
Under review as a conference paper at ICLR 2020

WORD EMBEDDING RE-EXAMINED: IS THE SYMMET-
RIC FACTORIZATION OPTIMAL?

Anonymous authors
Paper under double-blind review

ABSTRACT

As observed in previous works, many word embedding methods exhibit two in-
teresting properties: (1) words having similar semantic meanings are embedded
closely; (2) analogy structure exists in the embedding space, such that “Paris is
to France as Berlin is to Germany”. We theoretically analyze the inner mecha-
nism leading to these nice properties. Specifically, the embedding can be viewed
as a low rank transformation from the word-context co-occurrence space to the
embedding space. Such embedding transformation will preserve the relative dis-
tances among words. Furthermore, by explicitly revealing the effect of parameter
α in the embedding transformation, we argue the symmetric factorization (e.g.,
word2vec) can be suboptimal in some cases and α should be tuned. We pro-
pose a method to find the optimal α. The experiments on real datasets verify our
analysis.

1 INTRODUCTION

Word embedding is a very important task in natural language processing. Many different approaches
have been proposed, including LSA (Deerwester et al., 1990), word2vec (Mikolov et al., 2013a;b),
GloVe (Pennington et al., 2014) and others. These methods have achieved huge success in informa-
tion retrieval (Salton & Buckley, 1988), entity recognition (Lample et al., 2016), sentiment analysis
(Socher et al., 2013), machine translation (Sutskever et al., 2014) and so on.
The success of word embedding is due to the fact that the learnt vector representation can capture
the semantic meanings of the words. For example, the vector representation has two nice properties:
(1) words with similar semantic meanings are embedded closely in the embedding space (Mikolov
et al., 2013b; Pennington et al., 2014; Levy et al., 2015); (2) analogy structure exists in the word
embedding, e.g., “woman is to queen as man is to king”. So a natural question is why these nice
properties exist? In this paper, we reveal the inner mechanism that leads to these nice properties.
As demonstrated in previous papers, word embeddings (e.g., word2vec1) can be formulated as a
matrix factorization problem. For example, Levy & Goldberg (2014b) and Yin & Shen (2018) show
that word2vec is implicitly doing a symmetric matrix factorization and the original word-context
co-occurrence matrix in this case is the shifted pointwise mutual information (PMI) matrix. Caron
(2001),Turney (2012), Bullinaria & Levy (2012) and Levy et al. (2015) all empirically observe that
the parameter α in word embedding E = Ud ·Σα

d
2 has an important influence to the performance

and suggest that α should be tuned. However, the reason is not theoretically clear (Levy et al.,
2015). So a natural question now arises: how does the parameter α influence the word embedding
and which value should α be? To summarize, this research is motivated by two questions:

1. What is the inner mechanism resulting in the good properties of word embedding?

2. How does the parameter α influence the embedding and can we find a method to determine
its optimal value?

We make the following contributions in this paper:

1In this paper, we refer word2vec as the skip-gram with negative-sampling training method proposed in
Mikolov et al. (2013a;b).

2We will explain the meaning of these variables (e.g., Ud) in the following sections.

1



Under review as a conference paper at ICLR 2020

• Based on previous works, we can see the embedding as a linear transformation. We re-
veal how the relative distances between words change during this transformation process.
The nice properties of word embeddings are inherited from the original word-context co-
occurrence matrix.

• We theoretically analyze the influence of parameter α on the embedding, thus answering the
question if the symmetric factorization (e.g., word2vec) is better. In fact, the symmetric
factorization can be suboptimal in some cases and we can make improvements.

• We propose a method to measure how the relative distances between words change dur-
ing the embedding process. By optimizing this measurement, we can learn a good α for
word embedding. Besides, we propose an idea to leverage the effect of α into the origi-
nal word2vec neural network structure to break the symmetric constraint. We conduct
experiments on real datasets to verify our ideas.

The following sections are organized as follows: section 2 introduces the background knowledge
and necessary preliminaries; section 3 shows how the relative distances between words change dur-
ing this linear transformation and it is the inner reason incurring these nice properties of word em-
bedding. Based on such analysis, section 4 shows that symmetric factorization can be suboptimal
and how to improve the word embedding model with asymmetric factorization. Section 5 contains
the experiments on real datasets and section 6 discusses the related work. Finally, section 7 is the
conclusion and describes a potential work.

2 BACKGROUND AND PRELIMINARIES

The goal of word embedding is to find a good vector representation for every word in a corpus.
As summarized in Yin & Shen (2018), most existing word embedding methods can be formulated
as low rank matrix approximations. So we can analyze the word embedding algorithms (e.g.,
word2vec) within the matrix factorization framework. Suppose M ∈ Rn×n is the word-context
matrix where Mi,j represents some statistics between word wi and its context word wj . These word
embedding algorithms are seeking a d-dimension word embedding matrix E ∈ Rn×d accompanied
with a context embedding matrix C ∈ Rn×d to approximate the word-context matrix M , such that
M ≈ ECT . The matrix M can have different forms due to the design of objective function in
every embedding method. For example, M is the shifted pointwise mutual information matrix in
the word2vec.

Explicitly performing singular value decomposition. This kind of methods can be summarized as
follows. Firstly, a word-context matrix M is constructed to capture some co-occurrence statistics of
every word and its context. For example, M can be the pointwise mutual information (PMI) matrix
(Church & Hanks, 1990), positive PMI (PPMI) matrix (Bullinaria & Levy, 2012) and Shifted PPMI
(SPPMI) matrix (Levy & Goldberg, 2014b). Then, SVD is used to factorize the word-context matrix
M as M = U ·Σ ·V T . Finally, only the top d singular values in Σ and the corresponding columns
in U and V are kept, producing Σd, Ud and Vd respectively. The word embedding E ∈ Rn×d is
obtained by E = Ud or E = Ud ·Σd.
Caron (2001), Turney (2012), Bullinaria & Levy (2012) and Levy et al. (2015) discussed a more
general approach which adds a parameter α to the truncated diagonal matrix Σd and obtain the
word embedding E = Ud ·Σα

d . They observe α has an important influence on the embedding and
suggest this parameter should be tuned. However, the reason is not theoretically clear and no clear
method has been provided to tune α yet.

Implicitly performing matrix factorization. Recently, word embedding methods based on neural
networks have been proposed (e.g., Bengio et al. (2003)). Particularly, Mikolov et al. (2013a;b)
proposed a popular word embedding approach word2vec based on the skip-gram with negative-
sampling and it achieves the state-of-the-art results in different tasks. Besides, GloVe is another
widely used word embedding method (Pennington et al., 2014). While word2vec and GloVe
learn word embeddings by optimizing some objective functions using stochastic gradient methods, it
has been shown that these two methods are implicitly performing matrix factorizations. Specifically,
Levy & Goldberg (2014b) showed word2vec is implicitly factorizing the shifted Pointwise Mutual
Information matrix. Levy et al. (2015) showed the GloVe is implicitly factorizing the log-count

2



Under review as a conference paper at ICLR 2020

word-context co-occurrence matrix. So these two neural network based embedding methods can
also be formulated within the matrix factorization framework, and the parameter α equals to 0.5 as
they are doing symmetric factorization of some word-context co-occurrence matrix M .

To summarize, same as the first assumption in Yin & Shen (2018), our analysis assumes the word
embeddings can be formulated as low rank matrix approximations, either explicitly or implicitly.
Specifically, the embedding matrix E equals to Ud ·Σα

d where Ud, Σd and α are as defined before.

3 ANALYSIS: THE REASON WHY THE EMBEDDING EXHIBITS NICE
PROPERTIES

Our start point is the relation between word embedding and matrix factorization. As mentioned
in section 2, almost all word embedding methods can be formulated as explicit or implicit matrix
factorization (e.g., word2vec is implicitly doing a symmetric factorization on the shifted pointwise
mutual information matrix). We adopt the same notation in previous papers (Levy et al., 2015; Yin
& Shen, 2018) to write M = UΣV T as the SVD of some word-context co-occurrence matrix
M . For example, M can be the pointwise mutual information matrix. Besides, Σd is the truncated
diagonal matrix containing top d singular values. Ud and Vd are the corresponding truncated U and
truncated V respectively. The d-dimension word embedding matrix E is obtained by multiplying
Ud with a power of Σd,

E = Ud ·Σα
d (1)

3.1 WORD EMBEDDING AS LOW RANK TRANSFORMATION

The embedding E in equation 1 is indeed a low rank transformation from the original word-context
co-occurrence space M . Let us define another diagonal matrix Σpse = diag(σ1, . . . , σd, 0, . . . , 0)
whose first d elements are the singular values in Σ and the remaining diagonal elements are zeros.
We have the following observation.
Observation 1. E is the first d columns of Epse

Epse = M · V ·Σ(α−1)
pse (2)

The proof is in Appendix A.1.

Observation 1 reveals the process to compute E: (1) first multiplying the matrix V to the right side
of M ; (2) then multiplying the diagonal matrix Σ

(1−α)
pse on the intermediate result MV ; (3) finally

removing the last n− d columns of M ·V ·Σ(α−1)
pse . The first step in this transformation process is

a rotation because the matrix V is a unitary matrix. So the relative distances between words are not
changed during the first transformation. In the second step, the matrix Σpse is a diagonal matrix and
it is multiplied on the right side of MV . So the second step scales every dimension of the rotated
matrix. Because we keep the first d dimensions in the final step, we only care about the scaling in
the first d dimensions which are determined by the corresponding d singular values with a power α.

By explictly expressing the process which transforms the word-context co-occurrence matrix M to
the embedding matrix E, we can find a fact that the relative distances between words only changes
within the scaling step. Considering vectors of all words are scaled the same at every dimension, it
seems that the relative distances among words should be preserved to some extent. In fact, we have
the following two theorems:

Theorem 1. For any two words wi and wj , if ‖Mi,: −Mj,:‖2 ≤ δ (δ ≥ 0), then ‖Ei,: −Ej,:‖2 ≤
σ
(α−1)
d δ.

Theorem 2. For any two words wi and wj , if ‖Ei,: −Ej,:‖2 ≤ δ (δ ≥ 0), then ‖Mi,: −Mj,:‖2 ≤
σ
(1−α)
1 δ + 2(

∑n
k=d+1 σ

2
k)

1/2.

The formal proof of theorem 1 and theorem 2 is in appendix A.2 and A.3.

3



Under review as a conference paper at ICLR 2020

These two theorems describe how the relative distances (measured in Euclidean distance) among
words change during the embedding transformation. Particularly, theorem 1 shows that if the
distance between two words wi and wj in M space is no more than δ, their distance in the
embedding space is also within a constraint. This bound is related with the singular value σd and
the parameter α. So theorem 1 implies that the relative distances between words will not change
dramatically during this transformation from M to E with suitable α. Theorem 2 demonstrates that
if we observe two words are embedded closely in E (‖Ei,: −Ej,:‖2 is small), we can infer these
two words are also close in the original M space. To sum up, the above two theorems indicate the
neighborhood structure (relative distances to other words) for every word will be preserve to some
extent during the transformation from M to E. In other words, matrix E inherits the neighborhood
structure that exists in M . As the result, E will inherit the properties in M that are related with the
relative distances among words. Now we can answer the question raised in the introduction: What
is the inner mechanism resulting in the good properties of word embedding? In fact, we will show
that these properties are the result of inheritance of neighborhood structure.

3.2 THE INNER MECHANISM RESULTING IN THE NICE PROPERTIES IN THE EMBEDDING

Let us focus on two important properties in E: (1) words with similar semantic meanings are
likely to be embedded closely in the embedding space; (2) the word embedding tends to exhibit the
analogy structure, e.g., “woman is to queen as man is to king”. Note that these two properties are
related with the relative distances among words. So, considering the previous analysis which shows
matrix E inherits the neighborhood structure existing in M , these two properties in E also inherits
from M as the result.

Words with similar semantic meanings are embedded closely. Harris (1954) indicated
that if two words have almost identical environments we say that they are synonyms.. In other
words, two words will have similar neighbors if they have similar semantic meanings. It means
the corresponding rows in the word-context co-occurrence matrix M should be close for these
words. So the words with similar semantic meanings are also close in the M space which has
been empirically verified in Levy et al. (2015). Remember that theorem 1 shows if the distance
between two words in M is close (within a small range δ), these two words in E will also be
close due to this low rank transformation process from M to E. So the low rank transformation
in fact makes the embedding E inherit this property existing in the original word-context matrix M .

The analogy structure in the embedding. Different from word similarity which is about the
relative distance between two words (e.g., king and queen), the analogy structure is related with the
relative distance between two pairs (e.g., (king, queen) and (man, woman)). So let us first examine
how the relative distance between two pairs change during the embedding process.

Theorem 3. Let Mγ1,:, Mγ2,:, Mβ1,: and Mβ2,: be four rows in M matrix. Denote Mγ =
(Mγ1,: − Mγ2,:) and Mβ = (Mβ1,: − Mβ2,:). If ‖Mγ,: −Mβ,:‖2 ≤ δ (δ ≥ 0), then
‖Eγ,: −Eβ,:‖2 ≤ σ

(α−1)
d δ.

Theorem 4. Let Mγ1,:, Mγ2,:, Mβ1,: and Mβ2,: be four rows in M matrix. Denote Mγ =
(Mγ1,: − Mγ2,:) and Mβ = (Mβ1,: − Mβ2,:). If ‖Eγ,: −Eβ,:‖2 ≤ δ (δ ≥ 0), then
‖Mγ,: −Mβ,:‖2 ≤ σ

(1−α)
1 δ + 4(

∑n
k=d+1 σ

2
k)

1/2.

The proof of theorem 3 and theorem 4 is in appendix A.4 and A.5, which is quite similar to the
proof of theorem 1 and theorem 2.

Theorems 3 and 4 show that the relative distance between two pairs will not change dramatically dur-
ing the embedding process either. In other words, the relative distance between pairs of words will
be preserved during the embedding transformation from M to E. Furthermore, Levy & Goldberg
(2014a) revealed a fact that the original word-context co-occurrence M (e.g., M can be the PPMI
matrix)3 also exhibits the analogy structure, such that Mking −Mqueen ≈Mman −Mwoman. So

3The word-context co-occurrence matrix M is called explicit representation in Levy & Goldberg (2014a)

4



Under review as a conference paper at ICLR 2020

summerwinter
autumn

rainy

spring

summerswinters

monsoonnights

warmestcoldest

snowfallprecipitation
humidity
temperatures

seasonsclimateshumid year
windy

freezing

(a) α = 0.0

summer
winter

autumn

rainy

spring

summers
nights

winters

monsoon
snowfall

warmestcoldest

seasons

precipitation

year
days

temperatures

weekend

windy
sunny

humidity

(b) α = 0.5

summer
winterautumn

rainy

spring

summers

nights

winters

monsoon

snowfall warmest

coldest

seasons

precipitation
year

days

temperatures
weekend

windy

sunny

humidity

(c) α = 1.0

Figure 1: Illustration of the local neighborhood structure in the embedding space E = Ud · Σα
d

with different α. From (a) to (c): t-SNE (Maaten & Hinton, 2008) visualization of the nearest 20
neighbors of an arbitrarily chosen word summer with α equals to 0.0, 0.5 and 1.0 respectively. More
results corresponding other α can be founded in appendix A.8.

theorems 3 and 4 together with this fact indicate the analogy structure in E also inherits from M
as the result of distance preserving in such low rank transformation process.

4 IMPROVEMENT: WORD EMBEDDING PRESERVING THE DISTANCE
STRUCTURE BETTER

In previous section, we reveal the inner mechanism why the embedding exhibits such nice prop-
erties. Namely, the embedding is in fact a low rank transformation from M to E and the relative
distances between words are preserved during such process. As a result, the embedding matrix E
inherits these nice properties existing in the original word-context co-occurrence matrix M (e.g.,
the PMI matrix). Particularly, theorem 1, 2, 3 and 4 show that the parameter α has an important
influence on how the relative distances between words change. For example, we arbitrarily select
a word summer in the corpus4 and plot its nearest 20 neighbors with α equal to 0.0, 0.5 and 1.0
respectively. Figure 1 shows that the neighborhood of summer changes with different α. This ob-
servation gives us an inspiration that we can learn the embedding E = Ud ·Σα

d by selecting a good
α, thus preserving the relative distances among words during the embedding transformation process.

Preserving neighborhood structure better by choosing optimal α for embedding E = Ud ·Σα
d .

Let gX (w) represent the neighbors of word w in X space, e.g., X can be the word-context co-
occurrence matrix M or the embedding matrix E. Let l(·, ·) be a correlation function measuring the
similarity of two different neighborhoods. This measurement captures how much the neighborhood
structure changes incurred by the embedding process. For example, if we consider the top knn
nearest neighbors as gX (·) and ignore the order of these nearest neighbors, gX (w) can be viewed as
a set and l can be a similarity measurement defined on sets (e.g., Jaccard Similarity). Otherwise, if
we consider the order of neighbors, gX (w) can be a ranking list such that the neighbors are ranked
by their relative distance to w, and l now can be a measurement about the correlation between two
rankings. We use L to denote the aggregated similarity score over all words

L =
1

n

∑
w∈W

l(gM (w), gE(w)) (3)

where W is the word vocabulary to consider and its size is n. Based on previous analysis, we argue
we can select an optimal α for embedding E = Ud · Σα

d to preserve the relative distances among
words during the embedding transformation, such that

α? = argmax
α

1

n

∑
w∈W

f(gM (w), gE(w)) (4)

4We will introduce the corpus in section 5

5



Under review as a conference paper at ICLR 2020

Leveraging the effect of α into the original word2vec network structure. The above analysis
is based on the view that we compute the embedding matrix E by SVD such that E = Ud · Σα

d .
We can also think about to incorporate the effect of α into the original word2vec neural network
structure. The original word2vec implicitly performing a symmetric factorization, thus implying
the α equal to 0.5. Here, we consider to leverage the influence of α directly into the word2vec
structure. Consider the embedding E = Ud ·Σα

d and the context C = Σ
(1−α)
d ·V T

d learnt by SVD,

we have log(‖ei‖22)
log(‖ei‖22‖ci‖

2
2)

= α 5, where ei and ci are the word vector wi and the context vector of wi
respectively. We put it as a regularization term in the original word2vec objective function to add
the influence of different α to the embedding learnt by word2vec. The detailed derivation is in
appendix A.6.

To summarize, the α parameter in the embedding matrix E = Ud ·Σα
d influences how the relative

distances between words change during the embedding process, thus influencing the quality of the
learnt embedding matrix. We propose a method to choose the optimal α by preserving the relative
distance among words during the embedding transformation. Besides, we come up with an idea to
incorporate the effect of α into the original word2vec architecture. In the next section, we will test
these ideas on real experiments.

5 EXPERIMENTS

In this section, we conduct experiments to verify our previous analysis. The first is to verify that
a good embedding does maximize the correlation defined in equation 3 which measures to which
extent the neighborhood structure is preserved during the embedding transformation. The second
is to test if the proposed method to incorporate α into original word2vec architecture really has
improvements.

5.1 EXPERIMENT SETTINGS

Corpus We use the Text9 corpus (Mahoney, 2011) which is a standard benchmark used for various
natural language tasks. We follow the same pre-processing steps in Levy et al. (2015).

Word Similarity Task There are six datasets acting as the ground truth: WordSim353 (Finkelstein
et al., 2002) and its two subsets WS Similarity and WS Relatedness (Zesch et al., 2008; Agirre
et al., 2009), Bruni MEN (Bruni et al., 2012), Radinsky Mechanical Turk (Radinsky et al., 2011)
and Luong Rare Words (Luong et al., 2013). These datasets6 contain word pairs together with
human-assigned similarity scores. Same as Levy et al. (2015), word embedding is evaluated by
the correlation between the similarity computed by the embedding vector and the human-assigned
similarity score. The function to compute correlation is the Spearman’s correlation (same as Levy
et al. (2015)) Note that we discard the pairs in the test file if it contains a word that does not appear
in the text9 corpus. We use the word similarity task as an example for verifying the proposed
method (equation 3 and equation 4) to learn the optimal α for word embedding E = Ud ·Σα

d , and
the proposed method to improve word2vec.

The codes used for the SVD embedding is adapted from https://bitbucket.org/
omerlevy/hyperwords and the codes used to learn the word2vec embedding is adapted from
https://github.com/theeluwin/pytorch-sgns. We store the codes in a shared drop-
box folder 7 for the double-blind review.

5Suppose we only consider the words for which ‖ei‖22 ‖ci‖
2
2 6= 1, to avoid the case that zero appears in the

denominator.
6These datasets can be downloaded from https://bitbucket.org/omerlevy/hyperwords
7The dropbox link is https://www.dropbox.com/sh/5d5j4pthcgzutdf/

AABUvZPJpxUo8ugff1gQ7fIQa?dl=0

6

https://bitbucket.org/omerlevy/hyperwords
https://bitbucket.org/omerlevy/hyperwords
https://github.com/theeluwin/pytorch-sgns
https://bitbucket.org/omerlevy/hyperwords
https://www.dropbox.com/sh/5d5j4pthcgzutdf/AABUvZPJpxUo8ugff1gQ7fIQa?dl=0
https://www.dropbox.com/sh/5d5j4pthcgzutdf/AABUvZPJpxUo8ugff1gQ7fIQa?dl=0


Under review as a conference paper at ICLR 2020

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

co
rr

el
at

io
n

sc
or

e

bruni men

(a) bruni men testset

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.45

0.46

0.47

0.48

0.49

0.50

0.51

co
rr

el
at

io
n

sc
or

e

Luong

(b) Luong testset

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

co
rr

el
at

io
n

sc
or

e

radinsky

(c) radinsky testset

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.60

0.62

0.64

0.66

0.68

0.70

co
rr

el
at

io
n

sc
or

e

ws relatedness

(d) ws relatedness testset

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.76

0.77

0.78

0.79

0.80

0.81

co
rr

el
at

io
n

sc
or

e

ws similarity

(e) ws similarity testset

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

parameter ↵

0.69

0.70

0.71

0.72

0.73

0.74

0.75

co
rr

el
at

io
n

sc
or

e

ws353

(f) ws353 testset

Figure 2: Compare the best α (black vertical line) in terms of the performance on the word similarity
task and the best α? (blue vertical line) in terms of equation 4. α? is searched from [−1, 1] with 0.1
as increment. From (a) to (e): y-axis is the correlation between the embedding score and the human
assignend score. x-axis is different α.

Table 1: The performance and similarity corresponding to α = 0 (SVD embedding) and α = 0.5
(symmetric embedding). Left is the peformance on every testset and right is the similarity computed
by equation 3, considering the words appearing in that testset.

α bruni men Luong radinsky ws relatedness ws similarity ws353
0.0 0.746 / 0.492 0.507 / 0.469 0.588 / 0.507 0.667 / 0.552 0.786 / 0.533 0.737 / 0.549
0.5 0.759 / 0.518 0.509 / 0.475 0.666 / 0.525 0.701 / 0.573 0.812 / 0.558 0.750 / 0.569

5.2 RESULTS

Firstly, let us verify that if the embedding E = Ud ·Σα
d is good (measured by the performance on

the word similarity testsets), the embedding E should preserve the relative distances between words
better (measured by equation 3). We use the “vanilla” setting in Levy et al. (2015) to construct
the positive PMI (PPMI) matrix as M : window size is 2, no dynamic context window and no
subsampling, the number of negative samples is 1 and the context distribution smoothing parameter
is 1.0. For equation 3, We only consider the nearest neighbor for gX and use Jaccard Similarity
as the l(·, ·). Note that each testset only contains a subset of words in text9, and we also compute
the overall correlation (the L in equation 3) considering the words in the corresponding testset. The
result is in figure 1. Figure 1 shows that the performance (measured by these six word similarity
groundtruth) and the proposed measurement are highly correlated, such that, for every testset, if
α achieves high score word similarity test, the corresponding measurement in equation 3 is also
high. More details can be found in appendix A.7. Besides we test whether the α? in equation 4
really corresponds to α that achieves the best performance on the word similarity task. We plot the
performance of E = U ·Σ with different α in figure 2. The black vertical line corresponds to α that
achieves best accuracy and the blue vertical line corresponds to the α? learnt by equation 4. We can
see that α? is very near to the optimal point in almost all datasets. The only exception is the Luong
testset, which contains many rare words. We infer the reason is that the corpus cannot effectively
capture this testset because more than two thirds words in Luong testsets are not in the text9 corpus.

Secondly, we test the effect that incorporating α into word2vec. Table 2 is the performance of the
original word2vec with α equals to 0.3 and 0.5 .According to the result (the gold line) in figure 2,

7



Under review as a conference paper at ICLR 2020

Table 2: The results of incorporating α to the original word2vec.

α bruni men Luong radinsky ws relatedness ws similarity ws353
0.3 0.70680 0.45004 0.67119 0.63262 0.77532 0.71247
0.5 0.70475 0.43613 0.67177 0.63733 0.77679 0.71309

if we push the α from 0.5 to 0.3, the performance in the Luong testset should become better and the
performance in all other testsets should drop. The results in table 2 is same with this inference. The
only exception is the bruni men testset. We infer the reason is that the performances with α = 0.3
and α = 0.5 are very close (see gold line in figure 2 (a)).

6 RELATED WORK

Explanation about the analogy structure. Mikolov et al. (2013c) observed the analogy struc-
ture existing in the embedding created by a neural network. Levy & Goldberg (2014a) afterwards
found the same property also exists in the original word-context co-occurrence matrix. Levy &
Goldberg (2014a) infers neural embedding process is not discovering novel patterns, but rather is
doing a remarkable job at preserving the patterns inherent in the word-context co-occurrence ma-
trix. However, it is not clear how the neural embedding process preserves such property. Later,
several explanations were been proposed to explain the reason (Arora et al., 2016; Gittens et al.,
2017; Allen & Hospedales, 2019; Ethayarajh et al., 2018). For example, Gittens et al. (2017) and
Allen & Hospedales (2019) referred to the paraphrasing to explain the analogy structure. Different
from these previous studies, we analyze word embedding from the low rank transformation per-
spective and we reveal the inner mechanism how this property is inherited during the embedding
transformation process.
Explanation about the α. The influence of α on the quality of word embedding has been observed
in (Caron, 2001; Turney, 2012; Bullinaria & Levy, 2012; Levy et al., 2015). These works empir-
ically find that α has an important influence to the embedding and suggest this parameter should
be tuned. However, the reason is not theoretically clear and no clear method has been provided to
tune the α. Yin & Shen (2018) is the only work we know which discusses the meaning of α from
the pairwise inner product (PIP) loss perspective. But their findings have some contradiction to the
real experiments in Caron (2001),Turney (2012), Bullinaria & Levy (2012) and Levy et al. (2015).
Specifically, the analysis in Yin & Shen (2018) suggests small α is easier to result in over-fitting and
lead to the performace drop, which implies that larger α is better. However, the real experiments
in other papers show the performance also drops with very large α. To summarize, we explain
the meaning of α in the word embedding transformation which once was not theoretically clear.
Futhermore, we propose a method to find the best α for word embedding.

7 CONCLUSION

In this paper, we reveal the inner mechanism that leads to the nice properties in the embedding ma-
trix. Specifically, the embedding process is in fact a low rank transformation process from the word-
context co-occurrence space M to the embedding space E. The relative distances between words
are preserved to some extent. As a result, the embedding matrix E inherits these nice properties that
exist in the original word-context co-occurrence matrix M (e.g., the PMI matrix). Furthermore, we
reveal the influence of a parameter α in the embedding matrix E = Ud ·Σα

d , such that this parameter
α influences how the relative distances between words change during the embedding transformation.
Based on such analysis, we propose a method to determine the optimal α.
A potential work This paper reveals the relative distances between words are preserved to different
extents during the embedding transformation. By preserving the relative distances, the embedding
matrix inherits the nice properties that are originated in the word-context matrix during the em-
bedding transformation. It gives us an inspiration to use the neural network to approximate the
embedding process (low rank transformation). Different from optimizing the objective function of
word2vec, we can use a neural network (e.g., autoencoder) to explicitly minimize the change of
neighborhood structure of every word. In such way, the learnt embedding should exhibit the same
nice properties. We will explore this idea further in the future.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor Soroa. A
study on similarity and relatedness using distributional and wordnet-based approaches. In Pro-
ceedings of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 19–27. Association for Computa-
tional Linguistics, 2009.

Carl Allen and Timothy Hospedales. Analogies explained: Towards understanding word embed-
dings. In Proceedings of the 36th International Conference on Machine Learning, pp. 223–231.
PMLR, 2019.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. Transactions of the Association for Computational
Linguistics, 4:385–399, 2016.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meeting of the Association for Computational Lin-
guistics: Long Papers-Volume 1, pp. 136–145. Association for Computational Linguistics, 2012.

John A Bullinaria and Joseph P Levy. Extracting semantic representations from word co-occurrence
statistics: stop-lists, stemming, and svd. Behavior research methods, 44(3):890–907, 2012.

John Caron. Experiments with lsa scoring: Optimal rank and basis. In Proceedings of the SIAM
Computational Information Retrieval Workshop, pp. 157–169, 2001.

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information, and lexi-
cography. Computational linguistics, 16(1):22–29, 1990.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391–407, 1990.

Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear word analo-
gies. arXiv preprint arXiv:1810.04882, 2018.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and
Eytan Ruppin. Placing search in context: The concept revisited. ACM Transactions on informa-
tion systems, 20(1):116–131, 2002.

Alex Gittens, Dimitris Achlioptas, and Michael W Mahoney. Skip-gram- zipf+ uniform= vector
additivity. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 69–76, 2017.

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.
Neural architectures for named entity recognition. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 260–270, 2016.

Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word representations.
In Proceedings of the eighteenth conference on computational natural language learning, pp.
171–180, 2014a.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems, pp. 2177–2185, 2014b.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
from word embeddings. Transactions of the Association for Computational Linguistics, 3:211–
225, 2015.

9



Under review as a conference paper at ICLR 2020

Thang Luong, Richard Socher, and Christopher Manning. Better word representations with recursive
neural networks for morphology. In Proceedings of the Seventeenth Conference on Computational
Natural Language Learning, pp. 104–113, 2013.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Matt Mahoney. Large text compression benchmark. URL: http://www. mattmahoney. net/text/text.
html, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013a.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013b.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751,
2013c.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A word at a time:
computing word relatedness using temporal semantic analysis. In Proceedings of the 20th inter-
national conference on World wide web, pp. 337–346. ACM, 2011.

Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Peter D Turney. Domain and function: A dual-space model of semantic relations and compositions.
Journal of Artificial Intelligence Research, 44:533–585, 2012.

Zi Yin and Yuanyuan Shen. On the dimensionality of word embedding. In Advances in Neural
Information Processing Systems, pp. 887–898, 2018.

Torsten Zesch, Christof Müller, and Iryna Gurevych. Using wiktionary for computing semantic
relatedness. In AAAI, volume 8, pp. 861–866, 2008.

A APPENDIX

A.1 PROOF OF OBSERVATION 1

Proof. Firstly, we have

E =Md ·Σα
d

= [U:,1,U:,2, . . . ,U:,d] ·

σ1 . . .
σd


=
[
σ
(α)
1 U:,1, σ

(α)
2 U:,2, . . . , σ

(α)
d U:,d

]
10



Under review as a conference paper at ICLR 2020

Besides,

Epse =M · V ·Σ(α−1)
pse

=U ·Σ · V T · V ·Σ(α−1)
pse

=U ·Σ · I ·Σ(α−1)
pse (V is unitary matrix, so V T · V = I)

=U ·Σ ·Σ(α−1)
pse

=[U:,1,U:,2, . . . ,U:,n] ·



σ1
. . .

σd
σd+1

. . .
σn


·



σ
(α−1)
1

. . .
σ
(α−1)
d

0
. . .

0



=[U:,1,U:,2, . . . ,U:,n] ·



σ
(α)
1

. . .
σ
(α)
d

0
. . .

0


=[σ

(α)
1 U:,1, σ

(α)
2 U:,2, . . . , σ

(α)
d U:,d, 0, . . . , 0]

So E corresponds to the first d columns of Epse.

A.2 THE PROOF OF THEOREM 1

We need the following lemma for the proof of theorem 1.

Lemma 1. Unitary matrix does not change the norm of a vector, such that

‖Ua‖2 = ‖a‖2

where U is a unitary matrix and a ∈ Rn is a n-dimension column vector.

Proof. The norm can be expressed by using the Hermitian product, (·, ·)

‖Ua‖22 = ((Ua,Ua)) = (a,U∗Ua) = (a,a) = ‖a‖22
⇒‖Ua‖2 = ‖a‖2

Now we can prove the theorem 1. For any two words wi and wj , if ‖Mi,: −Mj,:‖2 ≤ δ, then

‖Ei,: −Ej,:‖2 ≤
(
σ
(α−1)
1

)
× δ.

Proof. Let Ẽ denote the Epse defined in section 3. It is obvious that ‖Ei,: −Ej,:‖2 =∥∥∥Ẽi,: − Ẽj,:

∥∥∥
2

since E is the first d columns of Ẽ and the last (n− d) dimensions in Ẽ are zero.

Let h = (h1, h2, . . . , hn) denote the (Mi,: −Mj,:)V . We have ‖h‖2 = ‖(Mi,: −Mj,:)V ‖2.
According to lemma 1, ‖(Mi,: −Mj,:)V ‖2 = ‖(Mi,: −Mj,:)‖2. So we have ‖h‖2 =
‖(Mi,: −Mj,:)V ‖2 = ‖(Mi,: −Mj,:)‖2 ≤ δ.

11



Under review as a conference paper at ICLR 2020

‖Ei,: −Ej,:‖2
=
∥∥∥Ẽi,: − Ẽj,:

∥∥∥
2

=
∥∥∥Mi,: · V ·Σ(α−1)

pse −Mj,: · V ·Σ(α−1)
pse

∥∥∥
2

=
∥∥∥(Mi,: · V −Mj,: · V ) ·Σ(α−1)

pse

∥∥∥
2

=
∥∥∥h ·Σ(α−1)

pse

∥∥∥
2

=((σ
(α−1)
1 h1)

2 + (σ
(α−1)
2 h2)

2 + . . .+ (σ
(α−1)
d hd)

2 + 0 + . . .+ 0)1/2

≤(σ2(α−1)
d · (h21 + h22 + . . .+ h2d))

1/2 (note σd is the smallest singular value)

≤(σ2(α−1)
d · ‖h‖22)

1/2 ≤ σ(α−1)
d · δ

A.3 THE PROOF OF THEOREM 2

Proof. Let Mpse be UΣpseV
T . It is easy to show that Mpse equals to Ud ·Σd · V T

d .

Let M̃ denote Mpse. We first show that
∥∥∥Mi,: − M̃i,:

∥∥∥2
2

(for every i) is constrained by the singular
values of M . Firstly, we have∥∥∥Mi,: − M̃i,:

∥∥∥
2
= (
∑
j

(Mi,j − M̃i,j)
2)1/2 ≤ (

∑
k

∑
j

(Mk,j − M̃k,j)
2)1/2 =

∥∥∥M − M̃
∥∥∥
2

So we have ∥∥∥Mi,: − M̃i,:

∥∥∥
2

≤
∥∥∥M − M̃

∥∥∥
2

=
∥∥UΣV T −UΣpseV

T
∥∥
2

=
∥∥U(Σ−Σpse)V

T
∥∥
2

= ‖(Σ−Σpse)‖2 (lemma 1)

=(σ2
d+1 + σ2

d+2 + . . .+ σ2
n)

1/2

Then we show if ‖Ei,: −Ej,:‖2 ≤ δ, then
∥∥∥M̃i,: − M̃j,:

∥∥∥
2
≤ δσ(1−α)

1 .∥∥∥M̃i,: − M̃j,:

∥∥∥
2

=
∥∥∥(Ei,: −Ej,:) ·Σ(1−α)

d · V T
d

∥∥∥
2

=
∥∥∥(Ei,: −Ej,:) ·Σ(1−α)

d

∥∥∥
2

(lemma 1)

Let h = (h1, h2 . . . , hn) denote Ei,: − Ej,: here. We have ‖h‖2 = ‖Ei,: −Ej,:‖2 ≤ δ. So the
above equation becomes ∥∥∥(Ei,: −Ej,:) ·Σ(1−α)

d

∥∥∥
2

=
∥∥∥(h1, h2 . . . , hn) ·Σ(1−α)

d

∥∥∥
2

=(h21σ
2(1−α)
1 + h22σ

2(1−α)
2 + . . .+ h2dσ

2(1−α)
d )1/2

≤((h21 + h22 + . . .+ h2d)σ
2(1−α)
1 )1/2

≤‖h‖2 σ
(1−α)
1

≤δσ(1−α)
1

12



Under review as a conference paper at ICLR 2020

With above preparations, we can now prove theorem 2.

‖Mi,: −Mj,:‖2
=
∥∥∥(Mi,: − M̃i,:)− (Mj,: − M̃i,:)

∥∥∥
2

≤
∥∥∥(Mi,: − M̃i,:)

∥∥∥
2
+
∥∥∥−(Mj,: − M̃i,:)

∥∥∥
2

=
∥∥∥(Mi,: − M̃i,:)

∥∥∥
2
+
∥∥∥(Mj,: − M̃j,:)− (M̃i,: − M̃j,:)

∥∥∥
2

=
∥∥∥(Mi,: − M̃i,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1 σ

2
k)

1/2

+
∥∥∥(Mj,: − M̃j,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1 σ

2
k)

1/2

+
∥∥∥−(M̃i,: − M̃j,:)

∥∥∥
2︸ ︷︷ ︸

≤δσ(1−α)
1

≤δσ(1−α)
1 + 2(

n∑
k=d+1

σ2
k)

1/2

A.4 THE PROOF OF THEOREM 3

Proof. Similar to the proof in section A.2, let Ẽ denote the Epse and h =
(h1, h

,
2 . . . , h) denote the ((Mγ1,: − Mγ2,:) − (Mβ1,: − Mβ2,:))V . We have ‖h‖2 =

‖((Mγ1,: −Mγ2,:)− (Mβ1,: −Mβ2,:))V ‖2 = ‖((Mγ1,: −Mγ2,:)− (Mβ1,: −Mβ2,:))‖2 ≤ δ.

Besides, ‖(Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)‖2 =
∥∥∥(Ẽγ1,: − Ẽγ2,:)− (Ẽβ1,: − Ẽβ2,:)

∥∥∥
2

since E

is the first d columns of Ẽ and the last (n− d) dimensions in Ẽ are zero.

‖(Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)‖2
=
∥∥∥(Ẽγ1,: − Ẽγ2,:)− (Ẽβ1,: − Ẽβ2,:)

∥∥∥
2

=
∥∥∥(Mγ1,: −Mγ2,:) · V ·Σ(α−1)

pse − (Mβ1,: −Mβ2,:) · V ·Σ(α−1)
pse

∥∥∥
2

=
∥∥∥((Mγ1,: −Mγ2,:)− (Mβ1,: −Mβ2,:)) · V ·Σ(α−1)

pse

∥∥∥
2

=
∥∥∥h ·Σ(α−1)

pse

∥∥∥
2

=((σ
(α−1)
1 h1)

2 + (σ
(α−1)
2 h2)

2 + . . .+ (σ
(α−1)
d hd)

2 + 0 + . . .+ 0)1/2

≤σ(α−1)
d · (h21 + h22 + . . .+ h2d)

1/2 (note σd is the smallest singular value)

≤σ(α−1)
d · ‖h‖2 ≤ σ

(α−1)
d · δ

A.5 THE PROOF OF THEOREM 4

The proof is quite similar to the proof in section A.3. Let Mpse be UΣpseV
T . According to section

A.3, we know Mpse equals to Ud ·Σd · V t
d .

Let M̃ denote Mpse. According to section A.3, we have
∥∥∥Mi,: − M̃i,:

∥∥∥
2
≤ (σ2

d+1 + σ2
d+2 + . . .+

σ2
n)

1/2 (for every i).

Then with the same process in section A.3, we show if ‖(Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)‖2 ≤ δ,

then
∥∥∥((M̃γ1,: − M̃γ2,:)− (M̃β1,: − M̃β2,:))

∥∥∥
2
≤ δσ(1−α)

1 .

13



Under review as a conference paper at ICLR 2020

∥∥∥((M̃γ1,: − M̃γ2,:)− (M̃β1,: − M̃β2,:))
∥∥∥
2

=
∥∥∥((Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)) ·Σ

(1−α)
d · V T

d

∥∥∥
2

=
∥∥∥((Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)) ·Σ

(1−α)
d

∥∥∥
2

(lemma 1)

Let h = (h1, h2 . . . , hn) denote ((Eγ1,: − Eγ2,:) − (Eβ1,: − Eβ2,:)) here. We have ‖h‖2 =
‖((Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:))‖2 ≤ δ. So the above equation becomes∥∥∥((Eγ1,: −Eγ2,:)− (Eβ1,: −Eβ2,:)) ·Σ

(1−α)
d

∥∥∥
2

=
∥∥∥(h1, h2 . . . , hn) ·Σ(1−α)

d

∥∥∥
2

=(h21σ
2(1−α)
1 + h22σ

2(1−α)
2 + . . .+ h2dσ

2(1−α)
d )1/2

≤(h21 + h22 + . . .+ h2d)
1/2σ

(1−α)
1

= ‖h‖2 σ
(1−α)
1

=δσ
(1−α)
1

With above preparations, we can now prove theorem 4.

Proof.

‖Mγ,: −Mβ,:‖2
=
∥∥∥(Mγ,: − M̃γ,:)− (Mβ,: − M̃γ,:)

∥∥∥
2

≤
∥∥∥(Mγ,: − M̃γ,:)

∥∥∥
2
+
∥∥∥−(Mβ,: − M̃γ,:)

∥∥∥
2

=
∥∥∥(Mγ,: − M̃γ,:)

∥∥∥
2
+
∥∥∥(Mβ,: − M̃β,:)− (M̃γ,: − M̃β,:)

∥∥∥
2

≤
∥∥∥(Mγ,: − M̃γ,:)

∥∥∥
2
+
∥∥∥(Mβ,: − M̃β,:)

∥∥∥
2
+
∥∥∥−(M̃γ,: − M̃β,:)

∥∥∥
2

=
∥∥∥(Mγ1,: − M̃γ1,:)− (Mγ2,: − M̃γ2,:)

∥∥∥
2
+
∥∥∥(Mβ1,: − M̃β2,:)− (Mβ2,: − M̃β2,:)

∥∥∥
2
+
∥∥∥−(M̃γ,: − M̃β,:)

∥∥∥
2

≤
∥∥∥(Mγ1,: − M̃γ1,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1

σ2
k
)1/2

+
∥∥∥−(Mγ2,: − M̃γ2,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1

σ2
k
)1/2

+
∥∥∥(Mβ1,: − M̃β2,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1

σ2
k
)1/2

+
∥∥∥−(Mβ2,: − M̃β2,:)

∥∥∥
2︸ ︷︷ ︸

≤(
∑n
k=d+1

σ2
k
)1/2

+
∥∥∥−(M̃γ,: − M̃β,:)

∥∥∥
2︸ ︷︷ ︸

≤δσ(1−α)
1

=δσ
(1−α)
1 + 4(

n∑
k=d+1

σ2
k)

1/2

A.6 THE PROOF OF ALPHA REGULARIZATION

Proof. Firstly, we have
E =Ud ·Σα

d

= [λα1u1, λ
α
2u2, ..., λ

α
dud]

CT =Σ1−α
d · V T

d

=


λ1−α1 vT1
λ1−α2 vT2

...
λ1−αd vTd


14



Under review as a conference paper at ICLR 2020

Since U and V is orthogonal, we have

eTi ej =

{
λ2αi , i = j

0, i 6= j

cTi cj =

{
λ2−2αi , i = j

0, i 6= j

Then, if (‖ei‖22 · ‖ci‖
2
2) 6= 1, we have

log(‖ei‖22)
log(‖ei‖22 · ‖ci‖

2
2)

= α

A.7 PERFORMANCE ON WORD SIMILARITY TASK AND THE CORRELATION SCORE DEFINED
IN EQUATION 3 WITH DIFFERENT α

Table 3: The performance and similarity corresponding to different α. Left is the peformance on
every testset and right is the similarity computed by equation 3, considering the words appearing in
that testset.

α bruni men Luong radinsky ws relatedness ws similarity ws353
−1.0 0.686 / 0.492 0.480 / 0.457 0.504 / 0.487 0.591 / 0.532 0.759 / 0.522 0.694 / 0.535
−0.9 0.691 / 0.490 0.482 / 0.458 0.508 / 0.495 0.597 / 0.532 0.761 / 0.522 0.697 / 0.535
−0.8 0.697 / 0.489 0.484 / 0.459 0.513 / 0.493 0.605 / 0.538 0.762 / 0.526 0.701 / 0.539
−0.7 0.703 / 0.490 0.487 / 0.460 0.520 / 0.501 0.612 / 0.538 0.765 / 0.526 0.706 / 0.539
−0.6 0.709 / 0.488 0.491 / 0.462 0.526 / 0.499 0.621 / 0.538 0.765 / 0.522 0.711 / 0.537
−0.5 0.715 / 0.488 0.493 / 0.462 0.534 / 0.499 0.630 / 0.538 0.766 / 0.518 0.715 / 0.535
−0.4 0.721 / 0.488 0.496 / 0.462 0.540 / 0.501 0.637 / 0.544 0.769 / 0.526 0.719 / 0.539
−0.3 0.728 / 0.489 0.499 / 0.460 0.551 / 0.503 0.645 / 0.544 0.774 / 0.526 0.724 / 0.539
−0.2 0.734 / 0.492 0.502 / 0.467 0.562 / 0.509 0.651 / 0.547 0.779 / 0.529 0.729 / 0.544
−0.1 0.740 / 0.489 0.504 / 0.466 0.576 / 0.509 0.659 / 0.549 0.782 / 0.533 0.733 / 0.546
0.0 0.746 / 0.492 0.507 / 0.469 0.588 / 0.507 0.667 / 0.552 0.786 / 0.533 0.737 / 0.549
0.1 0.751 / 0.497 0.509 / 0.469 0.601 / 0.509 0.676 / 0.558 0.791 / 0.536 0.742 / 0.553
0.2 0.755 / 0.504 0.510 / 0.471 0.618 / 0.513 0.685 / 0.558 0.796 / 0.540 0.747 / 0.553
0.3 0.758 / 0.520 0.512 / 0.473 0.635 / 0.521 0.693 / 0.570 0.802 / 0.555 0.750 / 0.563
0.4 0.759 / 0.519 0.511 / 0.475 0.652 / 0.525 0.698 / 0.570 0.807 / 0.555 0.751 / 0.565
0.5 0.759 / 0.518 0.509 / 0.475 0.666 / 0.525 0.701 / 0.573 0.812 / 0.558 0.750 / 0.569
0.6 0.756 / 0.515 0.504 / 0.478 0.675 / 0.517 0.700 / 0.576 0.816 / 0.558 0.748 / 0.572
0.7 0.750 / 0.518 0.496 / 0.481 0.675 / 0.517 0.693 / 0.567 0.813 / 0.562 0.741 / 0.565
0.8 0.740 / 0.527 0.485 / 0.472 0.672 / 0.511 0.677 / 0.576 0.805 / 0.573 0.728 / 0.572
0.9 0.726 / 0.516 0.468 / 0.465 0.663 / 0.517 0.649 / 0.567 0.794 / 0.555 0.708 / 0.558
1.0 0.707 / 0.505 0.448 / 0.456 0.649 / 0.513 0.619 / 0.561 0.780 / 0.547 0.687 / 0.556

15



Under review as a conference paper at ICLR 2020

A.8 THE NEIGHBORHOOD OF summer WITH DIFFERENT α

top 20 nearest words

PMI
winter, olympics, autumn, during, and, spring, annual, season, in, at
night, year, on, weather, after, rainy, day, including, festival, seasonal

α top 20 nearest words

-1.0 winter, autumn, spring, rainy, monsoon, summers, winters, warmest, nights, coldest
seasons, precipitation, temperatures, humidity, year, snowfall, freezing, months, average, climates

-0.9 winter, autumn, spring, rainy, monsoon, summers, winters, warmest, nights, coldest
seasons, precipitation, temperatures,humidity, snowfall, year, freezing, months, average, climates

-0.8 winter, autumn, spring, rainy, monsoon, summers, winters, warmest, nights, coldest
seasons, precipitation, snowfall, temperatures, humidity, year, freezing, climates, months, average

-0.7 winter, autumn, spring, rainy, summers, monsoon, winters, warmest, nights, coldest
seasons, precipitation, snowfall, humidity, temperatures, year, freezing, climates, humid, months

-0.6 winter, autumn, spring, rainy, summers, monsoon, winters, warmest, nights, coldest
snowfall, precipitation, seasons, humidity, temperatures, year, freezing, climates, humid, months

-0.5 winter, autumn, rainy, spring, summers, monsoon, winters, warmest, nights, coldest
snowfall, precipitation, seasons, humidity, temperatures, year, freezing, climates, humid, months

-0.4 winter, autumn, rainy, spring, summers, monsoon, winters, warmest, nights, coldest
snowfall, precipitation, humidity, seasons, temperatures, year, freezing, climates, humid, months

-0.3 winter, autumn, rainy, spring, summers, monsoon, winters, nights, warmest, coldest
snowfall, precipitation, humidity, temperatures, seasons, year, climates, freezing, humid, windy

-0.2 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, coldest
snowfall, precipitation, humidity, temperatures, seasons, year, climates, humid, freezing, windy

-0.1 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, coldest
snowfall, precipitation, humidity, temperatures, seasons, climates, year, humid, freezing, windy

0.0 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, coldest
snowfall, precipitation, humidity, temperatures, seasons, climates, humid, year, windy, freezing

0.1 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, coldest
snowfall, precipitation, temperatures, humidity, seasons, year, humid, climates, windy, freezing

0.2 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, coldest
snowfall, precipitation, temperatures, humidity, seasons, year, humid, climates, windy, sunny

0.3 winter, autumn, rainy, spring, summers, winters, monsoon, nights, warmest, snowfall
coldest, precipitation, temperatures, seasons, humidity, year, humid, windy, climates, sunny

0.4 winter, autumn, rainy, spring, summers, winters, nights, monsoon, snowfall, warmest
coldest, precipitation, seasons, temperatures, year, humidity, windy, humid, climates, days

0.5 winter, autumn, rainy, spring, summers, nights, winters, monsoon, snowfall, warmest
coldest, seasons, precipitation, year, days, temperatures, weekend, windy, sunny, humidity

0.6 winter, autumn, rainy, spring, nights, summers, winters, monsoon, snowfall, warmest
coldest, seasons, year, days, weekend, precipitation, annual, sunny, temperatures, month

0.7 winter, autumn, rainy, spring, nights, summers, winters, monsoon, snowfall, warmest
days, coldest, year, seasons, weekend, annual, week, sunny, month, snow

0.8 winter, autumn, spring, rainy, nights, winters, summers, days, monsoon, year
weekend, seasons, snowfall, annual, week, night, warmest, coldest, snow, month

0.9 winter, autumn, spring, nights, rainy, days, winters, summers, night, year
weekend, annual, week, seasons, monsoon, snow, holiday, rain, month, day

1.0 winter, autumn, spring, nights, rainy, days, night, week, annual, year
weekend, seasons, winters, snow, summers, day, holiday, rain, month, weather

16


	Introduction
	Background and Preliminaries
	Analysis: the reason why the embedding exhibits nice properties
	Word embedding as low rank transformation
	The inner mechanism resulting in the nice properties in the embedding

	Improvement: Word embedding preserving the distance structure better
	Experiments
	Experiment settings
	Results

	Related Work
	Conclusion
	Appendix
	Proof of observation 1
	The Proof of Theorem 1
	The Proof of Theorem 2
	The Proof of Theorem 3
	The Proof of Theorem 4
	The proof of alpha regularization
	Performance on word similarity task and the correlation score defined in equation 3 with different 
	The neighborhood of summer with different 


