Under review as a conference paper at ICLR 2020

DECODING AS DYNAMIC PROGRAMMING FOR RECUR-
RENT AUTOREGRESSIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Decoding in autoregressive models (ARMs) consists of searching for a high scor-
ing output sequence under the trained model. Standard decoding methods, based
on unidirectional greedy algorithm or beam search, are suboptimal due to error
propagation and myopic decisions which do not account for future steps in the
generation process. In this paper we present a novel decoding approach based on
the method of auxiliary coordinates (Carreira-Perpinan & Wang, [2014) to address
the aforementioned shortcomings. Our method introduces discrete variables for
output tokens, and auxiliary continuous variables representing the states of the
underlying ARM. The auxiliary variables lead to a factor graph approximation of
the ARM, whose maximum a posteriori (MAP) inference is found exactly using
dynamic programming. The MAP inference is then used to recreate an improved
factor graph approximation of the ARM via updated auxiliary variables. We then
extend our approach to decode in an ensemble of ARMs, possibly with different
generation orders, which is out of reach for the standard unidirectional decoding
algorithms. Experiments on the text infilling task over SWAG and Daily Dialogue
datasets show that our decoding method is superior to strong competing decoding
methods.

1 INTRODUCTION

Neural autoregressive models (ARMs) have shown remarkable performance on various natural lan-
guage processing tasks such as question answering, machine translation, summarization and reading
comprehension (Anderson et al.| 2018} [Bahdanau et al.,|2014; Wan et al.,|2019). These models are
usually trained in an end-to-end manner by optimizing the training objective to learn model param-
eters. Once the model has been trained, the output is generated by searching for a high scoring
sequence given the context and the trained model. This is referred to as the decoding problem.

ARMs create a sequence by repeatedly generating the next symbol conditioned on all previous
symbols generated. Symbols play dual duty: first they are generated, and next they are incorporated
into the conditioning of subsequent decisions. As subsequent decisions can be arbitrarily distant in
the sequence, these generation models are non-Markovian, i.e. they do not have a bounded Markov
order. As prominent examples, ARMs include Elman’s recurrent neural networks (RNNs) (Elman)
1990), conditional text generation models with RNN-based decoder (Sutskever et al., 2014), and
transformers (Vaswanti et al.,|2017)).

Exact decoding in ARMs is computationally hard, as the output search space is exponentially large
and does not lend itself to efficient algorithms. This is due to non-decomposable long-range inter-
dependencies among the output variables, i.e. an output token directly depends on all of the previ-
ously generated tokens. Standard uni-directional decoding algorithms, e.g. greedy and beam search,
are ineffective in producing high-scoring output sequences, as errors in the decoding history can ad-
versely affect the future. These algorithms make local decisions to extend an incomplete sequence
(hypothesis) by selecting the token with the maximum likelihood at each time step, hoping to get a
globally optimal complete sequence (Bahdanau et al.| 2014} Sutskever et al., [2014; Mikolov et al.,
2010).

In this paper, we present a novel decoding method, based on the method of auxiliary coordinate
(MAC), which has been mainly investigated for training deep neural networks (Carreira-Perpinan &
Wang| 2014). Our approach introduces discrete variables for output tokens, and auxiliary continuous

Under review as a conference paper at ICLR 2020

Figure 1: A typical RNN with unbounded Markov order is shown in (a). The factor graphs of our
zero-order and first-order Markov approximations are illustrated in (b) and (c), respectively. The
blue and red factors correspond to likelihood terms and the constraint violations, respectively, from
equations , for order k = 0, and (E]), fork = 1.

variables representing the states of the underlying ARM. The auxiliary variables lead to a factor
graph approximation of the ARM with a bounded Markov order (see Figure[I). We then alternate
between optimizing over the output variables and the state variables. The state variables are updated
to respect the state dynamics of the underlying ARM and the currently fixed output tokens. The
output variables are updated by dynamic programming to exactly optimise a global scoring function,
decomposed over local factors determined by the currently fixed state variables. We then extend our
MAC-based decoding approach to decode under product of ARM experts (Hinton, [1999), i.e. an
ensemble of ARMs combined additively in log-space, with each using a different generation order.

To validate our approach, we evaluate on the
text infilling task, which consists of filling
missing parts of a sentence or a paragraph (Hor-
vat & Byrne| 2014} [Tromble & Eisner, [2009;

| Context: There is a package for all sports channels |

Gold: Do you have a package that jncludes all the movie channels with
the basic channels also 7

Schmaltz et al., |2016). Text infilling is chal- ‘ Greedy: Da vou have a package of thal package 2 mevie of with the
< < < house channels .
lenging as it requires the global structure of the

sentence to fill a blank properly. As shown in ‘ Be“"’mm"a"ei"i’i\"sﬁfiﬁlﬁ;’ﬁiﬁzm°‘"eﬂw““ the
the figure to right, both greedy and beam search

fail to fill the blanks correctly. We conduct ex-

periments on two datasets: SWAG (Zellers et al., 2018) and Daily dialogue (Li et al.|, 2017} with
various mask rates. We show that our decoding approach achieve remarkable improvements against
the greedy and beam search algorithms as well as TIGS (Liu et al., 2019), a recently introduced
strong inference method for this task. TIGS decodes by iteratively optimizing the output variables
in a continuous relaxation of the discrete output space, and then projecting back the fractional solu-
tion to the discrete space. In contrast, the outputs in our approach stay in the discrete space, and we
iteratively optimize over both the outputs and the continuous state variables.

2 RELATED WORK

Inference in Relaxed Output Spaces. One approach to inference in deep neural networks is to
relax the discrete output space to a continuous space, and then use gradient descent optimisation over
the relaxed output variables, including structured prediction energy networks (SPENs) (Belanger
& McCallum, [2016) and deep value networks (DVNs) (Gygli et al.| [2017). The gradient descent
optimisation for inference in SPENS is replaced by an inference network in|Tu & Gimpel| (2018), in
order to speed up the prediction process. In all of these works, the relaxed output should be projected
back to the discrete space at the end of the inference in the relaxed space. This is usually done by
rounding, similar to rounding the fractional solution of a linear program relaxation of an integer
linear program. Performing the best projection, in terms of the loss function of interest, is usually a
hard problem in itself; therefore, the quality of the solution is often degraded in the projection step.

Our inference approach is similar to that of SPENs and DVNs in that it iteratively optimises and
refines the predicted output. However, the output variables always stay in the discrete space in our
approach, so we do not need a projection step of the inference process for rounding. Our approach,
instead, relaxes the space of continuous state variables to those which may not strictly satisfy the
constraints imposed by the dynamics of the underlying ARMs. (Cho| (2016) proposed to inject ran-

Under review as a conference paper at ICLR 2020

dom noise to the hidden states of a conditional recurrent neural language model during greedy or
beam search, and execute multiple parallel decoding runs. Our approach, instead, makes structured
changes to the state variables in the direction of optimising the decoding objective.

Method of Auxiliary Coordinates. |Carreira-Perpinan & Wang| (2014) introduced the method of
auxiliary variables (MAC) to train a neural network. Their idea was to break the interdependence
in layers of the neural network by introducing additional variables per data point and per hidden
unit. This resulted in smaller problems that could be solved easily given a careful design of the
architecture. Taylor et al.| (2016) extends MAC by introducing different auxiliary variables for the
linear operations and non-operations in a neural network. This results in three sets of variables
involving two auxiliary variables and the weights, which is then optrimized by alternating direction
method of multipliers (ADMM). Similarly, (Wang et al., [2019) introduces new variables and train
the neural network using ADMM to globally optimize the training objective, given a careful design
of the architecture.

3 OUR DECODING FRAMEWORK

Problem Formulation. Consider a recurrent neural network model for text generation. The prob-
ability of generating a sequence y1, .., ¢, under the RNN is decomposed as

n

P(yr, - yn) = [[P(ily<i) (D

i=1

where P(.|y<;) := softmax(Wh; + b), and the state dynamics is h; = f(h;_1,y;—1). Decoding
then refers to the following optimization problem,

arg max log P(y1,.., yn) = > log P(yily<i) 2)
e =1

The above optimization problem is computationally hard as it decomposes to conditional probabili-
ties with unbounded length for the conditioning contexts, i.e. a non-Markovian model.

Method of Auxiliary Coordinate (MAC). Our goal is to decompose the optimisation problem in
eqn (2) into smaller optimisation problems, which can be solved jointly and coupled via the state
variables. This would make decoding more resilient compared t uni-directional decoding, where
early errors can adversely affect the future.

Let us start by considering the following decomposition of the decoding problem,

arg min - — Zlog P(yilg:) ®

yT,81
S.t.
g = f(gi-1,9i-1) Vi€ |[2,.,n].

Notice the appearance of the new explicit variables g in this optimisation formulation of the decod-
ing problem, which mirror the role of h in the underlying RNN. Eliminating the g variables would
make this optimisation problem exactly equivalent to the original decoding problem in eqn (2)). The
g serve as continuous auxiliary coordinates, following the MAC technique (Carreira-Perpinan &
Wang, [2014)).

The objective function in eqn (3] links the state variable g; to token variable y; generated at the time
step . This is a zero-order decomposition of the log-likelihood function in eqn (@), as the terms
in the objective do not condition on the previous tokens. Interestingly, we can generalise to a k™
order decomposition by linking the state variable g;_j, from k steps in the past to the generation of
the current token y;. This is due to the fact that the current hidden state, responsible for generating
the current token in RNNS, is a deterministic function of the past hidden state g;_; and all of the
i—1

k generated tokens between that time step and the current time step y;—,. Hence, our k™ order

Under review as a conference paper at ICLR 2020

decoding optimisation problem is written as follows:

arg min ZIOgP (il £ (gi,k,yiji)) S

y17 1
s.t.
g = f(gi—1,%i-1) Vie[2,.,n],

where f*) (8i—k,y.~}) denotes k repeated applications of the RNN’s state transition function f(.)
to compute the current hidden state from the past state g;_; and the tokens observed since then
yf:}c. For example with k = 2, f(Q)(gz 2,yZ 2) F(Wf(Wg;_o,y;—2),¥i—1). The variables g;
and y; for indices ¢ < 0 are assigned null values, i.e., 0, or a sentence start sentinel. Assuming the
constraints are satisfied, this constrained optimisation problem is equivalent to the decoding problem
in eqn (. Otherwise, when the constraints are not met, the k™ order objective results in a more
accurate approximation to the original decoding problem compared to the first-order formulation in
eqn . As k is made larger, the reliance on g is reduced, as f (*) uses the RNN’s state transition
function directly. This will be important in early stages of optimisation, where g does not accurately
reflect the RNN state dynamic. The cost of using a higher order, is a higher complexity of inference,
which we discuss in Section 4.

In summary, our decoding approach results in a constrained optimisation problem, incorporating two
types of factors corresponding to the likelihood terms in the objective function and the constraint
violations, respectively, which are denoted by blue and red, in the factor graph of Figure I}

4 OPTIMISATION ALGORITHMS

We now turn to solving the constrained optimisation problem in eqn (). Using the quadratic-penalty
(QP) method (Nocedal & Wright, 2006), we turn it to an unconstrained optimisation problem,

i £(g7,y1 1) =) ~log Pyl £ (gi—r, yiZ})) + pllgi — flgion,wi)3)
This suggests a two-step block coordinate descent algorithm to alternate between (i) optimizing
y’s while g’s are fixed, and (ii) optimizing g’s while y’s are fixed. Other methods for constrained
optimization can be used, e.g. the augmented Lagrangian, rather than the quadratic-penalty method
(Nocedal & Wright, |2006; Taylor et al., [2016; |Wang et al.l 2019). However, the focus of our work
is to investigate the effectiveness of decomposing the non-Markovian decoding objective to the
bounded-Markov constrained optimisation problem in eqn (4)), so we leave it to the future work to
investigate the effect of different optimisation strategies.

It is worth noting that the above optimisation problem can be also interpreted as inference objective
in an sfochastic RNN, where the next hidden state g; is conditionally generated based on the previous
hidden state according to a multivariate Gaussian distribution with the mean vector g;_; and the
diagonal covariance matrix whose diagonal elements are ..

Updating the Output Variables Assuming g’s are fixed, the discrete output variables y’s can
be updated to exactly solve eqn (5)) using a variant of the Viterbi algorithm (Viterbi, [1967). Let

Py, (|yi=}) := softmax(W - f ®) (g, y.~4) + b) be the conditional probability of the next
token given the previous k tokens and g;_. Consider a dynamic programming table 1" € RIY*Ixn,

The table is filled from left to right, and at each time ¢, the element corresponding to the DP state
Yi_ps1 € V¥ is computed as,

T[yg—k—&-lvﬂ A ;I,leigljﬂyl oyz:llc-i-lvi 1] —log Py, , (yily/ Oyl k+1) + pllgs — F(gi—1,vi-1)I13

where y’ o yf‘,lC 1 denotes the concatenation of the token y’ to the beginning of the sequence of

tokens y!~, 41> Which results in a sequence of tokens of length k. Once the DP table is built, the
optimal sequence can be read off by traversing the table from the end towards the beginning. The
time complexity of the DP is O(n|Y|¥*1) where n is the length of the sequence, k is the Markov
order, and || is the size of the vocabulary.

Under review as a conference paper at ICLR 2020

Updating the State Variables Next, we turn to optimizing the penalized decoding objective (eqn
[3) with respect to the continuous auxiliary variables, g, assuming fixed outputs, y. For particu-
lar combinations of state transition and the likelihood functions, the optimal state values may have
gradient-free closed form solution. However, we assume the general case, where the state transi-
tion and likelihood functions are given typical nonlinear functions. In the absence of closed-form
solution, the simplest method is to use gradient-based optimization algorithms. Interestingly, the
computational graph corresponding to the penalized decoding objective considers the state variables
of all positions as the input when computing the output £(g7,y7,). This means, there is no need
for backpropagation through the time (BPTT), as opposed to the underlying RNN, to compute the
gradient as the contribution of all positions is taken into account in parallel.

We also propose an approximation method to simplify the g update, by ignoring the log-likelihood
term in the objective, which we denote by forced decoding. In this case, the penalty term can be
optimized exactly, and reduced to zero by computing g’s according to the RNN state transition
function f(.) from-left-to-right while the output variables are fixed. This update does not involve
computing the gradients, and only involves a forward pass through the RNN.

5 DECODING IN AN ENSEMBLE

In this section, we extend our MAC-based decoding approach to decode under an ensemble of
ARMs, each using a different generation order. For example, consider two RNN-based language
models, left-to-right (L2R) and right-to-left (R2L), where each of which gives a score to an as-
signment of words to the blank positions in the text infilling task. We are then interested to find
an assignment of words which has the maximum sum of the scores under these two models. As
both models are in the exponential family, this corresponds to a product of experts (Hinton, [1999).
Unidirectional decoding algorithms cannot decode under such ensembles.

Let us consider the decoding problem in an ensemble of left-to-right and right-to-left RNNs,

%
arg max 3 log Pyily<i) +log P (yily=:)

1-Yn

where each RNN has its own parameters. We then reformulate this optimisation problem, using
auxiliary variables g; and g/ for the L2R and R2L RNN, as follows,

!
yi.81sy'Ts

= = .
arg min -~ log Puilf Vg yiT)) +1og PV (gl v i) | ©)
1 .
7
s.t.

gi = 7(&‘71,%71) Vi € [2,..,n]

\r3 .
f (g;-‘rlvyi-‘rl) VZ € [17 = 1]
elyi] = ely]] Vie[l,..,n]

where the constraints in eqn (6) couple the two optimisation problems corresponding to the L2R
and R2L RNNs. Note that we have enforced the equality between the embeddings of the words y;
and y; produced by the L2R and R2L models, respectively (denoted e[y]). This provides a denser
signal, e.g. from synonyms or words with related syntactic categories, in order to couple the two
optimisation problems, compared to a sparse signal from constraints using identity of the tokens.

To solve the above optimisation problem, we use of the quadratic penalty method, similar to the
previous section, i.e.,

) — ;
min Y- tog B i1 (g y'=1) — log Py P (ghpy’ L))

m

n o n m
81:Y1,81:Y1

%
tllg — F @it vi)|E+ g — F (& v DR + i lely:] — elul]][2.

This suggests an optimisation algorithm which alternates between (i) updating {y7, g7} in the first
phase while the other variables are fixed, and (ii) updating {y’}, g’} } in the second phase while the
other variables are fixed. The updates for each of these phases is done using an iterative algorithm,

Under review as a conference paper at ICLR 2020

Context: Look , this one matches our room and it's inexpensive .
Target: Moreover , it's easy to clean , right ? You are really lazy .

Context: Good evening, sir . Are you Mr . Jim Stewart from the States ?
Target: Ah, yes, that's right .

Context: someone leans down , placing his head on his mother 's shoulder .
Target: a soldier is manning a gun from inside the helicopter .

Context: So , what can | do for you today ? Are you needing to withdraw or
transfer ?
Target: I'm going to need a Deposit Certification , to handle the affairs
related to home .

Context: she looks off in another direction , slightly behind the office , and sees .
Target: a path from the motel office leads directly up to this house .

Context: as the detective descends , someone reaches into his pocket and pulls
out a pack of gum .
Target: he holds it out to someone .

(a) (b)

Figure 2: Some test examples from (a) Daily Dialogue and (b) SWAG datasets.

similar to those presented in sectiond} for updating the output and state variables. The only modifi-
cation in the objective function of each phase (compared to the previous section) is the inclusion of
the token embedding constraints ||e[y;] — e[y!]||?, which can be easily accounted for in the dynamic
programming algorithm when updating the output variables.

6 EXPERIMENTS

The Text Infilling Task. Text infilling consists of predicting missing parts of a sentence or a
paragraph. The task is encountered in everyday applications of restoring historical or damaged
documents (Zhu et al., 2019), writing articles or contracts with templates (Ippolito et al., [2019)
and text editing (Feng et al.| 2019). Although important, text infilling is less explored and has been
studied under simplified and restricted settings (Fedus et al., | 2018;Zweig & Burges,, 2011} Holtzman
et al.| 2018} [Fan et al.| 2018)). For example, [Horvat & Byrne|(2014) restricted the vocabulary to the
set of gold standard words blanked in the sentence. Here we follow a setup similar to (Liu et al.,
2019), which also limits the vocabulary, but places no restriction on the number and position of the
blanks, and thus is more similar to situations encountered in real life applications.

More formally let B be a mask, comprising set of indices where blanks appear in the sentence. Let
y 2 be a target sentence where tokens at the positions of the sentence in 1B have been masked. For
example if B = {i,i + 1} then y® is {y1, ...vi_1, -, - Yi+2, --Yn }. Given the context x and masked
sentence y, the aim is to fill in the blanks as they appear in sentence. This requires considering
global structure of the sentence along with the conditioning context.

Datasets. We evaluate our proposed approach on two text infilling tasks over two widely used
publicly available corpora. The first task is conversation reply with a template (denoted as Daily)
which is conducted on the DailyDialog dataset (Li et al., 2017). Similar to |Liu et al|(2019) we
convert the multi-turn dialogues into single-turn dialogues , resulting in 82,372 conversation pairs.
The query sentence is used as input to the encoder x where as the reply is the output y from the
decoder. The second task is captions from movies along with an ending (denoted as SWAG) which
is conducted on the SWAG dataset (Zellers et al.l [2018). We only consider the correct endings to
build the target side. This gives us 73,000 pairs of sentences. The input to the encoder is the caption
x whereas the decoder has to produce the ending y conditioned on x. Some examples of these
datasets are shown in Figure 2]

Training. We trained both left-to-right (L2R) and right-to-left (R2L) models, where R2L models
are trained by reversing the target side sentence. All models are trained with a word embedding
size and hidden dimension size of 512. We use ADAM optimiser to train the models with an initial
learning rate of 0.001. Since the source and target sides are in the same language, we shared the
word embeddings between the encoder and decoder. The models were trained for 10 epochs.

Baselines. Our baselines include: greedy decoding, beam search, and a strong recently proposed
inference algorithm for the text infilling task TIGS (Liu et al.,|2019). TIGS decodes by iterating
through the following steps: (i) relaxing the space of output variables from discrete to continuous and
optimise over the continuous output variables using gradient based optimization, and (ii) projecting
back the solution from the continuous space to discrete. In contrast, the outputs in our approach stay

Under review as a conference paper at ICLR 2020

Dialogue SWAG
Decoding Method || BLEU PPLX | BLEU PPLX
Greedy 71.2 5.88 71.6 5.64
& Beam 71.3 5.84 71.8 5.58
— TIGS 73.0 4.31 74.0 3.49
Ours 79.3 3.49 83.9 2.31
Greedy 70.2 6.96 63.9 7.07
= Beam 70.4 6.90 64.1 6.97
~ TIGS 71.8 4.87 66.5 4.68
Ours 77.9 3.80 78.7 3.04
= Ours 80.2 - 79.3 -
2 L2R component - 3.30 - 3.39
R2L component - 3.73 - 4.15

Table 1: BLEU score and perplexity of various models on the two datasets with 50% masking rate.
The results of our decoding approach is based on the 1st order approximation.

in the discrete space, and we optimize over both discrete and the continuous state variables, as part
of an iterative coordinate descent procedure. Our methods and the baslines are implemented on top
of OpenNM (Klein et al.,|2017).

Decoding Parameters We use the Nesterov optimiser with a learning rate of 0.1. All p’s are
initialised with 0.5 and are multiplied by 1.2 after 5 epochs, and decoding was run for 10 epochs,
chosen as the first order method had reliably converged in terms of objective value and the output
string. We use the RNN states h corresponding to the beam search solution to initialize the g
variables in our decoding method.

6.1 RESULTS

The results are reported in Tablem Following Liu et al.|(2019), we build a test set of 5000 sentences
for each dataset. We use a 50% masking rate and randomly place the blanks for each sentence. We
perform experiments on left-to-right (L2R), right-to-left (R2L), and an ensemble of the two.

Generally, L2R models outperform R2L models. This may be due to sentences being generated
inherently in a left to right manner. Hence modelling the writing process with a right to left model
may make it difficult to learn useful patterns. The trend across all the models and both datasets is
that a decrease in perplexity leads to a better BLEU score. The benchmark TIGS method (Liu et al.}
2019) outperforms both the greedy algorithm and beam search. However, our decoding method
outperforms TIGS and other baselines significantly. Compared to the greedy algorithm and beam
search, our method and TIGS leverage information from both future and the past. Compared to
TIGS, our method operates by keeping the output variables in the discrete space, whereas in TIGS
the output variables are relaxed to the continuous space and projected back to the discrete space.

Given that context from both directions helps in better decoding when working with unidirectional
models, we perform experiments on an ensemble of L2R and R2L models. Notably, the unidirec-
tional greedy algorithm and beam search cannot operate on the ensemble. Our method, instead, can
decode with the ensemble, which further improves the BLEU score for the Dialogue task.

6.2 ANALYSIS

Varying the Masking Rate. Increasing the masking rate makes it difficult for all the models to
correctly fill in the blanks. We experiment on the dialogue dataset by randomly masking the test set
with the rates 25%, 50%, and 75%. Results are reported in Table @ As the masking rate increases,
BLEU score decreases, whereas perplexity increases. Compared to the other techniques, our method
is able to achieve better results even with high masking rates.

'Our code will be released upon publication

Under review as a conference paper at ICLR 2020

Mask Rate 25% 50% 75%
BLEU PPLX BLEU PPLX BLEU PPLX
Greedy 85.4 443 71.2 5.88 60.4 4.25
Beam 85.4 443 71.3 5.84 62.0 4.03
TIGS 88.0 3.47 73.0 4.31 62.5 3.53
Ours (1st order) | 90.9 2.80 79.3 3.49 64.3 2.47

Table 2: Performance with varying masking rates for the different decoding methods.

—— O-order
Varying the Markov Order. Our penalized de- | Torder
coding objective is composed of the negative log- 6xi
likelihood term and the penalty (see eqn 5). As the al-

gorithm proceeds, both of these terms decrease, show-
ing consistency in the auxiliary variables. We hy- .
pothesise that, although higher order Markov models
produce more accurate approximations to the original
decoding problem, they result in harder optimization
problems. The following figure (right) plots the penal- ~ +x0°

ized decoding objective in k-th order Markov approxi- ‘ ‘ j
mations for k € {0, 1,2}. The results are based on 100 ’ ’ fgocn °
examples in the test set for the Daily Dialogue dataset, with random masking using 50% masking
rate. Observe that the penalized decoding objective tends to decrease less for the 2nd order method
compared to the others. Table 3 reports the perplexity, BLEU score, and decoding time for these
different Markov approximations. The results confirm the increase in the BLEU score and decrease
in the perplexity, as the Markov order increases. Furthermore, it shows the trade-off in the solution
quality vs. decoding time for these different approximations. In Table 3, we report results based on
two different methods for updating the state variables in our method, i.e. gradient-based and forced
decoding. As expected, gradient-based updates produced more accurate results compared to forced
decoding, but at the cost of a longer run-time.

Gradient Based Forced Decoding
BLEU PPLX Time | BLEU PPLX Time

0-order 77.4 6.55 297s | 754 6.86 65s
1-order 84.2 342 348s 82.6 3.75 93s
2-order 85.5 233 893s 83.4 334 Tlls

Table 3: The results of varying Markov order and state variable update method. Time is reported for
processing 100 sentences.

Figure [3|shows the iterative improvement of an example test sentence in each epoch of our decoding
methods with varying Markov order. Each method is given the same initial solution produced by
the beam search. The zero-order method converges to a bad solution in the first epoch and gets
stuck there in future epochs. The first-order method arrives to a further improved solution while the
second order method can find the best solution among all.

7 CONCLUSION

This work presented a method for improving decoding in discrete autoregressive models using
dynamic programming. The core idea is to introduce auxiliary variables to decouple the non-
Markovian aspects of the model, permitting an approximate solution. This solution is used to create
the next model approximation, and the process iterates. Our results show that our decoding frame-
work is effective, leading to substantial improvements over greedy and beam search baselines. Our
approach does have limitations, most notably the computational complexity which is polynomial in
the vocabulary size, thus limiting its application to open text generation problems. Improving the
complexity of decoding is an important direction for future research, as is applying the method to
other autoregressive models, such as the Transformer, which includes self attention, as well as other
structured prediction problems.

Under review as a conference paper at ICLR 2020

Context: Oh, I'd much prefer to go by car, then we don't need to get to the station with our luggage and ...

Gold: And I've got to drive . You know I'm not fond of that . | found it much more relaxing to sit in the train .

| Epoch

Zero Order

First Order

| Second Order

I've got to drive . My train I'm supposed to of that train to found it to more relaxing . | found the train in

And I've got to drive . My can I'm late in
of that . I'm found it is more relaxing |
have on the train and

And I've got to drive . Let's see I'm hot
fond of that . | found it in more relaxing to
sit down the train |

but I've got to drive . | see I'm not fond of
that . 1 found it in more relaxing to take in
the train ...

And I've got to drive . My can I'm latein
of that . I'm found it is more relaxing |
have on the train and

And I've got to drive . My can I'm late in
of that . I'm found it is more relaxing |
have on the train and

And I've got to drive . Let's see I'm hot
fond of that, | found it in more relaxing ,
take on the train .

and I've got to drive . | see I'm not fond of
that . 1 found it pretty more relaxing to take
in the train |

And I've got to drive . Let's see I'm hot
much of that . | found it is more relaxing to
get on the train |

but I've got to drive . | see I'm not fond of
that .| found it much more relaxing to get
on the train |

4 And I've got to drive . My can I'm late in And I've got to drive . Let's see I'm not but I've got to drive . | see I'm not fond of
of that . I'm found it is more relaxing | | much of that . | found it is more relaxing to | that. | found it much more relaxing to get
have on the train and get on the train . on the train .
5 And I've got to drive . My can I'm late in And I've got to drive . Let's see I'm hot but I've got to drive . | see I'm not fond of
of that . I'm found it is more relaxing | | much of that . | found it is more relaxing to | that .| found it much more relaxing to sitin
have on the train and get on the train | the train .
Figure 3: Improvement of the sentence in different iterations
REFERENCES

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and
Lei Zhang. Bottom-up and top-down attention for image captioning and visual question answer-
ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6077-6086, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

David Belanger and Andrew McCallum. Structured prediction energy networks. In International
Conference on Machine Learning, pp. 983-992, 2016.

Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In
Artificial Intelligence and Statistics (AISTATS), pp. 10-19, 2014.

Kyunghyun Cho. Noisy parallel approximate decoding for conditional recurrent language model.
arXiv preprint arXiv:1605.03835, 2016.

Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE, 14(2):179-211, 1990.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018.

William Fedus, Ian Goodfellow, and Andrew M Dai. Maskgan: better text generation via filling in
the_. arXiv preprint arXiv:1801.07736, 2018.

Steven Y Feng, Aaron W Li, and Jesse Hoey. Keep calm and switch on! preserving sentiment and
fluency in semantic text exchange. arXiv preprint arXiv:1909.00088, 2019.

Michael Gygli, Mohammad Norouzi, and Anelia Angelova. Deep value networks learn to evaluate
and iteratively refine structured outputs. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning (ICML), 2017.

Geoffrey E. Hinton. Products of experts. In Ninth International Conference on Artificial Neural
Networks, volume 1, pp. 1-6, 1999.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning
to write with cooperative discriminators. arXiv preprint arXiv:1805.06087, 2018.

Matic Horvat and William Byrne. A graph-based approach to string regeneration. In Proceedings of
the Student Research Workshop at the 14th Conference of the European Chapter of the Association
for Computational Linguistics, pp. 85-95, 2014.

Daphne Ippolito, David Grangier, Chris Callison-Burch, and Douglas Eck. Unsupervised hierarchi-
cal story infilling. In Proceedings of the First Workshop on Narrative Understanding, pp. 37-43,
2019.

Under review as a conference paper at ICLR 2020

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT: Open-
source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstra-
tions, pp. 67-72, Vancouver, Canada, July 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P17-4012,

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Zigiang Cao, and Shuzi Niu. Dailydialog: A manually
labelled multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957, 2017.

Dayiheng Liu, Jie Fu, Pengfei Liu, and Jiancheng Lv. Tigs: An inference algorithm for text infilling
with gradient search. arXiv preprint arXiv:1905.10752, 2019.

Toméas Mikolov, Martin Karafiat, Luk4$ Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the international speech
communication association, 2010.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA,
second edition, 2006.

Allen Schmaltz, Alexander M Rush, and Stuart M Shieber. Word ordering without syntax. arXiv
preprint arXiv:1604.08633, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
neural networks without gradients: A scalable admm approach. In International conference on
machine learning, pp. 2722-2731, 2016.

Roy Tromble and Jason Eisner. Learning linear ordering problems for better translation. In Pro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
2-Volume 2, pp. 1007-1016, 2009.

Lifu Tu and Kevin Gimpel. Learning approximate inference networks for structured prediction. In
International Conference on Learning Representations (ICLR), 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory, 13(2):260-269, April 1967. doi: 10.1109/TIT.
1967.1054010.

Xiaojun Wan, Fuli Luo, Xue Sun, Songfang Huang, and Jin-ge Yao. Cross-language document
summarization via extraction and ranking of multiple summaries. Knowledge and Information
Systems, 58(2):481-499, 2019.

Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. Admm for efficient deep learning with
global convergence. 2019.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-scale adversarial
dataset for grounded commonsense inference. arXiv preprint arXiv:1808.05326, 2018.

Wanrong Zhu, Zhiting Hu, and Eric Xing. Text infilling. arXiv preprint arXiv:1901.00158, 2019.

Geoffrey Zweig and Christopher JC Burges. The microsoft research sentence completion challenge.
Microsoft Research, Redmond, WA, USA, Tech. Rep. MSR-TR-2011-129, 2011.

10

https://www.aclweb.org/anthology/P17-4012

	Introduction
	Related Work
	Our Decoding Framework
	Optimisation Algorithms
	Decoding in an Ensemble
	Experiments
	Results
	Analysis

	Conclusion

