
Under review as a conference paper at ICLR 2020

IMPROVING SAMPLE EFFICIENCY IN MODEL-FREE
REINFORCEMENT LEARNING FROM IMAGES

Anonymous authors
Paper under double-blind review

ABSTRACT

Training an agent to solve control tasks directly from high-dimensional images
with model-free reinforcement learning (RL) has proven difficult. The agent needs
to learn a latent representation together with a control policy to perform the task.
Fitting a high-capacity encoder using a scarce reward signal is not only sample in-
efficient, but also prone to suboptimal convergence. Two ways to improve sample
efficiency are to extract relevant features for the task and use off-policy algorithms.
We dissect various approaches of learning good latent features, and conclude that
the image reconstruction loss is the essential ingredient that enables efficient and
stable representation learning in image-based RL. Following these findings, we
devise an off-policy actor-critic algorithm with an auxiliary decoder that trains
end-to-end and matches state-of-the-art performance across both model-free and
model-based algorithms on many challenging control tasks. We release our code
to encourage future research on image-based RL1.

1 INTRODUCTION

Cameras are a convenient and inexpensive way to acquire state information, especially in complex,
unstructured environments, where effective control requires access to the proprioceptive state of the
underlying dynamics. Thus, having effective RL approaches that can utilize pixels as input would
potentially enable solutions for a wide range of real world problems.

The challenge is to efficiently learn a mapping from pixels to an appropriate representation for con-
trol using only a sparse reward signal. Although deep convolutional encoders can learn good repre-
sentations (upon which a policy can be trained), they require large amounts of training data. As exist-
ing reinforcement learning approaches already have poor sample complexity, this makes direct use of
pixel-based inputs prohibitively slow. For example, model-free methods on Atari (Bellemare et al.,
2013) and DeepMind Control (DMC) (Tassa et al., 2018) take tens of millions of steps (Mnih et al.,
2013; Barth-Maron et al., 2018), which is impractical in many applications, especially robotics.

A natural solution is to add an auxiliary task with an unsupervised objective to improve sample effi-
ciency. The simplest option is an autoencoder with a pixel reconstruction objective. Prior work has
attempted to learn state representations from pixels with autoencoders, utilizing a two-step training
procedure, where the representation is first trained via the autoencoder, and then either with a policy
learned on top of the fixed representation (Lange & Riedmiller, 2010; Munk et al., 2016; Higgins
et al., 2017b; Zhang et al., 2018; Nair et al., 2018), or with planning (Mattner et al., 2012; Finn
et al., 2015). This allows for additional stability in optimization by circumventing dueling training
objectives but leads to suboptimal policies. Other work utilizes end-to-end model-free learning with
an auxiliary reconstruction signal in an on-policy manner (Jaderberg et al., 2017).

We revisit the concept of adding an autoencoder to model-free RL approaches, but with a focus on
off-policy algorithms. We perform a sequence of careful experiments to understand why previous
approaches did not work well. We found that a pixel reconstruction loss is vital for learning a good
representation, specifically when trained end-to-end. Based on these findings, we propose a simple
autoencoder-based off-policy method that can be trained end-to-end. Our method is the first model-
free off-policy algorithm to successfully train simultaneously both the latent state representation and
policy in a stable and sample-efficient manner.

1An anonymous website with code, results, and videos: https://sites.google.com/view/sac-ae/home

1

Under review as a conference paper at ICLR 2020

Figure 1: Image-based continuous control tasks from the DeepMind control suite (Tassa et al., 2018)
used in our experiments. Each task offers an unique set of challenges, including complex dynamics,
sparse rewards, hard exploration, and more. Refer to Appendix A for more information.

Of course, some recent state-of-the-art model-based RL methods (Hafner et al., 2018; Lee et al.,
2019) have demonstrated superior sample efficiency to leading model-free approaches on pixel tasks
from (Tassa et al., 2018). But we find that our model-free, off-policy, autoencoder-based approach is
able to match their performance, closing the gap between model-based and model-free approaches
in image-based RL, despite being a far simpler method that does not require a world model.

This paper makes three main contributions: (i) a demonstration that adding a simple auxiliary recon-
struction loss to a model-free off-policy RL algorithm achieves comparable results to state-of-the-art
model-based methods on the suite of continuous control tasks from Tassa et al. (2018); (ii) an under-
standing of the issues involved with combining autoencoders with model-free RL in the off-policy
setting that guides our algorithm; and (iii) an open-source PyTorch implementation of our simple
method for researchers and practitioners to use as a strong baseline that may easily be built upon.

2 RELATED WORK

Efficient learning from high-dimensional pixel observations has been a problem of paramount im-
portance for model-free RL. While some impressive progress has been made applying model-free
RL to domains with simple dynamics and discrete action spaces (Mnih et al., 2013), attempts to
scale these approaches to complex continuous control environments have largely been unsuccessful,
both in simulation and the real world. A glaring issue is that the RL signal is much sparser than in
supervised learning, which leads to sample inefficiency, and higher dimensional observation spaces
such as pixels worsens this problem.

One approach to alleviate this problem is by training with auxiliary losses. Early work (Lange &
Riedmiller, 2010) explores using deep autoencoders to learn feature spaces in visual reinforcement
learning, crucially Lange & Riedmiller (2010) propose to recompute features for all collected expe-
riences after each update of the autoencoder, rendering this approach impractical to scale to more
complicated domains. Moreover, this method has been only demonstrated on toy problems. Alter-
natively, Finn et al. (2015) apply deep autoencoder pretraining to real world robots that does not
require iterative re-training, improving upon computational complexity of earlier methods. How-
ever, in this work the linear policy is trained separately from the autoencoder, which we find to not
perform as well as end-to-end methods.

Shelhamer et al. (2016) use auxiliary losses in Atari that incorporate forward and inverse dynamics
with A3C, an on-policy algorithm. They recommend a multi-task setting and learning dynamics
and reward to find a good representation, which relies on the assumption that the dynamics in the
task are easy to learn and useful for learning a good policy. Jaderberg et al. (2017) propose to use
unsupervised auxiliary tasks, both observation-based and reward-based based off of real world in-
ductive priors, and show improvements in Atari, again in the on-policy regime, which is much more
stable for learning. Unfortunately, this work also relies on inductive biases by designing internal
rewards to learn a good representation which is hard to scale to the real world problems. Higgins
et al. (2017b); Nair et al. (2018) use a beta variational autoencoder (β-VAE) (Kingma & Welling,
2013; Higgins et al., 2017a) and attempt to extend unsupervised representation pretraining to the
off-policy setting, but find it hard to perform end-to-end training, thus receding to the iterative re-
training procedure (Lange & Riedmiller, 2010; Finn et al., 2015).

There has been more success in using model-based methods on images, such as Hafner et al. (2018);
Lee et al. (2019). These methods use a world model (Ha & Schmidhuber, 2018) approach, learning
a representation space using a latent dynamics loss and pixel decoder loss to ground on the original
observation space. These model-based reinforcement learning methods often show improved sam-
ple efficiency, but with the additional complexity of balancing various auxiliary losses, such as a
dynamics loss, reward loss, and decoder loss in addition to the original policy and value optimiza-

2

Under review as a conference paper at ICLR 2020

tions. These proposed methods are correspondingly brittle to hyperparameter settings, and difficult
to reproduce, as they balance multiple training objectives.

To close the gap between model-based and model-free image-based RL in terms of sample efficiency
and sidestep the issues of model learning, our goal is to train a model-free off-policy algorithm with
auxiliary reconstruction loss in a stable manner.

3 BACKGROUND

A fully observable Markov decision process (MDP) is described by tuple 〈S,A, P,R, γ〉, where S is
the state space, A is the action space, P (st+1|st,at) is the probability distribution over transitions,
R(st,at, st+1) is the reward function, and γ is the discount factor (Bellman, 1957). An agent starts
in a initial state s1 sampled from a fixed distribution p(s1), then at each timestep t it takes an action
at ∈ A from a state st ∈ S and moves to a next state st+1 ∼ P (·|st,at). After each action the agent
receives a reward rt = R(st,at, st+1). We consider episodic environments with the length fixed
to T . The goal of standard RL is to learn a policy π(at|st) that can maximize the agent’s expected
cumulative reward

∑T
t=1 E(st,at)∼ρπ [rt], where ρπ is a state-action marginal distribution induced by

the policy π(at|st) and transition distribution P (st+1|st,at). An important modification (Ziebart
et al., 2008) auguments this objective with an entropy termH(π(·|st)) to encourage exploration and
robustness to noise. The resulting maximum entropy objective is then defined as:

π∗ = arg max
π

T∑
t=1

E(st,at)∼ρπ [rt + αH(π(·|st))],

where α is a temperature parameter that balances between optimizing for the reward and for the
stochasticity of the policy.

We build on Soft Actor-Critic (SAC) (Haarnoja et al., 2018), an off-policy actor-critic method that
uses the maximum entropy framework to derive soft policy iteration. At each iteration SAC performs
a soft policy evaluation step and a soft policy improvement step. The soft policy evaluation step fits
a parametric soft Q-function Q(st,at) (critic) by minimizing the soft Bellman residual:

J(Q) = E(st,at,rt,st+1)∼D

[(
Q(st,at)− rt − γEat+1∼π

[
Q̄(st+1,at+1)− α log π(at+1|st+1)

])2]
,

(1)

where D is the replay buffer, and Q̄ is the target soft Q-function parametrized by a weight vector
obtained using the exponentially moving average of the soft Q-function weights to stabilize training.
The soft policy improvement step then attempts to learn a parametric policy π(at|st) (actor) by
directly minimizing the KL divergence between the policy and a Boltzmann distribution induced by
the current soft Q-function, producing the following objective:

J(π) = Est∼D

[
Eat∼π[α log(π(at|st))−Q(st,at)]

]
. (2)

The policy π(at|st) is parametrized as a diagonal Gaussian to handle continuous action spaces.

When learning from raw images, we deal with the problem of partial observability, which is formal-
ized by a partially observable MDP (POMDP). In this setting, instead of getting a low-dimensional
state st ∈ S at time t, the agent receives a high-dimensional observation ot ∈ O, which is a render-
ing of potentially incomplete view of the corresponding state st of the environment (Kaelbling et al.,
1998). This complicates applying RL as the agent now needs to also learn a compact latent represen-
tation to infer the state. Fitting a high-capacity encoder using only a scarce reward signal is sample
inefficient and prone to suboptimal convergence. Following prior work (Lange & Riedmiller, 2010;
Finn et al., 2015) we explore unsupervised pretraining via an image-based autoencoder. In practice,
the autoencoder is represented as a convolutional encoder fenc that maps an image observation ot to
a low-dimensional latent vector zt, and a deconvolutional decoder fdec that reconstructs zt back to
the original image ot. The optimization is done by minimizing the standard reconstruction objective:

J(AE) = Eot∼D
[1
2
||fdec(zt)− ot||22

]
where zt = fenc(ot). (3)

3

Under review as a conference paper at ICLR 2020

Or in the case of β-VAE (Kingma & Welling, 2013; Higgins et al., 2017a), where the variational
distribution is parametrized as diagonal Gaussian, the objective is defined as:

J(VAE) = Eot∼D
[1
2
||fdec(zt)− ot||22 −

β

2

∑
i

(1 + logσ2
t,i − z2t,i − σ2

t,i)
]
, (4)

where zt = fenc(ot) and σ2
t = fenc std(ot). The latent vector zt is then used by an RL algo-

rithm, such as SAC, instead of the unavailable true state st. To infer temporal statistics, such as
velocity and acceleration, it is common practice to stack three consecutive frames to form a sin-
gle observation (Mnih et al., 2013). We emphasize that in contrast to model-based methods (Ha &
Schmidhuber, 2018; Hafner et al., 2018), we do not predict future states and solely focus on learning
representations from the current observation to stay model-free.

4 A DISSECTION OF LEARNING STATE REPRESENTATIONS WITH β-VAE

In this section we explore in a systematic fashion how model-free off-policy RL can be made to
train directly from pixel observations. We start by noting a dramatic performance drop when SAC
is trained on pixels instead of proprioceptive state (Section 4.2) in the off-policy regime. This result
motivates us to explore different ways of employing auxiliary supervision to speed up representation
learning. While a wide range of auxiliary objectives could be added to aid effective representation
learning, for simplicity we focus our attention on autoencoders. We follow Lange & Riedmiller
(2010); Finn et al. (2015) and in Section 4.3 try an iterative unsupervised pretraining of an au-
toencoder that reconstructs pixels and is parameterized by β-VAE as per Nair et al. (2018); Higgins
et al. (2017a). Exploring the training procedure used in previous work shows it to be sub-optimal and
points towards the need for end-to-end training of the β-VAE with the policy network. Our investiga-
tion in Section 4.4 renders this approach useless due to severe instability in training, especially with
larger β values. We resolve this by using deterministic forms of the variational autoencoder (Ghosh
et al., 2019) and a careful learning procedure. This leads to our algorithm, which is described and
evaluated in Section 5.

4.1 EXPERIMENTAL SETUP

We briefly state our setup here, for more details refer to Appendix B. Throughout the paper we
evaluate on 6 image-based challenging continuous control tasks from Tassa et al. (2018) depicted
in Figure 1. For a concise presentation, in some places of the main paper we choose to plot results for
reacher easy, ball in cup catch, and walker walk only, while full results are available
in the Appendix. An episode for each task results in maximum total reward of 1000 and lasts for
exactly 1000 steps. Image observations are represented as 3 × 84 × 84 RGB renderings, where
each pixel is scaled down to [0, 1] range. To infer velocity and acceleration we stack 3 consecutive
frames following standard practice from Mnih et al. (2013). We keep the hyper parameters fixed
across all tasks, except for action repeat, which we set only when learning from pixels according
to Hafner et al. (2018) for a fair comparison to the baselines. If action repeat is used, the number
of training observations is only a fraction of the environment steps (e.g. a 1000 steps episode at
action repeat 4 will only result in 250 training observations). The exact action repeat settings can be
found in Appendix B.3. We evaluate an agent after every 10000 training observation, by computing
an average total reward across 10 evaluation episodes. For reliable comparison we run 10 random
seeds for each configuration and compute mean and standard deviation of the evaluation reward.

4.2 MODEL-FREE OFF-POLICY RL WITH NO AUXILIARY TASKS

We start with an experiment comparing a model-free and off-policy algorithm SAC (Haarnoja et al.,
2018) on pixels, with two state-of-the-art model-based algorithms, PlaNet (Hafner et al., 2018) and
SLAC (Lee et al., 2019), and an upper bound of SAC on proprioceptive state (Table 1). We see
a large gap between the capability of SAC on pixels (SAC:pixel), versus PlaNet and SLAC, which
make use of many auxiliary tasks to learn a better representation, and can achieve performance close
to the upper bound of SAC on proprioceptive state (SAC:state). From now, SAC:pixel will be our
lower bound on performance as we gradually introduce different auxiliary reconstruction losses in
order to close the performance gap.

4

Under review as a conference paper at ICLR 2020

Task name Number of SAC:pixel PlaNet SLAC SAC:stateEpisodes
finger spin 1000 645± 37 659± 45 900± 39 945± 19
walker walk 1000 33± 2 949± 9 864± 35 974± 1
ball in cup catch 2000 593± 84 861± 80 932± 14 981± 1
cartpole swingup 2000 758± 58 802± 19 - 860± 8
reacher easy 2500 121± 28 949± 25 - 953± 11
cheetah run 3000 366± 68 701± 6 830± 32 836± 105

Table 1: A comparison over 6 DMC tasks of SAC from pixels, PlaNet, SLAC, and an upper bound of SAC
from proprioceptive state, numbers are averaged over the last 5 episodes across 10 seeds. The large performance
gap between SAC:pixel and SAC:state motivates us to address the representation learning bottleneck in model-
free off-policy RL. Best performance bolded.

0.0 0.5 1.0 1.5 2.0 2.5
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000
walker_walk

SAC:state SAC:pixel SAC+VAE:pixel (iter,) SAC+VAE:pixel (iter, 100) SAC+VAE:pixel (iter, 1)

Figure 2: Separate β-VAE and policy training with no shared gradients SAC+VAE:pixel (iter, N), with
SAC:state shown as an upper bound. N refers to frequency in environment steps at which the β-VAE updates
after initial pretraining. More frequent updates are beneficial for learning better representations, but cannot
fully address the gap in performance. Full results in Appendix C.

4.3 ITERATIVE REPRESENTATION LEARNING WITH β-VAE

Following Lange & Riedmiller (2010); Finn et al. (2015), we experiment with unsupervised repre-
sentation pretraining using a pixel autoencoder, which speeds up representation learning in image-
based RL. Taking into account successful results from Nair et al. (2018); Higgins et al. (2017b) of
using a β-VAE (Kingma & Welling, 2013; Higgins et al., 2017a) in the iterative re-training setup,
we choose to employ a β-VAE likewise. We then proceed to first learn a representation space by
pretraining the fenc, fenc std, and fdec networks of the β-VAE according to the loss J(VAE) Equa-
tion (4) on data collected from a random policy. We then learn a control policy on top of the frozen
latent representations zt = fenc(ot). We tune β for best performance, and find large β to be worse,
and that very small β ∈ [10−8, 10−6] performed best. In Figure 2 we vary the frequency N at which
the representation space is updated, from N = ∞, where the representation is never updated after
an initial pretraining period with randomly collected data, to N = 1 where the representation is
updated after every policy update. There is a positive correlation between this frequency and the
final policy performance. We emphasize that the gradients are never shared between the β-VAE for
learning the representation space, and the actor-critic learning the policy. These results suggest that
if we can combine the representation pretraining via a β-VAE together with the policy learning in
a stable end-to-end procedure, we would expect better performance. However, we note that prior
work (Nair et al., 2018; Higgins et al., 2017a) has been unable to successfully demonstrate this.
Regardless, we next perform such experiment to gain better understanding on what goes wrong.

0.0 0.5 1.0 1.5 2.0 2.5
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000
walker_walk

SAC:state SAC:pixel SAC+VAE:pixel (iter, 1) SAC+VAE:pixel

Figure 3: An unsuccessful attempt to propagate gradients from the actor-critic down to the encoder of the
β-VAE to enable end-to-end off-policy training. The learning process of SAC+VAE:pixel exhibits instability
together with the subpar performance comparing to the baseline SAC+VAE:pixel (iter, 1), which does not share
gradients with the actor-critic. Full results in Appendix D.

5

Under review as a conference paper at ICLR 2020

encoder

reconstruction target
forward

decoder

MLP

MLPobservation 3x[3x84x84]

conv 4x32x[3x3]

deconv 4x32x[3x3]

linear
linear

linear

Figure 4: Our algorithm (SAC+AE) auguments SAC (Haarnoja et al., 2018) with a regularized autoen-
coder (Ghosh et al., 2019) to achieve stable end-to-end training from images in the off-policy regime. The
stability comes from switching to a deterministic encoder that is carefully updated with gradients from the
reconstruction J(AE) (Equation (3)) and soft Q-learning J(Q) (Equation (1)) objectives.

4.4 AN ATTEMPT FOR END-TO-END REPRESENTATION LEARNING WITH β-VAE

Our findings and the results from Jaderberg et al. (2017) motivate us to allow gradient propagation
to the encoder of the β-VAE from the actor-critic, which in our case is SAC. We enable end-to-end
learning by allowing the encoder to not only update with gradients from the J(VAE) loss (Equa-
tion (4), as done in Section 4.3, but also with gradients coming from the J(Q) and J(π) (Equa-
tions (1) and (2)) losses specified in Section 3. Results in Figure 3 show that the end-to-end policy
learning together with the β-VAE in unstable in the off-policy setting and prone to divergent be-
haviours that hurt performance. Our conclusion supports the findings from Nair et al. (2018); Hig-
gins et al. (2017a), which alleviate the problem by receding to the iterative re-training procedure.
We next attempt stabilizing end-to-end training and introduce our method.

5 OUR METHOD: SAC+AE WITH END-TO-END OFF-POLICY TRAINING

We now seek to design a stable training procedure that can update the pixel autoencoder simulta-
neously with policy learning. We build on top of SAC (Haarnoja et al., 2018), a model-free and
off-policy actor-critic algorithm. Based on our findings from Section 4, we propose a new, simple
algorithm, SAC+AE, that enables end-to-end training. We notice that electing to learn deterministic
latent representations, rather than stochastic as in the β-VAE case, has a stabilizing effect on the
end-to-end learning in the off-policy regime. We thus use a deterministic autoencoder in a form of
the regularized autoencoder (RAE) (Ghosh et al., 2019), that has many structural similarities with
β-VAE. We also found it is important to update the convolutional weights in the target critic network
faster, than the rest of the parameters. This allows faster learning while preserving the stability of the
off-policy actor-critic. Finally, we share the encoder’s convolutional weights between the actor and
critic networks, but prevent the actor from updating them. Our algorithm is presented in Figure 4
for visual guidance.

5.1 PERFORMANCE ON PIXELS

We now show that our simple method, SAC+AE, achieves stable end-to-end training of an off-policy
algorithm from images with an auxiliary reconstruction loss. We test our method on 6 challenging
image-based continuous control tasks (see Figure 1) from DMC (Tassa et al., 2018). The RAE
consists of a convolutional and deconvolutional trunk of 4 layers of 32 filters each, with 3×3 kernel
size. The actor and critic networks are 3 layer MLPs with ReLU activations and hidden size of 1024.
We update the RAE and actor-critic network at each environment step with a batch of experience
sampled from a replay buffer. A comprehensive overview of other hyper paremeters is Appendix B.

We perform comparisons against several state-of-the-art model-free and model-based RL algorithms
for learning from pixels. In particular: D4PG (Barth-Maron et al., 2018), an off-policy actor-critic
algorithm, PlaNet (Hafner et al., 2018), a model-based method that learns a dynamics model with
deterministic and stochastic latent variables and employs cross-entropy planning for control, and
SLAC (Lee et al., 2019), which combines a purely stochastic latent model together with an model-
free soft actor-critic. In addition, we compare against SAC that learns from low-dimensional pro-

6

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

SAC:state D4PG:pixel (108 steps) PlaNet SLAC SAC:pixel SAC+AE:pixel (ours)

Figure 5: The main result of our work. Our method demonstrates significantly improved performance over
the baseline SAC:pixel. Moreover, it matches the state-of-the-art performance of model-based algorithms, such
as PlaNet (Hafner et al., 2018) and SLAC (Lee et al., 2019), as well as a model-free algorithm D4PG (Barth-
Maron et al., 2018), that also learns from raw images. Our algorithm exhibits stable learning across ten random
seeds and is extremely easy to implement.

prioceptive state, as an upper bound on performance. In Figure 5 we show that SAC+AE:pixel is
able to match the state-of-the-art model-based methods such as PlaNet and SLAC, and significantly
improve performance over the baseline SAC:pixel. Note that we use 10 random seeds, as recom-
mended in Henderson et al. (2018) whereas the PlaNet and SLAC numbers shown are only over 4
and 2 seeds, respectively, as per the original publications.

6 ABLATIONS

To shed more light on some properties of the latent representation space learned by our algorithm
we conduct several ablation studies. In particular, we want to answer the following questions: (i)
is our method able to extract a sufficient amount of information from raw images to recover cor-
responding proprioceptive states readily? (ii) can our learned latent representation generalize to
unseen tasks with similar image observations, but different reward objective, without reconstruction
signal? Below, we answer these questions.

6.1 REPRESENTATION POWER OF THE ENCODER

Given how significantly our method outperforms a variant that does not have access to the image re-
construction signal, we hypothesize that the learned representation space encodes a sufficient amount
of information about the internal state of the environment from raw images. Moreover, this infor-
mation can be easily extracted from the latent state. To test this conjecture, we train SAC+AE:pixel
and SAC:pixel until convergence on cheetah run, then fix their encoders. We then train two

0 50 100 150 200
episode steps

0.0

0.5

va
lu

e

position[1]

0 50 100 150 200
episode steps

0.5

0.0

0.5

position[2]

0 50 100 150 200
episode steps

1

0

1

velocity[1]

0 50 100 150 200
episode steps

2.5

0.0

2.5

velocity[2]

Truth SAC+AE:pixel SAC:pixel

Figure 6: Linear projections of latent representation spaces learned by our method (SAC+AE:pixel) and the
baseline (SAC:pixel) onto proprioceptive states. We compare ground truth value of each proprioceptive co-
ordinate against their reconstructions for cheetah run, and conclude that our method successfully encodes
proprioceptive state information. For visual clarity we only plot 2 position (out of 8) and 2 velocity (out of 9)
coordinates. Full results in Appendix F.

7

Under review as a conference paper at ICLR 2020

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

walker_stand

SAC:state SAC:pixel SAC:pixel (pretrained on walker_walk)

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
walker_run

Figure 7: Encoder pretrained with our method (SAC+AE:pixel) on walker walk is able to generalize to
unseen walker stand and walker run tasks. All three tasks share similar image observations, but have
quite different reward structure. SAC with a pretrained on walker walk encoder achieves impressive final
performance, while the baseline struggles to solve the tasks.

identical linear projections to map the encoders’ latent embedding of image observations into the
corresponding proprioceptive states. Finally, we compare ground truth proprioceptive states against
their reconstructions on a sample episode. Results in Figure 6 confirm our hypothesis that the en-
coder grounded on pixel observations is powerful enough to almost perfectly restore the internals of
the task, whereas SAC without the reconstruction loss cannot. Full results in Appendix F.

6.2 GENERALIZATION TO UNSEEN TASKS

To verify whether the latent representation space learned by our method is able to generalize to
different tasks without additional fine-tuning with the reconstruction signal, we take three tasks
walker stand, walker walk, and walker run from DMC, which share similar obser-
vational appearance, but have different reward structure. We train an agent using our method
(SAC+AE:pixel) on walker walk task until convergence and extract its encoder. Consequently,
we train two SAC agents without reconstruction loss on walker stand and walker run
tasks from pixels. The encoder of the first agent is initialized with weights from the pretrained
walker walk encoder, while the encoder of the second agent is not. Neither of the agents use the
reconstruction signal, and only backpropogate gradients from the critic to the encoder (see Figure 4).
Results in Figure 7 suggest that our method learns latent representations that can readily generalize
to unseen tasks and help a SAC agent achieve strong performance and solve the tasks.

7 DISCUSSION

We have presented the first end-to-end, off-policy, model-free RL algorithm for pixel observations
with only reconstruction loss as an auxiliary task. It is competitive with state-of-the-art model-based
methods, but much simpler, robust, and without requiring learning a dynamics model. We show
through ablations the superiority of end-to-end learning over previous methods that use a two-step
training procedure with separated gradients, the necessity of a pixel reconstruction loss over recon-
struction to lower-dimensional “correct” representations, and demonstrations of the representation
power and generalization ability of our learned representation.

We find that deterministic models outperform β-VAEs (Higgins et al., 2017a), likely due to the
other introduced instabilities, such as bootstrapping, off-policy data, and end-to-end training with
auxiliary losses. We hypothesize that deterministic models that perform better even in stochastic
environments should be chosen over stochastic ones with the potential to learn probability distri-
butions, and argue that determinism has the benefit of added interpretability, through handling of
simpler distributions.

In the Appendix we provide results across all experiments on the full suite of 6 tasks chosen from
DMC (Appendix A), and the full set of hyperparameters used in Appendix B. There are also ad-
ditional experiments autoencoder capacity (Appendix E), a look at optimality of the learned latent
representation (Appendix H), importance of action repeat (Appendix I), and a set of benchmarks on
learning from proprioceptive observation (Appendix J). Finally, we opensource our codebase for the
community to spur future research in image-based RL.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv e-prints,
2016.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
TB, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributional policy gradients. In
International Conference on Learning Representations, 2018.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 2013.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 1957.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Learning
visual feature spaces for robotic manipulation with deep spatial autoencoders. CoRR, 2015.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018.

Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael J. Black, and Bernhard Schölkopf.
From variational to deterministic autoencoders. arXiv e-prints, 2019.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems 31. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. Thirty-Second AAAI Conference On Artificial Intelli-
gence (AAAI), 2018.

Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017a.

Irina Higgins, Arka Pal, Andrei A. Rusu, Burgess Christopher P Matthey, Loic and, Alexander
Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-
shot transfer in reinforcement learning. CoRR, 2017b.

Max Jaderberg, Volodymyr Mnih, Wojciech Czarnecki, Tom Schaul, Joel Z. Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. International
Conference on Learning Representations, 2017.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv e-prints, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Sascha Lange and Martin A. Riedmiller. Deep auto-encoder neural networks in reinforcement learn-
ing. In IJCNN, 2010.

9

Under review as a conference paper at ICLR 2020

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforce-
ment learning with a latent variable model. arXiv e-prints, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
2015.

Jan Mattner, Sascha Lange, and Martin Riedmiller. Learn to swing up and balance a real pole based
on raw visual input data. In Neural Information Processing, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv e-prints, 2013.

J. Munk, Jens Kober, and Robert Babuska. Learning state representation for deep actor-critic control.
In Proceedings 2016 IEEE 55th Conference on Decision and Control (CDC), 2016.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems
31, pp. 9191–9200. Curran Associates, Inc., 2018.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. arXiv e-prints, 2013.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward: Self-
supervision for reinforcement learning. CoRR, 2016.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. arXiv e-prints, 2015.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S. Schoenholz, and Jeffrey Penning-
ton. Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla
convolutional neural networks. arXiv e-prints, 2018.

Amy Zhang, Harsh Satija, and Joelle Pineau. Decoupling dynamics and reward for transfer learning.
CoRR, 2018.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Proceedings of the 23rd National Conference on Artificial Intelligence
- Volume 3, 2008.

10

Under review as a conference paper at ICLR 2020

APPENDIX

A THE DEEPMIND CONTROL SUITE

We evaluate the algorithms in the paper on the DeepMind control suite (DMC) (Tassa et al., 2018)
– a collection of continuous control tasks that offers an excellent testbed for reinforcement learning
agents. The software emphasizes the importance of having a standardised set of benchmarks with a
unified reward structure in order to measure made progress reliably.

Specifically, we consider six domains (see Figure 8) that result in twelve different control
tasks. Each task (Table 2) poses a particular set of challenges to a learning algorithm. The
ball in cup catch task only provides the agent with a sparse reward when the ball is caught; the
cheetah run task offers high dimensional internal state and action spaces; the reacher hard
task requires the agent to explore the environment. We refer the reader to the original paper to find
more information about the benchmarks.

Task name dim(O) dim(A) Reward type
Proprioceptive Image-based

ball in cup catch 8 3× 84× 84 2 sparse
cartpole {balance,swingup} 5 3× 84× 84 1 dense
cheetah run 17 3× 84× 84 6 dense
finger {spin,turn easy,turn hard} 12 3× 84× 84 2 dense/sparse
reacher {easy,hard} 7 3× 84× 84 2 sparse
walker {stand,walk,run} 24 3× 84× 84 6 dense

Table 2: We list specifications of observation space O (proprioceptive and image-based), action
space A, and the reward type for each task.

(a) ball in cup (b) cartpole (c) cheetah

(d) finger (e) reacher (f) walker

Figure 8: We use six domains spanning the total of twelve challenging continuous control
tasks: finger {spin,turn easy,turn hard}, cartpole {balance,swingup},
cheetah run, walker {stand,walk,run}, reacher {easy,hard}, and
ball in cup catch.

11

Under review as a conference paper at ICLR 2020

B HYPER PARAMETERS AND SETUP

B.1 ACTOR AND CRITIC NETWORKS

We employ double Q-learning (van Hasselt et al., 2015) for the critic, where each Q-function is
parametrized as a 3-layer MLP with ReLU activations after each layer except of the last. The actor
is also a 3-layer MLP with ReLUs that outputs mean and covariance for the diagonal Gaussian that
represents the policy. The hidden dimension is set to 1024 for both the critic and actor.

B.2 ENCODER AND DECODER NETWORKS

We employ an almost identical encoder architecture as in Tassa et al. (2018), with two minor differ-
ences. Firstly, we add two more convolutional layers to the convnet trunk. Secondly, we use ReLU
activations after each conv layer, instead of ELU. We employ kernels of size 3× 3 with 32 channels
for all the conv layers and set stride to 1 everywhere, except of the first conv layer, which has stride
2. We then take the output of the convnet and feed it into a single fully-connected layer normalized
by LayerNorm (Ba et al., 2016). Finally, we add tanh nonlinearity to the 50 dimensional output
of the fully-connected layer.

The actor and critic networks both have separate encoders, although we share the weights of the
conv layers between them. Furthermore, only the critic optimizer is allowed to update these weights
(e.g. we truncate the gradients from the actor before they propagate to the shared conv layers).

The decoder consists of one fully-connected layer that is then followed by four deconv layers. We
use ReLU activations after each layer, except the final deconv layer that produces pixels representa-
tion. Each deconv layer has kernels of size 3 × 3 with 32 channels and stride 1, except of the last
layer, where stride is 2.

We then combine the critic’s encoder together with the decoder specified above into an autoencoder.
Note, because we share conv weights between the critic’s and actor’s encoders, the conv layers of
the actor’s encoder will be also affected by reconstruction signal from the autoencoder.

B.3 TRAINING AND EVALUATION SETUP

We first collect 1000 seed observations using a random policy. We then collect training observations
by sampling actions from the current policy. We perform one training update every time we receive
a new observation. In cases where we use action repeat, the number of training observations is only
a fraction of the environment steps (e.g. a 1000 steps episode at action repeat 4 will only results
into 250 training observations). The action repeat used for each environment is specified in Table 3,
following those used by PlaNet and SLAC.

We evaluate our agent after every 10000 environment steps by computing an average episode return
over 10 evaluation episodes. Instead of sampling from the Gaussian policy we take its mean during
evaluation.

We preserve this setup throughout all the experiments in the paper.

Task name Action repeat
cartpole swingup 8
reacher easy 4
cheetah run 4
finger spin 2
ball in cup catch 4
walker walk 2

Table 3: Action repeat parameter used per task, following PlaNet and SLAC.

12

Under review as a conference paper at ICLR 2020

B.4 WEIGHTS INITIALIZATION

We initialize the weight matrix of fully-connected layers with the orthogonal initialization (Saxe
et al., 2013) and set the bias to be zero. For convolutional and deconvolutional layers we use delta-
orthogonal initialization (Xiao et al., 2018).

B.5 REGULARIZATION

We regularize the autoencoder network using the scheme proposed in Ghosh et al. (2019). In par-
ticular, we extend the standard reconstruction loss for a deterministic autoencoder with a L2 penalty
on the learned representation z and add weight decay on the decoder parameters θdec:

LRAE = Lrec + λz||z||22 + λθ||θdec||22.

We set λz = 10−6 and λθ = 10−7.

B.6 PIXELS PREPROCESSING

We construct an observational input as an 3-stack of consecutive frames (Mnih et al., 2013), where
each frame is a RGB rendering of size 3× 84× 84 from the 0th camera. We then divide each pixel
by 255 to scale it down to [0, 1) range. For reconstruction targets we instead preprocess images by
reducing bit depth to 5 bits as in Kingma & Dhariwal (2018).

B.7 OTHER HYPER PARAMETERS

We also provide a comprehensive overview of all the remaining hyper parameters in Table 4.

Parameter name Value
Replay buffer capacity 1000000
Batch size 128
Discount γ 0.99
Optimizer Adam
Critic learning rate 10−3

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.01
Critic encoder soft-update rate τenc 0.05
Actor learning rate 10−3

Actor update frequency 2
Actor log stddev bounds [−10, 2]
Autoencoder learning rate 10−3

Temperature learning rate 10−4

Temperature Adam’s β1 0.5
Init temperature 0.1

Table 4: A complete overview of used hyper parameters.

13

Under review as a conference paper at ICLR 2020

C ITERATIVE REPRESENTATION LEARNING WITH β-VAE

Iterative pretraining suggested in Lange & Riedmiller (2010); Finn et al. (2015) allows for faster rep-
resentation learning, which consequently boosts the final performance, yet it is not sufficient enough
to fully close the gap and additional modifications, such as end-to-end training, are needed. Figure 9
provides additional results for the experiment described in Section 4.3.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

SAC:state SAC:pixel SAC+VAE:pixel (iter,) SAC+VAE:pixel (iter, 100) SAC+VAE:pixel (iter, 1)

Figure 9: Separate β-VAE and policy training with no shared gradients SAC+VAE:pixel (iter, N),
with SAC:state shown as an upper bound. N refers to frequency in environment steps at which
the β-VAE updates after initial pretraining. More frequent updates are beneficial for learning better
representations, but cannot fully address the gap in performance.

14

Under review as a conference paper at ICLR 2020

D AN ATTEMPT FOR END-TO-END REPRESENTATION LEARNING WITH
β-VAE

Additional results to the experiments from Section 4.4 are in Figure 10.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

SAC:state SAC:pixel SAC+VAE:pixel (iter, 1) SAC+VAE:pixel

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

Figure 10: An unsuccessful attempt to propagate gradients from the actor-critic down to the encoder
of the β-VAE to enable end-to-end off-policy training. The learning process of SAC+VAE:pixel
exhibits instability together with the subpar performance comparing to the baseline SAC+VAE:pixel
(iter, 1), which does not share gradients with the actor-critic.

15

Under review as a conference paper at ICLR 2020

E CAPACITY OF THE AUTOENCODER

We also investigate various autoencoder capacities for the different tasks. Specifically, we measure
the impact of changing the capacity of the convolutional trunk of the encoder and corresponding
deconvolutional trunk of the decoder. Here, we maintain the shared weights across convolutional
layers between the actor and critic, but modify the number of convolutional layers and number of
filters per layer in Figure 11 across several environments. We find that SAC+AE is robust to various
autoencoder capacities, and all architectures tried were capable of extracting the relevant features
from pixel space necessary to learn a good policy. We use the same training and evaluation setup as
detailed in Appendix B.3.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

SAC:state
SAC:pixel

SAC+AE:pixel (2x32)
SAC+AE:pixel (4x32)

SAC+AE:pixel (4x64)
SAC+AE:pixel (6x64)

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

Figure 11: Different autoencoder architectures, where we vary the number of conv layers and the
number of output channels in each layer in both the encoder and decoder. For example, 4 × 32
specifies an architecture with 4 conv layers, each outputting 32 channels. We observe that the
difference in capacity has only limited effect on final performance.

16

Under review as a conference paper at ICLR 2020

F REPRESENTATION POWER OF THE ENCODER

Addition results to the experiment in Section 6.1 that demonstrates encoder’s power to reconstruct
proprioceptive state from image-observations are shown in Figure 12.

0 50 100 150 200

0.1

0.0

position[0]

0 50 100 150 200

0.0

0.5
position[1]

0 50 100 150 200

0.5

0.0

0.5

position[2]

0 50 100 150 200
1

0

position[3]

0 50 100 150 200
1

0

position[4]

0 50 100 150 200

0.5

0.0

position[5]

0 50 100 150 200

0.5

0.0

0.5

position[6]

0 50 100 150 200
0.5

0.0

0.5

position[7]

0 50 100 150 200
0.0

2.5

5.0

7.5

va
lu

e

velocity[0]

0 50 100 150 200

1

0

1

velocity[1]

0 50 100 150 200

2.5

0.0

2.5

velocity[2]

0 50 100 150 200
20

10

0

10

va
lu

e

velocity[3]

0 50 100 150 200

20

0

20
velocity[4]

0 50 100 150 200
20

0

20

velocity[5]

0 50 100 150 200
episode steps

10

0

10

20

va
lu

e

velocity[6]

0 50 100 150 200
episode steps

20

0

20
velocity[7]

Truth SAC+AE:pixel SAC:pixel

0 50 100 150 200
episode steps

10

0

10

velocity[8]

Figure 12: Linear projections of latent representation spaces learned by our method (SAC+AE:pixel)
and the baseline (SAC:pixel) onto proprioceptive states. We compare ground truth value of
each proprioceptive coordinate against their reconstructions for cheetah run, and conclude that
our method successfully encodes proprioceptive state information. The proprioceptive state of
cheetah run has 8 position and 9 velocity coordinates.

17

Under review as a conference paper at ICLR 2020

G DECODING TO PROPRIOCEPTIVE STATE

Learning from low-dimensional proprioceptive observations achieves better final performance with
greater sample efficiency (see Figure 5 for comparison to pixels and Appendix J for proprioceptive
baselines), therefore our intuition is to directly use these compact observations as the reconstruction
targets to generate an auxiliary signal. Although, this is an unrealistic setup, given that we do not
have access to proprioceptive states in practice, we use it as a tool to understand if such supervision
is beneficial for representation learning and therefore can achieve good performance. We augment
the observational encoder fenc, that maps an image ot into a latent vector zt, with a state decoder
fstate dec, that restores the corresponding state st from the latent vector zt. This leads to an auxililary
objective Eot,st∼D

[
1
2 ||fstate dec(zt)−st||22

]
, where zt = fenc(ot). We parametrize the state decoder

fstate dec as a 3-layer MLP with 1024 hidden size and ReLU activations, and train it end-to-end
with the actor-critic network. Such auxiliary supervision helps less than expected, and surprisingly
hurts performance in ball in cup catch, as seen in Figure 13. Our intuition is that such low-
dimensional supervision is not able to provide the rich reconstruction error needed to fit the high-
capacity convolutional encoder fenc. We thus seek for a denser auxiliary signal and try learning
latent representation spaces with pixel reconstructions.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

SAC:state SAC:pixel SAC:pixel (state supervision)

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

Figure 13: An auxiliary signal is provided by reconstructing a low-dimensional state from the cor-
responding image observation. Perhaps surprisingly, such synthetic supervision doesn’t guarantee
sufficient signal to fit the high-capacity encoder, which we infer from the suboptimal performance
of SAC:pixel (state supervision) compared to SAC:pixel in ball in cup catch.

18

Under review as a conference paper at ICLR 2020

H OPTIMALITY OF LEARNED LATENT REPRESENTATION

We define the optimality of the learned latent representation as the ability of our model to extract
and preserve all relevant information from the pixel observations sufficient to learn a good policy.
For example, the proprioceptive state representation is clearly better than the pixel representation
because we can learn a better policy. However, the differences in performance of SAC:state and
SAC+AE:pixel can be attributed not only to the different observation spaces, but also the difference
in data collected in the replay buffer. To decouple these attributes and determine how much informa-
tion loss there is in moving from proprioceptive state to pixel images, we measure final task reward
of policies learned from the same fixed replay buffer, where one is trained on proprioceptive states
and the other trained on pixel observations.

We first train a SAC+AE policy until convergence and save the replay buffer that we collected during
training. Importantly, in the replay buffer we store both the pixel observations and the corresponding
proprioceptive states. Note that for two policies trained on the fixed replay buffer, we are operating
in an off-policy regime, and thus it is possible we won’t be able to train a policy that performs as
well.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
cheetah_run

SAC+AE:pixel (collector) SAC+AE:pixel (fixed buffer) SAC:state (fixed buffer)

Figure 14: Training curves for the policy used to collect the buffer (SAC+AE:pixel (collector)),
and the two policies learned on that buffer using proprioceptive (SAC:state (fixed buffer)) and pixel
observations (SAC+AE:pixel (fixed buffer)). We see that our method actually outperforms proprio-
ceptive observations in this setting.

In Figure 14 we find, surprisingly, that our learned latent representation outperforms proprioceptive
state on a fixed buffer. This could be because the data collected in the buffer is by a policy also
learned from pixel observations, and is different enough from the policy that would be learned from
proprioceptive states that SAC:state underperforms in this setting.

19

Under review as a conference paper at ICLR 2020

I IMPORTANCE OF ACTION REPEAT

We found that repeating nominal actions several times has a significant effect on learning dynamics
and final reward. Prior works (Hafner et al., 2018; Lee et al., 2019) treat action repeat as a hyper
parameter to the learning algorithm, rather than a property of the target environment. Effectively,
action repeat decreases the control horizon of the task and makes the control dynamics more stable.
Yet, action repeat can also introduce a harmful bias, that prevents the agent from learning an optimal
policy due to the injected lag. This tasks a practitioner with a problem of finding an optimal value
for the action repeat hyper parameter that stabilizes training without limiting control elasticity too
much.

To get more insights, we perform an ablation study, where we sweep over several choices for action
repeat on multiple control tasks and compare acquired results against PlaNet (Hafner et al., 2018)
with the original action repeat setting, which was also tuned per environment. We use the same
setup as detailed in Appendix B.3. Specifically, we average performance over 10 random seeds,
and reduce the number of training observations inverse proportionally to the action repeat value.
The results are shown in Figure 15. We observe that PlaNet’s choice of action repeat is not always
optimal for our algorithm. For example, we can significantly improve performance of our agent on
the ball in cup catch task if instead of taking the same nominal action four times, as PlaNet
suggests, we take it once or twice. The same is true on a few other environments.

0.0 0.5 1.0 1.5 2.0 2.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

reacher_easy

PlaNet (4)

0.0 0.5 1.0 1.5 2.0
0

250

500

750

1000
ball_in_cup_catch

PlaNet (4)

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

PlaNet (2)

0.0 0.2 0.4 0.6 0.8 1.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_spin

PlaNet (2)

0.0 0.5 1.0 1.5 2.0
environment steps (*106)

0

250

500

750

1000
cartpole_swingup

PlaNet (8)

0 1 2 3
environment steps (*106)

0

250

500

750

1000
cheetah_run

PlaNet (4)

SAC:state SAC+AE:pixel (1) SAC+AE:pixel (2) SAC+AE:pixel (4)

Figure 15: We study the importance of the action repeat hyper parameter on final performance.
We evaluate three different settings, where the agent applies a sampled action once (SAC+AE:pixel
(1)), twice (SAC+AE:pixel (2)), or four times (SAC+AE:pixel (4)). As a reference, we also plot
the PlaNet (Hafner et al., 2018) results with the original action repeat setting. Action repeat has a
significant effect on learning. Moreover, we note that the PlaNet’s choice of hyper parameters is not
always optimal for our method (e.g. it is better to apply an action only once on walker walk,
than taking it twice).

J LEARNING FROM PROPRIOCEPTIVE OBSERVATIONS

In addition to the results when an agent learns from pixels, we also provide a comprehensive compar-
ison of several state-of-the-art continuous control algorithms that directly learn from proprioceptive
states. Specifically, we consider four agents that implement SAC (Haarnoja et al., 2018), TD3 (Fuji-
moto et al., 2018), DDPG (Lillicrap et al., 2015), and D4PG (Barth-Maron et al., 2018). We leverage
open-source implementations of TD3 and DDPG from https://github.com/sfujim/TD3, and use the
reported set of optimal hyper parameters, except of the batch size, which we increase to 512, as we
find it improves performance of both the algorithms. Due to lack of a publicly accessible imple-
mentation of D4PG, we take the final performance results after 108 environments steps as reported

20

https://github.com/sfujim/TD3

Under review as a conference paper at ICLR 2020

in Tassa et al. (2018). We use our own implementation of SAC together with the hyper parameters
listed in Appendix B, again we increase the batch size to 512. Importantly, we keep the same set of
hyper parameters across all tasks to avoid overfitting individual tasks.

For this evaluation we do not repeat actions and perform one training update per every environment
step. We evaluate a policy every 10000 steps (or every 10 episodes as one episode consists of 1000
steps) by running 10 evaluation episodes and averaging corresponding returns. To assess the stability
properties of each algorithm and produce reliable baselines we compute mean and std of evaluation
performance over 10 random seeds. We test on twelve challenging continuous control tasks from
DMC (Tassa et al., 2018), as described in Appendix A. The results are shown in Figure 16.

0.0 0.1 0.2 0.3 0.4 0.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

ball_in_cup_catch

0.0 0.1 0.2 0.3 0.4 0.5
0

250

500

750

1000
cartpole_balance

0.0 0.1 0.2 0.3 0.4 0.5
0

250

500

750

1000
cartpole_swingup

0.0 0.1 0.2 0.3 0.4 0.5
0

250

500

750

1000

av
er

ag
e

re
tu

rn

walker_stand

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
reacher_easy

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
reacher_hard

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000

av
er

ag
e

re
tu

rn

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
0

250

500

750

1000
walker_walk

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

250

500

750

1000
finger_spin

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000

av
er

ag
e

re
tu

rn

finger_turn_easy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
finger_turn_hard

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps (*106)

0

250

500

750

1000
walker_run

D4PG (108 steps) DDPG TD3 SAC

Figure 16: We benchmark SAC, TD3, DDPG, and D4PG when learning from proprioceptive states
on multiple tasks of various difficulty from DMC. We run 10 random seeds for each algorithm and
evaluate on 10 trajectories (except for D4PG, as its implementation is not publicly available). We
then report mean and standard deviation. For D4PG we take the performance after 108 environment
steps reported in Tassa et al. (2018). We observe that SAC demonstrates superior performance and
sample efficiency over the other methods on all of the tasks.

21

	1 Introduction
	2 Related work
	3 Background
	4 A dissection of learning state representations with -VAE
	4.1 Experimental setup
	4.2 Model-free off-policy RL with no auxiliary tasks
	4.3 Iterative representation learning with -VAE
	4.4 An attempt for end-to-end representation learning with -VAE

	5 Our method: SAC+AE with end-to-end off-policy training
	5.1 Performance on pixels

	6 Ablations
	6.1 Representation power of the encoder
	6.2 Generalization to unseen tasks

	7 Discussion
	A The DeepMind control suite
	B Hyper parameters and setup
	B.1 Actor and Critic networks
	B.2 Encoder and Decoder networks
	B.3 Training and evaluation setup
	B.4 Weights initialization
	B.5 Regularization
	B.6 Pixels preprocessing
	B.7 Other hyper parameters

	C Iterative representation learning with -VAE
	D An attempt for end-to-end representation learning with -VAE
	E Capacity of the Autoencoder
	F Representation power of the Encoder
	G Decoding to proprioceptive state
	H Optimality of learned latent representation
	I Importance of action repeat
	J Learning from proprioceptive observations

