shown in Figure 8), but also generalizes better with a validation perplexity of 17.96. This result
shows that the transformer has sufficient capacity to memorize the training set.

We consider whether the memorizing LM can be an effective substitute for nearest neighbor search.
Interpolating the memorizing LM with the original LM improves validation perplexity by just 0.1
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Figure 7: Interpolating the transformer LM with
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Using kNN-LM gives a much lower perplexity,
suggesting that the representations are learning
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Figure 8: Training curves for the Transformer
LM with and without dropout. Turning off
dropout allows the training loss to go to 0, in-
dicating that the model has sufficient capacity to
memorize the training data.

– compared to 1.9 from kNN-LM. This result suggests that although the transformer is expressive
enough to memorize all training examples, learning to do so does not result in context representations
that generalize. In contrast kNN-LM memorizes training data while improving generalization.

From these experiments, we conjecture that kNN-LM improves performance because (1) the Trans-
former LM is very good at learning a representation function for contexts with an implicit notion
of similarity, and (2) while the Transformer has capacity to memorize all training examples, doing
so causes its representation to generalize less effectively, but (3) the kNN-LM allows the model to
memorize the training data while retaining an effective similarity function.

7 RELATED WORK

We discuss related uses of caches for language modeling in Section 2.

Similar kNN models to ours have been proposed for computer vision tasks (Papernot & McDaniel,
2018; Orhan, 2018; Zhao & Cho, 2018), primarily motivated by improving interpretability and ro-
bustness to adversarial attacks. We hypothesize that our method may be particularly effective for
language modeling, because plentiful unlabeled data allows datastores of billions of tokens, and
language modeling often requires world knowledge to be learnt from few examples.

Several models have also improved language generation by using training examples directly at test
time. Guu et al. (2018) describe an LM that samples training sentences and edits them with a
sequence-to-sequence model. Gu et al. (2018) introduce a translation model that attends over re-
trieved training set examples. Weston et al. (2018) improve a dialogue response generation model
by refining similar instances from the training set. kNN-LM differs from these approaches by work-
ing at the level of individual tokens instead of whole training sentences.

A general trend in machine learning, and in language modeling in particular, is that adding more
data consistently improves performance (Devlin et al., 2019; Radford et al., 2019; Yang et al., 2019;
Liu et al., 2019; Zellers et al., 2019; Shoeybi et al., 2019). Our work offers an alternative method
for scaling language models, in which relatively small models learn context representations, and a
nearest-neighbour search acts as a highly expressive classifier.

8 CONCLUSION AND FUTURE WORK

We have introduced kNN-LMs, which can significantly outperform standard language models by
directly querying training examples at test time. The approach can be applied to any neural language
model. The success of this method suggests that learning similarity functions between contexts may
be an easier problem than predicting the next word from a context. Future work should explore
explicitly training similarity functions, and reducing the size of the datastore.
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A APPENDIX

This section provides several examples where pkNN places higher probability mass on the true target,
compared to pLM.

Test Context (pkNN = 0.995, pLM = 0.025) Test Target

For Australians and New Zealanders the Gallipoli campaign came to sym-
bolise an important milestone in the emergence of both nations as indepen-
dent actors on the world stage and the development of a sense of national
identity. Today, the date of the initial landings, 25 April, is known as An-
zac Day in Australia and New Zealand and every year thousands of people
gather at memorials in both nations, as well as Turkey, to...

honour

Training Set Context Training
Set Target

Context
Probability

Despite this, for Australians and New Zealanders the Gallipoli campaign
has come to symbolise an important milestone in the emergence of both
nations as independent actors on the world stage and the development of a
sense of national identity. Today, the date of the initial landings, 25 April,
is a public holiday known as Anzac Day in Australia and New Zealand and
every year thousands of people gather at memorials in both nations, and
indeed in Turkey, to ...

honour 0.995

On the anniversary date of his death, every year since 1997, thousands of
people gather at his home in Memphis to...

celebrate 0.0086

Twenty-five years after Marseille’s death, fighter pilot veterans of World
War II gathered to...

honour 0.0000041

Table 6: Another example where the kNN model places much higher probability mass on the correct
target, compared to the LM. The nearest neighbors search has retrieved a training set context that is
extremely similar to the test context, while very rare and in the long-tail of patterns.

Test Context (pkNN = 0.959, pLM = 0.503) Test Target

U2 do what they’re best at, slipping into epic rock mode, playing music
made for the arena”. In two other local newspaper reviews, critics praised
the song’s inclusion in a sequence of greatest hits. For the PopMart Tour of
1997–...

1998

Training Set Context Training
Set Target

Context
Probability

Following their original intent, ”Sunday Bloody Sunday” was not played
during any of the forty-seven shows on the Lovetown Tour in 1989. The
song reappeared for a brief period during the Zoo TV Tour, and late during
the second half of PopMart Tour (1997–...

1998 0.936

They are 6 times Champions and they won the Challenge Cup in 1938, and
have experienced two previous stretches in the Super League, 1997–...

2002 0.0071

About $40 million ($61.4 million in 2018 dollars) was spent on the property
acquisition. After weather-related construction delays due to the El Nino
season of the winter of 1997–...

1998 0.0015

This made it the highest-rated season of The X-Files to air as well as the
highest rated Fox program for the 1997–...

98 0.00000048

Table 7: In this example, the desired date pattern appears in many examples. Yet, the nearest
neighbors search is able to identify the only training set context which is relevant to the test context
and assigns it the highest probability mass.
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Test Context (pkNN = 0.624, pLM = 0.167) Test Target

Lord Strathcona awarded Gauthier a scholarship in 1906 that allowed her
to return to Europe and continue her vocal studies. She returned there and
continued both to study and give performances. Her first operatic perfor-
mance came in 1909 in Pavia, Italy as Micaela in Bizet’s...

Carmen

Training Set Context Training
Set Target

Context
Probability

Despite poor relations with the orchestra, Mahler brought five new operas
to the theatre, including Bizet’s...

Carmen 0.356

The fourth movement of An die Jugend (1909), for instance, uses two of
Niccolo Paganini’s Caprices for solo violin (numbers 11 and 15), while the
1920 piece Piano Sonatina No. 6 (Fantasia da camera super Carmen) is
based on themes from Georges Bizet’s...

opera 0.0937

It also hosted the Ballet of her Majesty’s Theatre in the mid-19th century,
before returning to hosting the London premieres of such operas as Bizet’s...

Carmen 0.0686

Table 8: In this case, the model is able to memorize the fact that Georges Bizet wrote Carmen.

Test Context (pkNN = 0.031, pLM = 0.007) Test Target

Mycena maculata bears some resemblance to M. <unk>, but is only as-
sociated with decaying hardwood logs and stumps, and is found in eastern
North America, and sometimes on oak on the West Coast. In age, it...

develops

Training Set Context Training
Set Target

Context
Probability

Morchella tridentina (=Morchella frustrata) is also rufescent and very sim-
ilar to M. rufobrunnea. It is found in mountainous forests and maquis and
forms a marked sinus at the attachment of the cap with the stem, which is
pure white. At maturity, it...

develops 0.031

The winter bonnet (M. tintinnabulum) is a northern European species that
is much smaller (cap diameter up to 2.6 cm (1.0 in) across) and has a brown
cap, and has ragged hairs at the base. It...

generally 0.029

The ”bleeding” will distinguish Mycena atkinsoniana from most other
Mycena species commonly encountered. The common and widely dis-
tributed M. sanguinolenta is another ”bleeder”, but it is smaller than M.
atkinsonia, with a cap diameter ranging from 3 to 15 mm (0.1 to 0.6 in).
Additionally, it...

has 0.028

Mycena flavoalba bears resemblance to some members of the genus
Hemimycena, such as H. lactea and H. <unk>. It...

can 0.018

Table 9: This is an example where the pkNN distribution is relatively flat, as several words are
plausible continuations. However, the nearest neighbors search assigns the highest probability to
the correct target and a corresponding context that is particularly relevant. In contrast, the LM
probability on the correct target is lower.
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